
Using MDA in eGovernment

Abstract

Nowadays, most of the governments are in the implementation phase of the eGov-
ernment, where there is a need to offer citizens much more than just a website with
information. One of the services that citizens mostly demand, is the possibility to
make through the internet all paperwork and proceedings without moving from their
place. Developing web applications that permit these services, create certain difficul-
ties like capturing requirements or the quick adaptation to legislation changes. This
paper shows an approach based on the paradigm of the Model Driven Architecture
(MDA), increasing the level of abstraction and involving users in development.

Key words: Web Engineering, MDA, eGovernment

1 Introduction

In the last few years, one of the major concerns of political solicitors in gov-
ernment civil services, is the strong presence of this services in internet and
the need to attend citizens increasing demands of them through the network
without having to physically go to the civil services.

In this context, eGovernment is defined in [1] like “the use of Information
& Communication Technologies (ICTs) to make public administrations more
efficient and effective, promoting growth by cutting red tape”.

Web applications for eGovernment are not different from those used in other
sectors, but some features may be especially critical as the need for a user-
centered design [2], adherence to standards [3], compliance with strict require-
ments and efficient use of communications.

It’s becoming a more common practice for governments to avoid finding them-
selves with a group of heterogeneous applications which are virtually impos-
sible to maintain, and demanding software development companies to make
applications using their own software framework or that applications must be
based on web known and documented architectures.

These software frameworks allow you to define the reference of the architecture
and the technological platform where applications will be developed, simplify

Preprint submitted to Elsevier 26 October 2008



the development process and define the standards for quality and acceptance
that will be required for this development.

These applications replace the traditional processing of an administrative file
which otherwise citizens would need to fill in a form, hand it in the according
administrative service and finally make the follow-up actions of the file (by
phone, personally ...).

In this essay, we will refer to file as the whole of administrative proceedings
carried out to solve a special issue, which is responsibility of Public Adminis-
trations. Each of these administrative proceedings is what is known with the
name of procedure and is carried out by a public official.

These applications have the following handicaps:

(1) The difficulty to obtain requirements.
(2) The difficulty of quick adaptations when there are changes in Legislation.
(3) The resistance from suppliers to update frameworks.
(4) The high cost of training the staff involved in development.

The knowledge gained by analysts from finding out solutions in devel-
opment on a certain framework can not be transferred to another without
previously having received training of the new framework.

To minimize or remove these handicaps, we propose using a solution based on
the paradigm of MDE (Model Driven Engineering).

The Model Driven Engineering (MDE), proposes to focus software develop-
ment on models, rather than on code. In this context a good definition of a
model is provided by the Object Management Group (OMG): “A model of a
system is a description or specification of that system and its environment for
some certain purpose. A model is often presented as a combination of drawings
and text. The text may be in a modelling language or in a natural language.”

From these models, combining two basic aspects [4]: Domain-Specific Mod-
elling Languages (DSML) to formalize the application structure, behaviour,
and requirements within particular domain, and transformation engines and
generators, to analyze certain aspects of models and then synthesize various
types of artifacts, which can range from source code to alternative model rep-
resentations.

Model Driven Architecture (MDA), is an OMG proposal [5] which seeks to
standardize an implementation of MDE. The three primary goals of MDA are
portability, interoperability and reusability through architectural separation
of concerns.

Software Factories is an alternative to MDA leaded by Microsoft. Both are

2



opposite proposals, but an objective analysis of these [6] leads to the conclusion
that both are not as antagonist as the confrontation of OMG vs. Microsoft
could make us suppose.

A Software Factory, is defined as [7] “Is a software product line that provides
a production facility for the product family by configuring extensible tools
using a software template based on a software schema.”

In this paper we present an architecture designed to automatically generate
transactional web applications for eGovernment based on the paradigm of
Model Driven Engineering (MDE).

The rest of this document is organized as follows: In section 2, we review
other related researches. Section 3 presents the architecture. Section 4 is an
example of how the system works, and in section 5 we present our conclusions
and future work.

2 Related works

In recent years, multitude of related tools led by Model Driven Engineering
(MDE) have appeared. Some of these tools automate specific tasks; others are
general purpose and only a few, either singled or grouped with each other, are
implementations of complete paradigm.

Most of these currently available implementations follow the MDA standard
of OMG, but just a few of them allow the edition of the PIM model and its
transformation to CIM [8].

None of the tools reviewed, met the requirements raised in this work specially
in regard to edition of PIM and in being usable by people without technical
knowledge.

The proposal of this work to balance responsibilities between domain experts
and computer professionals is also seen in [9].

There are several frameworks for application development specialized in eGov-
ernment and various standards to ensure interoperatibility between heteroge-
neous systems.

The proposal of Mittal et al. in [10], in addition to defining the architecture of
the framework includes a set of tools to develop, deploy and manage complex,
integrated, and standards-compliant eGovernance solutions. This proposal is
more oriented towards the integration of heterogeneous applications.

3



Fig. 1. Use Cases

3 Architecture

3.1 Characteristics

This architecture generates Web applications, which by their nature already
have the desired characteristics of platform independence, ubiquity, the ab-
sence of installation and high availability 1 .

In addition to these features, this architecture favours specifically generation
applications with a user-centered design, standards-based, capable of meeting
strict requirements and efficient using of the communication channels. Either
way, this architecture only “promotes” compliance with these requirements,
which ultimately depends only on how developers use this tool.

The fact that this architecture is based on the paradigm of MDA, makes
it enjoy the advantages of raising the level of abstraction in which developers
are working. Working with models rather than code, overcomes the limitations
that currently have eAdministracin applications that have already been seen
in the introduction to this work.

this architecture has a modular design with enough flexibility in order to
permit code generation on (for) different platforms. This modular design allows
to make good use of the way in which the paradigm of MDA isolates the design
(CIM and PIM) of the destination platform. The aim is that the pattern
carried out in this architecture will create source code for several platforms
by only changing the corresponding module.

1 24 hours a day, 7 days a week, 365 days a year

4



Finally, the user interface is designed to be used both by files supervisors
(without needing to have technical knowledge) and by systems analysts.

3.2 Target applications

This architecture is designed to generate applications in any language or plat-
form. It is desirable developing applications based in a institutional software
framework or use some kind of framework of general purpose available.

In any way, the only thing really essential is that the target application should
be written in an object oriented language capable to generate XHTML pages
and use some system of persistence.

The application is organized in a manner that meets at least the use cases
that can be seen in figure 1.

As mentioned, it does not impose any architecture to target application, but
a reference architecture could be the one shown in figure 2 based on known
model 2 for Web applications that use MVC pattern [11].

In it, there are three distinct modules:

• Controller: This module is responsible for monitoring all communication
with the outside world and ensures that all external users are properly
validated. Listens to customer requests and with the data obtained by the
file handler generates WebPages with the requested response.

• File handler: This module is the business logic which is responsible for
managing files and procedures. Conceptually files are contained in a directed
graph, in with each node will be a procedure.

• Persistence system: This module makes the translation between data struc-
tures and management system databases. On one hand it will store the
graph of the file in a database, and on another it will have access to other
information systems to collect data that is necessary to complete some pro-
cedures.

3.3 Design

In figure 3 we can see the architecture and its relation with users.

There are two profiles of system users clearly differentiated:

• File supervisor: This user is responsible for the file processing, therefore
who better knows its procedure. Interacts directly with the system through

5



Fig. 2. Component Model

Fig. 3. Architecture

the CIM editor, permitting the modification of the file, adding procedures,
forks, etc... This user doesn’t need to have any technological skills beyond
the level of personal computer user.

• System analyst: Is the computer engineer responsible for the application
design. This is a person whose training allows to edit directly the PIM
to modify aspects associated with technology and make design decisions
depending on the requirements that have captured the person responsible
for the dossier and the managers of the agency.

With the data provided by these users, the system is able to generate the
entire source code of the application, the code needed to perform testing and
the documentation required.

6



Following are described one by one all the modules of the application, indi-
cating their roles within the system:

• CIM editor: Is a graphic editor that specializes in SBPMN notation that
allows to handle the graph that defines the processing of a file.

• CIM to PIM mapping definitions: It lays down the mapping rules for conver-
sion of CIM to PIM. These mapping rules are necessary to run the mapping
engine.

• Mapping engine CIM to PIM: Takes as input the CIM and the mapping
rules to generate the PIM of file graph.

• PIM editor: The system analyst uses it to edit the following PIM models
(some of them already generated by the mapping engine CIM to PIM):
· File handler class diagram.
· Application engine class diagram.
· Navigation diagram.
· Users diagram.
· Interface specification.

• Mapping engine PIM to PSM: In this module, the combination of PIM
models and the transformation rules obtained from the target platform def-
inition module generates the PSM models. The following three models are
generated separately:
· Application engine models.
· File handler models.
· Persistence system models.

• Mapping engine PSM to source code: In this module, the combination of
PSM models and the transformation rules obtained from the Target Plat-
form Definition Module, generates the application source code.

• Target platform definition module: This is the module that contains the
definition of mapping rules PIM to PSM and PSM to source code. It con-
tains all specific information the system needs to generate applications for
a specific platform.

If you want to create applications with another architecture or another
platform, this module must be replaced.

• Documentation generator: When a public administration ordering an ap-
plication requires the delivery of documentation that follows strictly any
specific methodology (for example: mtrica in the Spanish case). This mod-
ule collects the needed information from CIM, PIM and PSM to generate
requested documentation.

• Documentation definition module: This is the module which is responsible
to give format to the provided documentation generated by the previous
module.

We must replace this module if we want to change the format of docu-
mentation to hand.

7



Fig. 4. Class diagram

3.3.1 CIM editing

The core of any MDA is the model of the highest level of abstraction that it
is capable of handling. The system allows to describe the business rules in a
computer independent model where the graph that describes the processing
of a file is represented.

Each node in the graph represents the state of the file pending resolution
of a particular procedure. For each node, the following information must be
included:

• Preconditions (Each edge entering the node establishes a procedure that
must be solved beforehand.)

• Data supplied by the citizen.
• Data supplied by public administrations.
• Outcome of the procedure.
• Associated documentation.
• Deadline for resolution.
• Visibility of the procedure (If the citizen can see the procedure or not).

3.3.2 Mapping CIM to PIM

CIM to PIM mapping uses the approach described in [12]. ATL [13] language
is used to perform a model-model transformation from BPMN to XPDL [14]
and other model-text transformation from XPDL to XMI. This XMI archive
defines UML 2.0 instances diagram containing graph structure.

The structure of the graph is based on a UML 2.0 class diagram previously
defined. In figure 4, a simplified version of it can be seen.

8



3.3.3 PIM editing

The next level of abstraction is occupied by the platform independent model.
This model is edited by the analyst, and specifies the following information:

• Application interfaces with other information systems.
• CSS style sheets that defines the appearance the user interface will have.

In addition, the analyst should add the following information to each node in
the description graph of the file:

• Interface for which citizens data is acquired.
• Interface for which public administrations data is acquired.
• User interface.

3.3.4 Mapping PIM to PSM and PSM to source code

Mapping definition witch is used with ATL language, forms the core of the
definition platform module which allows the system to be used by different
technologies.

Being these models stored in XMI, they can be easily edited by people in
charge of module definition with easiness to import and to polish the design.

In the definition of this platform module, there is also the definition of three
UML profiles necessary to represent PSM: controller profile, handler profile
and persistence profile. These profiles are defined for UML 2.0 and XMI 2.1.

3.4 User interface

One of the goals of this architecture is the possibility of being used by peo-
ple with no technical knowledge. This is possible if the graphical user inter-
face (GUI) will be Eclipse. Currently, this environment is one of the most
widespread, open source and platform independent [15].

To implement it, taking advantage of the modular architecture of both the
system and Eclipse, the plug-in needed to provide each functionality has been
created.

Finally, instead of directly providing plug-ins for users to add to Eclipse, a
new completely adapted version using the facilities offered by version 3 as a
Rich Client Platform (RCP) [16] has been prepared.

The use of RCP leads to a friendlier environment for file supervisors and

9



Fig. 5. Sample file

the removal of all those Eclipse elements without a clear functionality in the
system and that could complicate the platform usability.

4 Case study

The diagram in figure 5 shows the processing of a very simple file. In it, the
request is examined whether it is correct and if it has all the required docu-
mentation. If everything is correct, it is assembled by the officer responsible,
and report is issued, either in favour or against. If the required documentation
is not complete, this is claimed and once the petitioner answered, the file is
re-examined. If the petitioner doesn’t answer, the file process is finished and
filed away.

This case study is designed to be used by for the Spanish government, but is
extensible to any other.

Although this file is an extremely simple example, most are much more com-
plex, with a complicated process and full of forks.

10



Fig. 6. File diagram view in graphic editor

Fig. 7. Instance XMI

Based on this file example, the system is used to build the corresponding chart
in SBPMN notation as we see in Figure 6.

When the system receives the order to transform CIM to PIM, it creates an
XMI archive that contains a UML 2.0 instance diagram. In figure 7 you can see
this archive and in figure 8 you can see the imported sample instance diagram
based on the class diagram shown in figure 4.

This instance diagram is the basis of PIM, which is made up of the following
archives:

(1) Interfaces.xml which contains the definition of the possible interfaces the
application can present. In this case there is only the Web interface. This
archive also specifies the interface that corresponds to each node.

(2) Style.css archive which contains the stylesheet the application will use.
(3) WebPages.xml wich contains a section for each node in the graph. Each

section contains a XHTML template of the webpage which publishes the

11



Fig. 8. Instance diagram

node.

The transformation of PIM to PSM, creates three sets of results:

(1) PSM of controller: This is an extended XMI file with the controller profile.
In this case J2EE.

(2) PSM of file handler: This is an extended XMI file with the controller
profile. In this case Java.

(3) PSM of persistence system: This is an extended XMI file with the persis-
tence profile. In this case SQL.

Finally, these PSM’s are processed in turn to obtain two sets of results:

• Source code: It contains all the source code of the application. In this case
a Eclipse J2EE project for JBoss.

• Text code: It contains all the source code needed to perform unit testing.
In this case for JUnit.

5 Conclusions and future work

This architecture represents a progress in various areas and fulfils the objec-
tives that were initially proposed:

12



• In the Model Driven Architecture (MDA) Area, this architecture is
a practical implementation of the paradigm which reaches all level of ab-
straction, including CIM. To allow CIM edition, this architecture uses the
SBPMN notation which is actually in definition process.

This architecture especially takes care of the usability of the tool to al-
low the developers a close approach to MDA paradigm and greater ease in
capture of requirements.

• In the eGovernment Area, this architecture provides a specific tool for the
peculiarities of the applications requested in this context.

Having been designed to be directly used by the people responsible for
expedient formalities, this tool allows them to take control over computer
systems, increasing their confidence on these systems and the diffusion of
their work across the network.

In addition, any changes required by legislation can be directly carried
out by the system file supervisor, and even thought the collaboration of
specialized technicians might be needed to put it online, delays are minimal.

A future task will ensure that portability requirements are fulfilled, preparing
a platform definition module for J2EE and another one for .NET. and testing
them with identical CIM and PIM models.

The creation of a graphics editor for PIM models to be managed by the system
analyst is also in prospect.

References

[1] CE, Culture & society: egovernment — europa - information society,
http://ec.europa.eu/information society/tl/soccul/
egov/index en.htm (May 2008).

[2] J. C. Plaza, “los sistemas de información de la administración electrónica:
una oportunidad de mejora desde la experiencia de usuario” (in spanish),
http://www.biguel.com/textos/ (May 2008).

[3] J. M. Alonso, egovernment and the web, http://www.w3.org/2008/Talks/0123-
eGov-JA (2008).

[4] D. C. Schmidt, Guest editor’s introduction: Model-driven engineering,
Computer 39 (2) (2006) 25.

[5] J. Mukerji, J. Miller, Mda guide v1.0.1, Tech. Rep. omg/03-06-01, OMG (2003).

[6] J. Munoz, V. Pelechano, “mda vs factoŕıas software” (in spanish), in: II
Taller sobre Desarrollo de Software Dirigido por Modelos, MDA y Aplicaciones
(DSDM), 2005.

13



[7] J. Greenfield, K. Short, S. Cook, S. Kent, Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools, Wiley, 2004.

[8] E. Palacios-González, H. Fernández-Fernández, V. Garćıa-Dı́az, B. C. P. G-
Bustelo, J. M. C. Lovelle, A review of intelligent software development tools,
(Pending published) (2008).

[9] C. Vassilakis, G. Laskaridis, G. Lepouras, S. Rouvas, P. Georgiadis, A
framework for managing the lifecycle of transactional e-government services,
Telemat. Inf. 20 (4) (2003) 315–329.

[10] P. A. Mittal, M. Kumar, M. K. Mohania, M. Nair, N. Batra, P. Roy,
A. Saronwala, L. Yagnik, A framework for egovernance solutions, IBM J. Res.
Dev. 48 (5/6) (2004) 717–733.

[11] T. M. H. Reenskaug, Models-views-controllers, Tech. rep., Xerox PARC (1979).

[12] H. Fernández-Fernández, E. Palacios-González, V. Garćıa-Dı́az, C. P. G-
Bustelo, J. M. C. Lovelle, Design of intelligent business applications based in
bpm and mde, (Pending published) (2008).

[13] F. Jouault, I. Kurtev, Transforming models with atl, in: Satellite Events at the
MoDELS 2005 Conference, Montego Bay, Jamaica, Vol. 3844 of Lecture Notes
in Computer Science, Springer Verlag, Berlin, 2006, pp. 128–138.

[14] WfMC, Process definition interface – xml process definition language, Tech.
rep., Workflow Management Coalition (2005).

[15] E. S. Foundation, Eclipse.org home, http://www.eclipse.org/ (May 2008).

[16] B. Daum, Professional Eclipse 3 for Java Developers, Addison-Wesley
Professional, Wrox, 2004.

14


