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Abstract. Systems for inducing concept descriptions from examples are valuable 
tools for assisting in the task of knowledge acquisition for expert systems. This 
paper presents a description and empirical evaluation of a new induction system, 
CN2, designed for the efficient induction of simple, comprehensible production rules 
in domains where problems of poor description language and/or noise may be present. 
Implementations of the CN2, ID3, and AQ algorithms are compared on three medical 
classification tasks. 

1. Introduct ion 

In the task of constructing expert systems, methods for inducing concept de- 
scriptions from examples have proved useful in easing the bottleneck of knowl- 
edge acquisition (Mowforth, 1986). Two families of systems, based on the ID3 
(Quinlan, 1983) and AQ (Michalski, 1969) algorithms, have been especially 
successful. These basic algorithms assume no noise in the domain, searching 
for a concept description that classifies training data perfectly. However, ap- 
plication to real-world domains requires methods for handling noisy data. In 
particular, one needs mechanisms that do not ove~fit the induced concept de- 
scription to the data, and this requires relaxing the constraint that the induced 
description must classify the training data perfectly. 

Fortunately, the ID3 algorithm lends itself to such modification by the na- 
ture of its general-to-specific search. Tree-pruning techniques (e.g., Quinlan, 
1987a; Niblett, 1987), used for example in C4 (Quinlan, Compton, Horn, & 
Lazarus, 1987) and ASSISTANT (Kononenko, Bratko, & Roskar, 1984), have 
proved effective against overfitting. However, the AQ algorithm's dependence 
on specific training examples during search makes it less easy to modify. Ex- 
isting implementations, such as A Q l l  (Michalski & Larson, 1983) and AQ15 
(Michalski, Mozetic, Hong, ~ Lavrac, 1986), leave the basic AQ algorithm 
intact and handle noise with pre-processing and post-processing techniques. 
Our objective in designing CN2 was to modify the AQ algorithm itself in 
ways that removed this dependence on specific examples and increased the 
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space of rules searched. This lets one apply statistical techniques, analogous 
to those used for tree pruning, in the generation of if-then rules, leading to a 
simpler induction algorithm. 

One can identify several requirements that learning systems should meet if 
they are to prove useful in a variety of real-world situations: 

• Accurate classification. The induced rules should be able to classify new 
examples accurately, even in the presence of noise. 

• Simple rules. For the sake of comprehensibility, the induced rules should 
be as short as possible. However, when noise is present, overfitting can 
lead to long rules. Thus, to induce short rules, one must usually relax 
the requirement that the induced rules be consistent with all the training 
data. The choice of how much to relax this requirement involves a trade-off 
between accuracy and simplicity (Iba, Wogulis, & Langley, 1988). 

• Efficient rule generation. If one expects to use large example sets, it is 
important that the algorithm scales up to complex situations. In practice, 
the time taken for rule generation should be linear in the size of the 
example set. 

With these requirements in mind, this paper presents a description and empir- 
ical evaluation of CN2, a new induction algorithm. This system combines the 
efficiency and ability to cope with noisy data of ID3 with the if-then rule form 
and flexible search strategy of the AQ family. The representation for rules 
output by CN2 is an ordered set of if-then rules, also known as a decision 
list (Rivest, 1987). CN2 uses a heuristic function to terminate search during 
rule construction, based on an estimate of the noise present in the data. This 
results in rules that may not classify all the training examples correctly, but 
that perform well on new data. 

In the following section we describe CN2 and three other systems used for 
our comparative study. In Section 3 we consider the time complexity of the 
various algorithms and in Section 4 we compare their performance on three 
medical diagnosis tasks. We also compare the performance of ASSISTANT and 
CN2 on two synthetic tasks. In Section 5 we discuss the significance of our 
results, and we follow this with some suggestions for future work in Section 6. 

2. C N 2  a n d  r e l a t e d  a l g o r i t h m s  

CN2 incorporates ideas from both Michalski's (1969) AQ and Quinlan's 
(1983) ID3 algorithms. Thus we begin by describing Kononenko et al.'s (1984) 
ASSISTANT, a variant of ID3, and AQR, the authors' reconstruction of Michal- 
ski's method. After this, we present CN2 and discuss its relationship to these 
systems. We also describe a simple Bayesian classifier, which provides a refer- 
ence for the performance of the other algorithms. We characterize each system 
along three dimensions: 

• the representation language for the induced knowledge; 
• the performance engine for executing the rules; and 
• the learning algorithm and its associated search heuristics. 
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In all of our experiments, the example description language consisted of at- 
tributes, attribute values, and user-specified classes. This language was the 
same for each algorithm. 

2.1 ASSISTANT 

The ASSISTANT algorithm (Kononenko et al., 1984) is a descendant of Quin- 
lan's ID3 (1983), and incorporates a tree-pruning mechanism for handling 
noisy data. 

2.1.1 Concept description and interpretation in ASSISTANT 

ASSISTANT represents acquired knowledge in the form of decision trees. An 
internal node of a tree specifies a test of an attribute, with each outgoing 
branch corresponding to a possible result of this test. Leaf nodes represent the 
classification to be assigned to an example. 

To classify a new example, a path from the root of the decision tree to a 
leaf node is traced. At each internal node reached, one follows the branch 
corresponding to the value of the attribute tested at that node. The class at 
the leaf node represents the class prediction for that example. 

2.1.2 The ASSISTANT learning algorithm 

ASSISTANT induces a decision tree by repeatedly specializing leaf nodes of an 
initially single-node tree. The specialization operation involves replacing a leaf 
node with an attribute test, and adding new leaves to that node corresponding 
to the possible results of that test. Heuristics determine the attribute on which 
to test and when to stop specialization. Table 1 summarizes this algorithm. 

2.1.3 Heuristic functions in ASSISTANT 

ASSISTANT uses an entropy measure to guide the growth of the decision 
tree, as described by Quinlan (1983). This corresponds to the function IDM 
in Table 1. In addition, the algorithm can apply a tree-cutoff method based 
on an estimate of maximal classification precision. This technique estimates 
whether additional branching would reduce classification accuracy and, if so, 
terminates search (there are no user-controlled parameters in this calculation). 
This cutoff criterion corresponds to the function TE in Table 1. If ASSISTANT 
is to generate an 'unpruned' tree, the termination criterion TE(E) is satisfied 
if all the examples E have the same class value. 

2.2 AQR 

AQR is an induction system that uses the basic AQ algorithm (Michalski, 
1969) to generate a set of classification rules. Many systems use this algorithm 
in a more sophisticated manner than AQR to improve predictive accuracy and 
rule simplicity; e.g., AQ11 (Michalski & Larson, 1983) uses a more complex 
method of rule interpretation that involves degrees of confirmation. AQR is a 
reconstruction of a straightforward AQ-based system. 
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Table 1. The core of the ASSISTANT algorithm. 

Let E be a set of classified examples. 

Let A be a set of attributes for describing examples. 

Let TE(E) be a termination criterion. 

Let IDM(Ai,E ) be an evaluation function, where A i E A. 

Procedure Assistant(E) 

If E satisfies the termination criterion TE(E), 

Then return a leaf node for TREE, labelled with 

the most common class of examples in E. 

Else let Abest 6 A be the attribute with the 

largest value of the function IDM(Abest,E ). 

For each value Vj of attribute Abest, 

Generate subtrees using ASSISTANT(Ej), 

where Ej are those examples in E with 

value Vj for attribute Abest. 

Keturn a node labelled as a test on attribute Abest 

with these subtrees attached. 

2.2.1 Concept description and interpretation in A Q R  

AQR induces a set of decision rules, one for each class. Each rule is of the 
form 'if <cover> then predict <class>',  where <cover> is a Boolean combi- 
nation of attribute tests as we now describe. The basic test on an attribute 
is called a selector. For instance, (Cloudy = yes), (Weather = wet V stormy), 
and (Temperature > 60 / are all selectors. AQR allows tests in the set {= 
, <, >, ¢}. A conjunction of selectors is called a complex, and a disjunct of 
complexes is called a cover. We say that an expression (a selector, complex, 
or cover) covers an example if the expression is true of the example. Thus, 
the empty complex (a conjunct of zero attribute tests) covers all examples and 
the empty cover (a disjunct of zero complexes) covers no examples. A cover 
is stored along with an associated class value~ representing the most common 
class of training examples that it covers. 

In AQR, a new example is classified by finding which of the induced rules 
have their conditions satisfied by the example. If the example satisfies only one 
rule, then one assigns the class predicted by that  rule to the example. If the 
example satisfies more than one rule, then one predicts the most common class 
of training examples that  were covered by those rules. If the example is not 
covered by any rule, then it is assigned by default to the class that  occurred 
most frequently in the training examples. 

2.2.2 The AQR learning algorithm 

The AQ rule-generation algorithm has been described elsewhere (Michalski 
& Larson, 1983; Michalski & Chilausky, 1980; O'Rorke, 1982), and the A Q R  
system is an instance of this general algorithm. A Q R  generates a decision rule 
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Table 2. The AQR algorithm for generating a class cover. 

Let P0S be a set of positive examples of class C. 
Let NEG be a set of negative examples of class C. 

Procedure AQR(POS, NEG) 

Let COVER be the empty cover. 
While COVER does not cover all examples in POS, 

Select a SEED (a positive example not covered by COVER). 
Let STAR be STAR(SEED, NEG) (a set of complexes that 

cover SEED but that cover no examples in NEG). 
Let BEST be the best complex in STAR 

according to user-defined criteria. 
Add BEST as an extra disjunct to COVER. 

Return COVER. 

Procedure STAR(SEED, NEG) 

Let STAR be the set containing the empty complex. 

While any complex in STAR covers some negative examples in NEG, 
Select a negative example Eneg covered by a complex in STAR. 
Specialize complexes in STAR to exclude Eneg by: 

Let EXTENSION be all selectors that cover SEED but not Eneg. 
Let STAR be the set {x AyIx E STAR, y C EXTENSION}. 
Remove all complexes ia STAR subsumed by other complexes. 

Repeat until size of STAR ~maxstar (a user-defined maximum): 

Remove the worst complex from STAR. 
Return STAR. 

for each class in turn. Having chosen a class on which to focus, it forms a 
disjunct of complexes (the cover) to serve as the condition of the rule for that 
class. This process occurs in stages; each stage generates a single complex, 
and then removes the examples it covers from the training set. This step is 
repeated until enough complexes have been found to cover all the examples of 
the chosen class. The entire process is repeated for each class in turn. Table 2 
summarizes the AQR algorithm. 

2.2.3 Heuristic functions in AQR 

The particular heuristic functions used by the AQ algorithm are implemen- 
tation dependent. The heuristic used by AQR to choose the best complex is 
"maximize the number of positive examples covered." The heuristic used to 
trim the partial star during generation of a complex is "maximize the sum of 
positive examples covered and negative examples excluded." In the case of 
a tie for either heuristic, the system prefers complexes with fewer selectors. 
Seeds are chosen at random and negative examples nearest to the seed are 
picked first, where distance is the number of attributes with different values in 
the seed and negative example. In the case of contradictions (i.e., if the seed 
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and negative example have identical attribute values) the negative example is 
ignored and a different one is chosen, since the complex cannot be specialized 
to exclude it but still include the seed. 

2.3 The CN2 algorithm 

Now that we have reviewed ASSISTANT and AQR, we can turn to CN2, a 
new algorithm that combines aspects of both methods. We begin by describing 
how the general approach arises naturally from consideration of the decision- 
tree and AQ algorithms and then consider its details. 

2.3.1. Relation to ID3 and AQ 

ID3 can be easily adapted to handle noisy data by virtue of its top-down 
approach to tree generation. During induction, all possible attribute tests are 
considered when 'growing ~ a leaf node in the tree, and entropy is used to select 
the best one to place at that node. Overfitting of decision trees can thus be 
avoided by halting tree growth when no more significant information can be 
gained. We wish to apply a similar method to the induction of if-then rules. 

The AQ algorithm, when generating a complex, also performs a general- 
to-specific search for the best complex. However, the method only considers 
specializations that exclude some particular covered negative example from 
the complex while ensuring some particular 'seed' positive example remains 
covered, iterating until M1 negative examples are excluded. As a result, AQ 
searches only the space of complexes that are completely consistent with the 
training data. The basic algorithm employs a beam search, which can be 
viewed as several hill-climbing searches in parallel. 

For the CN2 algorithm, we have retained the beam search method of the 
AQ algorithm but removed its dependence on specific examples during search 
and extended its search space to include rules that do not perform perfectly 
on the training data. This is achieved by broadening the specialization process 
to examine all specializations of a complex, in much the same way that ID3 
considers all attribute tests when growing a node in the tree. Indeed, with a 
beam width of one the CN2 algorithm behaves equivalently to ID3 growing a 
single tree branch. This top-down search for complexes lets one apply a cutoff 
method similar to decision-tree pruning to halt specialization when no further 
specializations are statistically significant. 

Finally, we note that CN2 produces an ordered list of if-then rules, rather 
than an unordered set like that generated by AQ-based systems. Both repre- 
sentations have their respective advantages and disadvantages for comprehen- 
sibility. Order-independent rules require some additional mechanism to resolve 
any rule conflicts that may occur, thus detracting from a strict logical inter- 
pretation of the rules. Ordered rules also sacrifice in comprehensibility, in that 
the interpretation of a single rule is dependent on the other rules that precede 
it in the list. 1 

1One can  make  CN2 produce  unorde red  i f - then rules by appropr ia te ly  changing  the  eval- 
ua t ion  function;  e.g., one can  use  the  s ame  eva lua t ion  func t ion  as AQR,  t h e n  genera te  a rule 
set  for each class in tu rn .  
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2.3.2 Concept description and interpretation in CN2 

Rules induced by CN2 each have the form 'if <complex> then predict 
<class>',  where <complex> has the same definition as for AQR, namely a 
conjunction of attr ibute tests. This ordered rule representation is a version of 
what Rivest (1987) has termed decision lists. The last rule in CN2's list is a 
'default rule', which simply predicts the most commonly occurring class in the 
training data for all new examples. 

To use the induced rules to classify new examples, CN2 tries each rule in 
order until one is found whose conditions are satisfied by the example being 
classified. The class prediction of this rule is then assigned as the class of the 
example. Thus, the ordering of the rules is important. If no induced rules 
are satisfied, the final default rule assigns the most common class to the new 
example. 

2.3.3 The CN2 learning algorithm 

Table 3 presents a summary of the CN2 algorithm. This works in an iterative 
fashion, each iteration searching for a complex that  covers a large number of 
examples of a single class C and few of other classes. The complex must be 
both predictive and reliable, as determined by CN2's evaluation functions. 
Having found a good complex, the algorithm removes those examples it covers 
from the training set and adds the rule 'if <complex> then predict C' to the 
end of the rule list. This process iterates until no more satisfactory complexes 
can be found. 

The system searches for complexes by carrying out a pruned general-to- 
specific search. At each stage in the search, CN2 retains a size-limited set or 
star S of 'best complexes found so far'. The system examines only special- 
izations of this set, carrying out a beam search of the space of complexes. A 
complex is specialized by either adding a new conjunctive term or removing a 
disjunctive element in one of its selectors. Each complex can be specialized in 
several ways, and CN2 generates and evaluates all such specializations. The 
star is tr immed after completion of this step by removing its lowest ranking 
elements as measured by an evaluation function that we will describe shortly. 

Our implementation of the specialization step is to repeatedly intersect 2 
the set of all possible selectors with the current star, eliminating all the null 
and unchanged elements in the resulting set of complexes. (A null complex 
is one that  contains a pair of incompatible selectors, e.g., b ig  = y A b ig  = n.) 
CN2 deals with continuous attributes in a manner similar to ASSISTANT - b y  

dividing the range of values of each attribute into discrete subranges. Tests on 
such attributes examine whether a value is greater or less (or equal) than the 
values at subrange boundaries. The complete range of values and size of each 
subrange is provided by the user. 

2The intersection of set A with set B is the set {x A ytx C A, y E B}. For example, {a A 
b, aAc, bad} intersected with {a, b, c, d} is (aAb, aAbAc, aAbAd, aAc, aAcAd, bAd, bAcAd}. If 
we now remove unchanged elements in this set, we obtain {aAbAc, aAbAd, aAcAd, bAcAd}. 
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Table 3. The CN2 induction algorithm. 

Let E be a set of classified examples. 

Let SELECTORS be the set of all possible selectors. 

Procedure CN2(E) 

Let RULE_LIST be the empty l i s t .  
Repeat until BEST_CPX is nil or E is empty: 

Let BEST_CPX be Find_Best_Complex(E). 

If BEST_CPX is not nil, 

Then let E' be the examples covered by BEST_CPX. 

Remove from E the examples E' covered by BEST_CPX. 

Let C be the most common class of examples in E'. 

Add the rule cIf BEST_CPX then the class is C' 

to the end of RULE_LIST. 

Return RULE_LIST. 

Procedure Find_Best_Complex(E) 

Let STAR be the set containing the empty complex. 

Let BEST_CPX be nil. 

While STAR is not empty, 

Specialize all complexes in STAR as follows: 

Let NEWSTAR be the set {x A ylx 6 STAR, y 6 SELECTORS}. 
Remove all complexes in NEWSTAR that are either in STAR (i.e., 

the unspecialized ones) or null (e.g., big = y A big : n). 

For every complex C i in NEWSTAR: 

If C i is statistically significant and better than 

BEST_CPX by user-defined criteria when tested on E, 

Then replace the current value of BEST_CPX by C i. 

Repeat until size of NEWSTAR < user-defined maximum: 

Remove the worst complex from NEWSTAR. 

Let STAR be NEWSTAR. 

Return BEST_CPX. 

For dealing with unknown attribute values, CN2 uses the simple method of 
replacing unknown values with the most commonly occurring value for that  
attribute in the training data. In the case of numeric attributes, it uses the 
midvalue of the most commonly occurring subrange. 

2.3.4 Heuristics in CN2 

The CN2 algorithm must make two heuristic decisions during the learning 
process, and it employs two evaluation functions to aid in these decisions. First 
it must assess the quality of complexes, determining if a new complex should 
replace the 'best complex' found so far and also which complexes in the star 
S to discard if the maximum size is exceeded. Computing this involves first 
finding the set E '  of examples which a complex covers (i.e., which satisfy all of 
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its selectors} and the probability distribution P = (P l , . . -Pn)  of examples in 
E ~ among classes (where n is the number of classes represented in the training 
data). CN2 then uses the information-theoretic entropy measure 

Entropy = - E Pi log2 (Pi) 

to evaluate complex quality (the lower the entropy the bet ter  the complex}. 
This function thus prefers complexes covering a large number of examples of a 
single class and few examples of other classes, and hence such complexes score 
well on the training data  when used to predict the majority class covered. 

The entropy function was used in preference to a simple 'percentage cor- 
rect' measure, such as taking max{P}, for two reasons. First, entropy will 
distinguish probability distributions such as P = (0.7, 0.1,0.1, 0.1) and P = 
(0.7, 0.3, 0, 0) in favor of the latter, whereas max(P)  will not. This is desirable, 
since there exist more ways of specializing the latter to a complex identifying 
only one class. If the examples of the majority class are excluded by special- 
ization, the distributions become P = (0, 0.33, 0.33,0.33) and P = (0, 1, 0, 0), 
respectively. Second, the entropy measure tends to direct the search in the 
direction of more significant rules; empirically, rules of low entropy also tend 
to have high significance. 

The second evaluation function tests whether a complex is significant. By 
this we mean a complex that  locates a regularity unlikely to have occurred by 
chance, and thus reflects a genuine correlation between attribute values and 
classes. To assess significance, CN2 compares the observed distribution among 
classes of examples satisfying the complex with the expected distribution that  
would result if the complex selected examples randomly. Some differences in 
these distributions will result from random variation. The issue is whether 
the observed differences are too great to be accounted for purely by chance. 
If so, CN2 assumes that  the complex reflects a genuine correlation between 
attributes and classes. 

To test significance, the system uses the likelihood ratio statistic (Kalbfleish, 
1979). This is given by 

n 

2 
i=1 

where the distribution F = ( f l , - . . ,  f~) is the observed frequency distribution 
of examples among classes satisfying a given complex and E = (el, ..., en) is 
the expected frequency distribution of the same number of examples under 
the assumption that  the complex selects examples randomly. This is taken 
as the N = ~ f~ covered examples distributed among classes with the same 
probability as that  of examples in the entire training set. This statistic provides 
an information-theoretic measure of the (noncommutative) distance between 
the two distributions. 3 Under suitable assumptions, one can show that this 
statistic is distributed approximately as X 2 with n - 1 degrees of freedom. 

3We assume that F is continuous with respect to E; i.e., that the fi are zero when the 
ei are zero. 
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This provides a measure of indicates significance the lower the score, the 
more likely that the apparent regularity is due to chance. 

Thus these two functions - entropy and significance - serve to determine 
whether complexes found during search are both 'good' (have high accuracy 
when predicting the majority class covered) and 'reliable' (the high accuracy on 
training data is not just due to chance). CN2 uses these functions to repeatedly 
search for the 'best' complex that  also passes some minimum threshold of 
reliability until no more reliable complexes can be found. 

2.4 A Bayesian classifier 

To establish a reference point, we also implemented a simple Bayesian clas- 
sifier and compared its behavior to that of the other algorithms. 

2.3.1 Bayesian concept description and interpretation 
This classifier represents its 'decision rule' as a matrix of probabilities p(vj [Ck) 

specifying the probability of occurrence of each attribute value given each class. 
To classify a new example, one applies Bayes' theorem 4 

p(C l A vj) = p(A vjlCdp(cd 
Ek p(h vjlCk)p(Ck)' 

where the summation is over the n classes and p(Cil A vj) denotes the proba- 
bility that  the example is of class C~ given vj. One calculates this probability 
for every class, and then selects the class with the highest probability. The 
term p(Ck) is estimated from the distribution of the training examples among 
classes. If one assumes independence of attributes, P(A vjlCk) can be calcu- 
lated using 

p ( A  vjlCk) = I I  p(vjlCk) 
J 

and the values p(vjlCk ) from the probability matrix. Note that,  unlike the 
other algorithms we have discussed, our implementation of the Bayesian clas- 
sifier must examine the values of all attributes when making a prediction. 

We should note that there also exist more sophisticated applications of the 
Bayes' rule in which the attribute tests are ordered (Wald, 1947). Such a 
sequential technique adds the contribution of each test to a total; when this 
score exceeds a threshold, the algorithm exits with a class prediction. Such an 
interpretation may be more comprehensible to a user than the approach we 
have used, as well as limiting the tests required for classification. 

2.4.2 The Bayesian learning algorithm 
The Bayesian learning method constructs the matrix p(vjlCk) from the train- 

ing examples by examining the frequency of values in each class. One can com- 
pute this matrix either incrementally, incorporating one instance at a time, or 
nonincrementally, using all data at the outset. 

4The A symbol for conjunction, A vj denoting a conjunct of attribute values all occurring 
in an example. 
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2.4.3 Bayesian heuristics 

Sometimes a value of zero is calculated from the training data for some 
elements of the p(vjlCk ) matrix. Like all elements of the matrix, this num- 
ber is subject to error due to the finite training data available. However, as 
classification of new examples involves multiplying elements together, a zero 
element can have drastic effect, nullifying the effect of all other probabilities in 
the multiplication. To avoid this, we assume that zero elements in the matrix 
would, given more data, converge on a small, non-zero value and hence replace 
the zeros with some appropriate estimate. In our implementation a value of 
p(Ck) x ( l / N )  was used, where N is the number of training examples. The 
factor 1/N represents the increasing certainty that  this element must have an 
almost-zero value with increasing size of training data. 

2.5 T h e  de f au l t  ru l e  

Finally, we examined a fifth 'algorithm' that  simply assigns the most com- 
monly occurring class to all new examples, with no reference to their attributes 
at all. As we will see in Section 4, this simple procedure produced comparable 
performance to that of the other algorithms in one of the domains, and thus 
provided another useful reference point. 

3. Time complexity of the algorithms 

The ASSISTANT, A Q R  and CN2 algorithms all search a very large space of 
concept descriptions, and all use heuristics to guide this search. Furthermore, 
all three algorithms a t tempt  to produce structures that are both consistent 
with the training examples and as compact as possible. In the design of such 
algorithms, there is a tradeoff between execution speed and the size of the 
induced structures. In each case, the exhaustive search for a smallest set of 
structures, although desirable, is computationally infeasible. 

A major application of these algorithms is to extract useful information from 
very large databases, perhaps with millions of examples. With this in mind, it 
is worth examining the complexity of each algorithm. To be practical for very 
large problems, their behavior should be linear, or at least near-linear, in the 
number of examples and attributes. 

Since the overall complexity of each algorithm is domain-dependent, we in- 
stead provide upper bounds for the critical components of the algorithms. For 
example, we do not consider the complexity of the cutoff procedure used by 
ASSISTANT. In our treatment,  we will use e to denote the size of the example 
set, a to stand for the number of attributes, and s to represent the maximum 
star size (for CN2 and AQR).  We also assume that  each attribute is binary 
valued and that  there are two classes. 5 

5One might also consider the complexity as a function of the number of distinct attribute 
values and classes. We have not done this in our analysis. 
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3.1 Time complexity of ASSISTANT 

The critical component in ASSISTANT is the process of selecting a test at- 
tribute on which to branch. Each such choice involves the following operations: 

1. For each attribute, example counts are put in an array, indexed by class 
and attribute. This takes time O(e.a); 

2. The entropy function is calculated for each attribute, taking time O(a); 

3. Once the best attribute is found, the examples are divided into two sets; 6 
this takes time O(e). 

Therefore, the overall time for a single attribute choice is O(a.e). The time 
taken to construct the complete tree depends very much on the structure of the 
tree. It seems reasonable to use the first figure only for comparative purposes, 
as argued above. Thus the amount of time taken by ASSISTANT for the basic 
attribute selection operation is a linear function of the number of examples, 
when the number of classes and attributes are held constant. 

We should note that extensions to this algorithm that use real-valued at- 
tributes such as ACLS (Paterson & Niblett, 1982), must sort the examples by 
attribute value at the first stage. This increases the overall time bound to 
O(a. e log e). 

3.2 Time complexi ty  of  CN2 

The basic operation in CN2 is the specialization of the complexes in the 
current star. The number of single-selector complexes without disjuncts is 2a. 
The number of intermediate complexes generated is at most a.s, and the time 
taken to evaluate an example against a complex is bounded by O(a). Three 
steps are required for this specialization operation: 

1. Multiplying each complex in the star by the set of single selector rules; 
this takes time O(a.s); 

2. Evaluation of each complex, taking time O(s.e.a); 
3. Sorting the complexes by value and then trimming the star, which takes 

time O(a.s log(a-s)). 

Therefore, the overall time for a single specialization step is bounded by 
O(a.s(e + log(a.s))). As with ASSISTANT, the time required is a linear function 
of the number of examples. If we restrict the size of the star to one, the time 
required has the same order as for ASSISTANT. In general, experience indicates 
that the time constants involved are somewhat less for ASSISTANT and other 
variants on ID3 than for CN2. 

3.3 Time complexi ty  of  A Q R  

In AQR, the basic operation is the specialization of complexes in a star. 
This operation is similar to that of CN2, except that one only generates spe- 

6With appropriate data  structures,  it may be possible to do much of this work in the 
first stage, but  this does not affect the  complexity class. Similarly, one can include any 
termination test tha t  is linear in the number  of examples. 
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cializations that cause a negative example to be uncovered by complexes in 
AQR's star. We show the complexity of this operation is the same as that of 
CN2. For each negative example, the following steps are performed: 

1. A negative example is found by iterating through the negative set. We 
assume that the number of negative examples is not less than some fixed 
fraction of the entire example set. This takes time O(e.s); 

2. The set of selectors that distinguish the negative example from the seed 
are found; this takes time O(a); 

3. Each complex in the star is specialized by intersection with this set of 
selectors, taking time O(a.s); 

4. The resulting complexes are evaluated, which takes time O(a.s.e); 
5. The complexes are sorted and the star trimmed, taking time O(a.s log(a-s)) 

Thus, for each negative example the time is bounded by O(a.s(e + log(a.s))). 
This is the same figure as obtained for CN2. Observe that the number of 
iterations of this process (making the star disjoint from a negative example) is 
bounded by the number of attributes, not by the number of examples. 

In practice, although the order of time taken by the algorithms for this par- 
ticular operation of producing a new star is the same, CN2 is faster overall 
than AQR. This is because the number of iterations of this operation is lower 
in CN2 than in AQR, since CN2 may halt specialization of a complex before 
it performs perfectly on the training examples. Also, CN2 may halt the en- 
tire search for rules before all the training examples are covered if no further 
statistically significant rules can be found. 

3.4 Time complexi ty  of the Bayesian classifier 

The time complexity of the Bayes' classifier for generating a probability 
matrix is O(a.e), where a is the number of attributes and e the number of 
examples. This learning algorithm was substantially faster than the other 
algorithms because the run time is independent of the decision 'rule' generated. 
In addition, this basic operation is performed only once, unlike the above 
algorithms in which the basic operation is repeatedly applied. 

3.5 S u m m a r y  and  ac tua l  run  t imes  

We have shown that the time complexity of the basic learning step for all 
the algorithms tested is linear in the number of examples, with O(a • e) for 
ASSISTANT and the Bayes' classifier and O(a. e. s) for AQR and CN2. This 
is an essential requirement for any algorithm that must work with very large 
data sets. 

However, the time complexity of the entire induction process, requiring iter- 
ation of the basic learning steps, is also important. With ideal noise-tolerant 
algorithms, given a certain minimum number of examples, concept descrip- 
tions representing only the genuine regularities in the data should be induced. 
Additional examples should not cause the concept description to grow further 
and become overfitted, hence in this ideal case the above figures also represent 
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the time complexity of the overall learning task. When this ideal is not met, as 
when one seeks a concept description that classifies the training data perfectly, 
the complexity increases. In such cases, CN2 would at worst induce e rules 
of length a, giving an overall time complexity of O ( a  2 • e 2 • s)  (Chan, 1988). 
ASSISTANT sorts a total of e examples among a attributes for each level of the 
tree, giving an overall time complexity of O ( a  2. e) as the tree depth is bounded 
by a. The worst-case time complexity for AQR is similar to that for CN2. 

The actual run times are revealing, although it is difficult to make quantita- 
tive comparisons due to differences in implementation language and method. 
Run times for each algorithm were obtained for the lymphography domain 
(Section 4.2.1) using a four-megabyte Sun 3/75. ASSISTANT, implemented in 
about 5000 lines of Pascal, took one minute run time. CN2 and AQR, each 
implemented in about 400 lines of Prolog and with a value of fifteen for m a x s -  
tar,  took 15 and 170 minutes runtime respectively. The Bayesian classifier, 
implemented in 150 lines of Prolog, took a few seconds to calculate its prob- 
ability matrix. Although it is difficult to draw conclusions from the absolute 
run times, it is our opinion that the ordering of these run times (Bayes fastest, 
followed by ASSISTANT, CN2 and AQR) is a fair reflection of the relative 
computation involved in using the algorithms. More detailed empirical com- 
parisons of time and memory requirements of ID3 and the AQ-based system 
A Q l l P  have been conducted by O'Rorke (1982) and Jackson (1985) in the 
domain of chess end games. 

4. Experiments with the algorithms 

Other aspects of the systems' behaviors lend themselves more to experimen- 
tal study than analysis. Below we describe the dependent measures used in 
our experiments with the algorithms. After this, we describe the results of our 
studies with three natural domains and two artificial domains. 

4.1 Dependen t  measures  

In addition to computational complexity, we are interested in two other 
aspects of the algorithms' behaviors - classificational accuracy and syntactic 
complexity of the acquired structure. This twofold evaluation is motivated by 
considering these systems as knowledge-acquisition tools for expert systems. 
A useful system should induce rules that are accurate, so that they perform 
well, and comprehensible, so that they can be validated by an expert and used 
for explanation. 

We measure each algorithm's classification accuracy by splitting the data 
into a training set ond a test set, presenting the algorithm with the training set 
to induce a concept description and then measuring the percentage of correct 
predictions made by that concept description on the test set. Quinlan (1983, 
1987a) and others have taken a similar approach to measuring accuracy. 

Cross-algorithm comparisons of the complexity of concept descriptions are 
diffficult due to the differences in representation and the degree of subjectivity 
involved in judging complexity. Thus, we will only compare the gross fea- 
tures of the knowledge structures induced by the different algorithms. For 
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ASSISTANT'S decision trees, we measure complexity by the number of nodes 
(including leaves) in the tree. For CN2 and AQR,  we measure complexity by 
the number of selectors in the final rule list and rule set respectively. These 
measures reveal the gross features of the induced decision rules. More detailed 
measures of rule complexity have been made by O'Rorke (1982) but are not 
used here. We assign a complexity of one to the default rule, based on its 
equivalence to a decision tree with a single node. 

Assessing the complexity of a Bayesian description is more difficult. One 
could count the number of elements in the p(Vj ICk) matrix. Thus, for a domain 
with n classes and a attributes, each with an average of v possible values~ the 
complexity would be a x v × n. However, such a measure is independent of 
the training examples, and it ignores features of the matrix that  may make 
it more comprehensible (e.g., a few elements may be very large and the rest 
small). Still, lacking any bet ter  measure, we provide the size of the matrix as 
a rough guide. 

4.2 E x p e r i m e n t s  on  n a t u r a l  d o m a i n s  

The above algorithms were tested on three sets of medical data, which we 
will describe shortly. These data  were obtained from the Institute of Oncology 
at the University Medical Center in Ljubljana, Yugoslavia (Kononenko et al., 
1984). In each test, 70% of the training examples were selected at random 
from the entire data set, and the remaining 30% of the data were used for 
testing. The algorithms were all run on the same training data and their 
induced knowledge structures tested using the same test data. Five such tests 
were performed for each of the three domains, and the results were averaged. 
These data are thus identical to those used to test AQ15 in Michalski et al. 
(1986), though the particular random 70% and 30% samples are different. Both 
CN2 and A Q R  were given a value of 15 for maxstar in all runs. 

4.2.1 Three medical domains 

Table 4 summarizes the characteristics of the three medical domains used 
in the experiments. The first of these involved lymphography. For patients 
with suspected cancer, it is important for physicians to distinguish between 
patients that  are healthy and those with metastases or malignant lymphoma. 
Patient data relating to this task were collected from Ljubljana's Oncology 
Institute. These data were consistent; i.e., examples of any two classes were 
always different. All the tested algorithms produced fairly simple and accurate 
rules. Unlike the other two domains, this data set was not submitted to a 
detailed checking after its original compilation by the Medical Center, and 
thus may contain errors in at tr ibute values. 

The second domain involved predicting whether patients who have under- 
gone breast cancer operations will experience recurrence of the illness within 
five years of the operation. The recurrence rate is about 30%, and hence such 
prognosis is important  for determining post-operational treatment.  These data 
were verified after collection, and thus are likely to be relatively free of errors. 
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Table 4. Description of the three medical domains. 

DOMAIN LYMPHO- BREAST PRIMARY 
PROPERTY GRAPHY CANCER TUMOR 

18 9 17 NUMBER OF ATTRIBUTES 

VALUES PER ATTRIBUTE 
MINIMUM 
MAXIMUM 
AVERAGE 

NUMBER OF CLASSES 
NUMBER OF EXAMPLES 

DISTRIBUTION OF 

EXAMPLES AMONG 
THE CLASSES 

2 
8 
3.3 
4 

148 
2, 81, 61, 4 

2 
5 
2.8 
2 

286 
85, 201 

2 
3 
2.2 

22 
339 

84, 20, 9, 14, 39, 
1, 14, 6, 0, 2, 28, 
16, 7, 24, 2, 1, 
10, 29, 6, 2, 1, 24 

The final medical domain focused on predicting the location of a primary 
tumor. Physicians distinguish between 22 possible locations, predicted from 
data such as age, hystologic type of carcinoma, and possible locations of de- 
tected metastases; this is also important in determining treatment of patients. 
These data were inconsistent; i.e., examples of different classes existed with 
identical attribute values. They were verified after collection, and thus are 
likely to be relatively error-free. The set of attributes is relatively incomplete, 
and thus not sufficient to induce high-quality rules. 

4.2.2 Results with natural domains 

Table 5 presents the results for each algorithm on these domains, averaged 
over five runs. In each case, we present the average accuracy on the test data 
and the average complexity of the resulting knowledge structures. CN2 was 
tested using three values of significance threshold and ASSISTANT was run with 
and without pruning. The other systems have no such user-variable parameters 

The table contains some interesting regularities. The most important is 
that the algorithms designed to reduce problems caused by noisy data  achieve 
a lower complexity without damaging their predictive accuracy. For example, 
in the lymphography domain, the version of CN2 with the highest threshold 
achieved the same classification accuracy as the other algorithms by inducing 
(on average) only eight rules, each containing 1.6 selectors. The tree-pruning 
version of ASSISTANT produced similar results. 

Both systems apply a similar technique to reducing complexity, namely 
sometimes halting specialization of concept descriptions before they classify 
the training examples perfectly. As a result, ASSISTANT and CN2 avoid over- 
fitting their decision trees and rules to the training data. This contrasts with 
the AQR algorithm, which specializes its rule set until it achieves as nearly 
complete consistency with the training data as possible, resulting in an over- 
fitted rule set. Table 6 illustrates this effect by comparing accuracy on the 
training and test data. 
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Table 5. Accuracy and complexity of knowledge structures acquired by the algo- 
rithms inthree natural domains. (Complexity for the Bayes ~ classifier is 
the size of the probability matrix.) 

ALGORITHM 

DEFAULT RULE 
ASSISTANT 

NO PRUNING 
PRUNING 

BAYES 
AQR 
CN2 

90~c THRESH. 
95~o THRESH. 
99% THRESH. 

LYMPHOGRAPHY 

ACCUR. COMP. 

56% 1 

79% 41 
78% 36 
83% 240 f 
76% 76 

78% 24 
81% 22 
82% 12 

BREAST CANCER 

Accua. COMP. 

71% 1 

62% 112 
68% 44 
65% 540f 
72% 208 

70% 28 
70% 20 
71% 4 

PRIMARY TUMOR 

Accua. COMP. 

26% 1 

40% 178 
42% 52 
39% 465~ 
35% 562 

37% 33 
36% 42 
36% 19 

See discussion in Section 4.1 about difficulties in measuring the complexity of 
Bayesian classifiers. 

The results also show that the Bayesian classifier does well, performing com- 
parably to the more sophisticated algorithms in all three domains and giving 
the highest accuracy in the lymphography domain. Table 6 shows that  this 
method regularly overfits the training data, but that its performance on the 
test set is still good. Even more surprising is the behavior of the frequency- 
based default rule, which outperforms ASSISTANT and the Bayes' method on 
the breast cancer domain. This suggests that  there are virtually no significant 
correlations between attributes and classes in these data. This is reflected by 
CN2's inability to find significant rules in this domain at 99% threshold, sug- 
gesting that, in this domain at least, the significance test has been effective in 
filtering out rules representing chance regularities. 

In general, the differences in performance seem to be due less to the learning 
algorithms than to the nature of the domains; for example the best classifica- 
tion accuracy for lymphography was barely half as high as that for primary 
tumor. This suggests the need for additional studies to examine the role of 
domain regularity on learning. 

4.3 E x p e r i m e n t s  on ar t i f ic ia l  d o m a i n s  

To better understand the effects of overfitting, we experimented with CN2 
a n d  ASSISTANT on two artificial domains that  let us control the amount of 
noise in the data. 

4.3.1 Two artificial domains 

Both domains contained twelve attributes and 200 examples that were evenly 
distributed between two classes. They differed only in the number of values 
each attribute could take (two in the first domain and eight in the second). 
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Table 6. Accuracy of the different algorithms on training and test data. The reported 
version of ASSISTANT incorporated pruning and the version of CN2 used a 
99% threshold. 

ALGORITHM 

DEFAULT RULE 
ASSISTANT 
BAYES 
AQR 
CN2 

LYMPHOGRAPHY 

TRAIN TEST 

54% 56% 
98% 78% 
89% 83% 

100% 76% 
91% 82% 

BREAST CANCER 

TRAIN TEST 

70% 71% 
85% 68% 
70% 65% 

I00~ 72% 
72% 71% 

PRIMARY TUMOR 

TRAIN TEST 

23% 26% 
53~o 42% 
48% 39% 
75% 35% 
37% 36% 

In both cases, the target concept for one class could be stated as a simple 
conjunctive rule of the form ' i f  (a = Vl) A . . .  A (d -- vz) t h e n  class X'. Both 
algorithms can represent such a regularity compactly. The second class was 
simply the negation of the first. Half of the data  was used for training, half 
for testing, and the results averaged over five trials. 

For each domain, we varied the amount of noise in the training data and 
measured the effect on complexity and on accuracy on the test data. Table 7 
reports the results for the first artificial domain, with two values per attribute, 
and Table 8 for the second, with eight values per attribute. 

The percentage of noise added indicates the proportion of at tr ibute values in 
the training examples that  have been randomized, where attributes chosen for 
randomization have equal chance of taking any of the possible values for that 
attribute. For the purposes of randomization, the class was treated simply as 
an additional attribute in the example description. Note that  no noise was 
introduced into the test data. 

4.3.2 Results with artificial domains 

By experimenting with artificial domains, we can examine several features 
of the algorithms relating to their ability to handle noise. First, we can see 
the degradation of accuracy and simplicity of concept descriptions as noise 
levels are increased. Second, for CN2, it is also interesting to examine how 
the accuracy and simplicity of individual rules (as well as that of the rule set 
as a whole) is affected by noise in the data. 

The results reveal some surprising features about both CN2 and ASSIS- 
TANT. Comparing classification accuracy alone, ASSISTANT performed better  
than CN2 in these particular domains. However, comparing complexity of con- 
cept description, CN2 produced simpler concept descriptions than ASSI~i'ANT 
except at high levels of noise in the first domain. 

Ideally, as the level of noise approaches 100%, both algorithms should fail 
to find any significant regularities in the data and thus converge on a concept 
description of complexity one (for CN2's default rule alone or a single-node 
decision tree). However for CN2, this occurred only in the second of the two 
domains tested and did not occur in either domain for ASSISTANT. Indeed, in 
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Table 7. Results in artificial domain A1, with 12 attributes and 2 values per attribute 

CN2 (99% THRESHOLD) 

NOISE T O T A L  NONDEF. t 

LEVEL ACCUR.  A C C U R .  COMP. 

0% 95% 100% 3 
2% 88% 99% 5 
5% 88% 95% 10 

10% 82% 95% 15 
20% 73% 86% 20 
40% 67% 76% 25 
60% 56% 64% 26 

tO0% 

ASSISTANT 

UNPRUNED 

ACCUR. COMP. 

99% 8 
96% 16 
91% 32 
86% 45 
76% 60 
65% 74 
62% 75 

PRUNED 

Accua. COMP. 

99% 8 
98% 11 
95% 16 
91% 24 
84% 27 
76% 23 
67% 23 

45% 49% 28 46% 85 43% 12 

This refers to the accuracy of those CN2 rules found by search; i.e., excluding 
the extra default rule ('everything is class X') at the end of the rule list. See 
discussion in Section 4.3.2. 

the second domain ASSISTANT'S tree-pruning mechanism did not prune the tree 
at all. CN2's generation of rules in the first domain, even at 100% noise level, 
probably results from a combination of the large number of rules searched (e.g., 
there are 12 x 11 x 10 = 1320 rules of length three in the space) and the high 
coverage of these rules (each length three rule covers on average 100/23 -- 12 
examples). Enough rules are searched so that,  even with 99% significance test, 
some chance coverage of the 12 (average) examples will appear significant. This 
did not occur in the second domain, as the coverage of rules was considerably 
less; each length three rule covers on average 100/83 ~ 0.5 examples, too few 
for the significance test to succeed. 

These behaviors as the noise level approaches 100% suggest that  the thresh- 
olding methods used in both CN2 and ASSISTANT need to be more sensitive to 
the properties of the application domain. Research on improvements to CN2's 
significance test (Chan, 1988) and ASSISTANT'S pruning mechanism (Cestnik, 
Kononenko, & Bratko, 1987) is currently being conducted. 

We also measured the accuracy of CN2's individual rules, as opposed to that 
of the entire rule set. Tables 7 and 8 include columns for 'non-default accuracy', 
which show the accuracy of CN2's rules excluding cases in which the default 
rule fires. These suggest that the rule list consists of high-accuracy rules plus a 
low-accuracy (50% in this domain) default rule at the end. This is a desirable 
property of the rule list if it is to be used for helping an expert articulate his or 
her knowledge, as each individual rule (apart from the default rule) represents 
a strong regularity in the training data. The decision-tree equivalent would 
involve examining the individual branches generated and their use in assisting 
an expert. Quinlan (1987b) has recently conducted work along these lines. 
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Table 8. Results in artificial domain A2, with 12 attributes and 8 values per attribute. 

CN2 (99% THRESHOLD) 

NOISE NONDE :* 
ADDED ACCUR. A C C U R .  COMP. 

0% 93% 98% 8 
2% 83% 99% 10 
5% 86% 94% 13 

10% 80% 98% 10 
20% 73% 88% 15 
40% 68% 82% 5 
60% 63% 90% 4 

100% 

ASSISTANT 

UNPRUNED 

ACCUR. COMP. 

99% 6 
97% 12 
96~o 15 
93% 22 
85% 27 
75% 33 
66% 40 

PRUNED 

ACCUR. COMP. 

99% 6 
97% 12 
96% 15 
93% 22 
85% 27 
75% 33 
66% 40 

50% 58% 1 55% 43 55% 43 

This refers to the accuracy of those CN2 rules 
the extra default rule ('everything is class X') 
discussion in Section 4.3.2. 

found by search; i.e., excluding 
at the end of the rule list. See 

5. D i s c u s s i o n  

The results on the natural domains indicate that different methods of halt- 
ing the rule specialization process, besides having the effect of reducing rule 
complexity, do not greatly affect predictive accuracy. This effect has been re- 
ported in a number of papers (Kononenko et al., 1984; Michalski et al., 1986; 
Niblett & Bratko, 1987). Indeed, it may be that this effect will occur with any 
technique, providing one does not exceed a certain maximum level of pruning. 
If so, then one should prefer the algorithm that most closely estimates this 
maximum level. 

The results in Table 6 suggest that  the 99% threshold for the CN2 algorithm 
is appropriate for the three natural  domains. The accuracy on training data 
is close to that  on test data, indicating that ,  in these domains at least, the al- 
gorithm is not overfitting the data. Additionally, high accuracy is maintained, 
indicating that  the concept description is not underfitted either. 

However, the results of the tests on the artificial domains, in particular the 
tests with 100% noise, indicate that the current measure of significance used 
by CN2 could be improved. As the noise level reaches 100%, the algorithm 
should ideally find no rules. The fact that this only occurred in one of the 
two artificial domains suggests that the significance measure should be more 
sensitive to properties of the domain in question. 

In many ways the comparisons with the A Q R  system are unfair, as the 
AQ algorithm was never intended to deal alone with noisy data. It was in- 
cluded in these experiments to examine the basic AQ algorithm's sensitivity 
to noise. In practice it is rarely used on its own, instead being enhanced by a 
number of pre- and post-generation techniques. Experiments with the AQ15 
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system (Michalski et al., 1986) show that with post-pruning of the rules and 
a probability-based or 'flexible matching' method for rule application, one can 
achieve results similar to those of CN2 and ASSISTANT in terms of accuracy 
and complexity. 

The principal advantage of CN2 over AQR is that the former algorithm 
supports a cutoff mechanism - it does not restrict its search to only those 
rules that are consistent with the training data. CN2 demonstrates that one 
can successfully control the search through the larger space of inconsistent rules 
with the use of judiciously chosen search heuristics. Second, by including a 
mechanism for handling noise in the algorithm itself, we have achieved a simple 
method for generating noise tolerant if-then rules that is easy to reproduce and 
analyze. In addition, interactive approaches to induction, in which the user 
interacts with the system during and after rule generation, introduce additional 
requirements, such as the need for good explanation facilities. In such cases, 
the logical rule interpretation used by CN2 should have practical advantages 
over the more complex probabilistic rule interpretation needed to apply order- 
independent rules (such as those generated by AQR) in which conflicts may 
occur. 

Another result of interest is the high performance of the Bayesian classifier. 
Although the independence assumption of the classifier may be unjustified in 
the domains tested, it did not perform significantly worse in terms of accu- 
racy than other a]gorithms~ and it remains an open question as to how sen- 
sitive Bayesian methods are to violated independence assumptions. Although 
the probability matrices produced by the tested classifier are difficult to com- 
prehend, the experiments suggest that variants of the Bayes' classifier which 
produce more comprehensible decision procedures would be worthy of further 
investigation. 

6. C o n c l u s i o n s  

In this paper we have demonstrated CN2, an induction algorithm that com- 
bines the best features of the ID3 and AQ algorithms, allowing the application 
of statistical methods similar to tree pruning in the generation of if-then rules. 
The CN2 system is similar to ASSISTANT in its efficiency and ability to handle 
noisy data, whereas it partially shares the representation language and flexible 
search strategy of AQR. By incorporating a mechanism for handling noise into 
the algorithm itself, a method for inducing if-then rules has been achieved that 
is noise-tolerant, simple to analyze, and easy to reproduce. 

The experiments we have conducted show that, in noisy domains, the CN2 
algorithm has comparable performance to that of ASSISTANT. By inducing 
concept descriptions based on if-then rules, CN2 provides a tool for assisting 
in the construction of knowledge-based systems where one desires classifica- 
tion procedures based on rules rather than decision trees. The most obvious 
improvement to the algorithm, suggested by the results on artificial domains, 
is an improvement to the significance measure used. 
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