
Abstract-- Adaptable software systems and
architectures give the programmer the ability to create
applications that might customize themselves to
runtime-emerging requirements. Computational
reflection is a programming language technique that is
commonly used to achieve the development of this kind
of systems. Most of runtime reflective systems use meta-
object protocols (MOPs). However, MOPs restrict the
amount of features an application may customize, and
the way they can express its own adaptation.
Furthermore, this kind of systems uses a fixed
programming language: they develop an interpreter,
not a whole language-independent platform.

What we present in this paper is nitrO, a non-
restrictive reflective platform that achieves a real
computational-environment jump, making every
application and language feature adaptable at runtime
–without any previously defined restriction. Moreover,
the platform has been built using a generic interpreter,
in which the reflection mechanism is independent of the
language selected by the programmer. Different
applications may dynamically adapt each other,
regardless the programming language they use.

Keywords: reflection, computational jump, generic
interpreter, separation of concerns.

1 Introduction
Adaptability has become an important feature

in modern computing systems, languages and
software engineering methods. Different
techniques are emerging in order to build
adaptable computing systems and software
engineering methods. Two examples in the
software engineering field are aspect-oriented
programming (AOP) [1] and multi-dimensional
separation of concerns [2]. They distinguish
functional code from reusable crosscutting aspects,
creating the final application by weaving the
program and its specific aspects. They lack
runtime adaptability, simply offering design-time
adaptation.

Reflection is a programming language
technique that achieves dynamic adaptability. It
can be used to reach aspect adaptation at runtime.

Most runtime reflective systems are based on the
ability to modify the programming language
semantics while the application is running (e.g.,
the message passing mechanism). However, this
adaptability is commonly achieved by
implementing a protocol (Meta-Object Protocol,
MOP [3]) as part of the language interpreter that
specifies –and therefore, restricts– the way a
program can be modified at runtime. As we will
explain, other common MOP-based system
limitations are their language-dependence and
their restrictions expressing system’s features
modification.

What we present here is nitrO [4]: a non-
restrictive reflective platform, in which it is
possible to change every feature of its
programming languages and applications at
runtime, without any kind of restriction imposed
by an interpreter protocol. Any programming
language can be used, and every application is
capable of adapting another one’s features, no
matter whether they use the same programming
language or not.

By using our system, it is possible to develop
applications that may be adapted to unpredictable
design-time requirements, changing its own
structure and behavior at runtime, regardless of
which programming language has been used.

The rest of this paper is structured as follows.
In the next section we briefly describe meta-object
protocol reflective systems as well as its main
drawbacks; we also present the Python
programming language and its reflective features.
Section 3 introduces our system architecture and
its design is presented in section 4. How
applications and programming languages are
represented is described in section 5 and dynamic-
adaptation sample code is shown in the following
section. We summarize our system’s benefits in
section 7, and section 8 presents the final
conclusions.

The nitrO Reflective Platform
Francisco Ortín Juan Manuel Cueva

University of Oviedo
Calvo Sotelo s/n, 33005, Oviedo, Spain

Computer Science Department

2 Meta-Object Protocols Restrictions
Most runtime reflective systems are based on

Meta-Object Protocols (MOPs). A MOP specifies
the implementation of a reflective object-model
[5]. An application is developed by means of a
programming language (base level). The
application’s meta-level is the implementation of
the computational object model at the interpreter
execution environment. Therefore, a MOP
specifies the way a base-level application may
access its meta-level in order to adapt its behavior
and structure at runtime.

As shown in Figure 1, the implementation of
different meta-objects can be used to override the
system’s semantics. For example, in MetaXa [6],
we can implement the class Trace inherited from
the class MetaObject (offered by the language as
part of the MOP), overriding the
eventMethodEnter method. Its instances are meta-
objects that can be attached to user objects. Every
time a message is passed to these user objects, the
eventMethodEnter method of its attached meta-
objects would be called –showing a trace message
and, therefore, customizing its message-passing
semantics.

Interpreter
MetaObject

attachObject(Object)
eventMethodEnter()

Trace

eventMethod
Enter()

User objects

Attached
Meta-Object

Semantics
overriding

:Object

:Object

:Object

:Trace

User Application

Executes Meta-Object Protocol

Fig. 1. MOP-based system architecture.

This Meta-Object Protocol reflective technique

has different drawbacks:

1. The way a MOP is defined restricts the
amount of features that may be customized [7].
If we do not consider a system feature to be
adaptable by the MOP, this program attribute
will not be able to be customized once the
application is running. In our example, if we
want to adapt the way objects are created, we
must stop the program execution and modify
the MOP implementation.

2. Changing the Meta-Object Protocol in order to
achieve higher adaptability means different
interpreter and language versions and,
therefore, could make the previous existing
code been deprecated.

3. The way a semantic feature can be customized
has expressiveness restrictions. One object’s
behavior may be overridden by attaching a
meta-object to him. This meta-object may
express the way it would modify its semantics
by just overriding its super-class’ methods –
the interpreter will call this new method every
time a message would be passed to the object.
The use of a meta-language would be a richer
mechanism to express the way an application
may be adapted.

4. Finally, MOP-based systems are language-
dependent. Meta-level and base-level
programming languages are always the same;
they do not offer runtime adaptability in a
language-independent way.

Our nitrO runtime reflection mechanism is
based on the use of a meta-language. The base-
level access to the meta-level (reification) by
means of another language (meta-language) –not
by using a MOP. The meta-language is capable of
adapting the structure and behavior of the base
level at runtime without any restriction –whatever
the programming language has been used. Its
design will be specified in section 4.

2.1 Python’s Reflective Capabilities
We have selected the Python programming

language [8] to develop our system because of its
reflective capabilities [9]:

• Introspection. At runtime, the programmer
may inspect any object, its attributes, class and
inheritance graph. It may also be inspected the
application’s dynamic symbol table: the
existing modules, classes, objects and
variables at runtime.

• Structural Reflection. It is possible to modify
the set of methods a class offers and the set of
fields an object has. We can also modify the
class an object is instance of, and the set of
super-classes a class inherits from.

• Dynamic evaluation of code represented as
strings. Python offers the exec function that
evaluates a string as a set of statements. This

feature can be used to
evaluate code generated at
runtime.

3 System Architecture
The theoretical definition

of reflection uses the notion of
a reflective tower [10]: we have
a tower in which an
interpreter, that defines its
operational semantics, is
running the user program. A
reflective computation is a
computation about the computation, i.e. a
computation that accesses the interpreter.

If the application would be able to access its
interpreter at runtime, it would be able to inspect
the existing system objects (introspection), modify
its structure (structural reflection) and customize
its language semantics (computational reflection).

Generic
Interpreter

runs

“B” Language
Specification

“A” Application

reads

“A” Language
Specification

“B” Application

Modification
expressed

using Python
code

Modification
expressed
using Python
code

Fig. 2. System architecture.

However, this mechanism is complicate to
implement. Interpreters commonly have complex
structures representing different functionality like
parsing mechanism, semantics interpretation, and
runtime user-application representation. For
instance, modifying by error the parsing
mechanism would involve unexpected results.

What we have developed is a generic
interpreter that separates the structures accessible
by the base-level from the fixed mechanism that
should never be modified. This generic interpreter
is language-independent: its inputs are both the
user application and the language specification; it
is capable of interpreting any programming
language by previously reading its specification.

At runtime, any application may access one
language specification by using the whole
expressiveness of the Python programming
language; there are no previous restrictions
imposed by a protocol –any feature can be
adapted. Changes to language specifications are
automatically reflected on the application
execution because the generic interpreter uses the
language specification while the application is
running.

4 System Design
In Figure 3 we show how the generic

interpreter, every time an application is running,
offers two sets of objects to the reflective system:
the first one is the language specification
represented as a graph of objects (we will explain
its structure in the next section); the second group
of objects is the application’s runtime symbol
table: variables, objects and classes created by the
user.

Any running application may access and
modify these object structures by using the Python
programming language; its reflective features will
be used to:

1. If an application symbol table is inspected,
introspection between different applications
(independently of the language used) is
achieved.

2. Modifying the symbol table structure, by
means of Python structural reflection
capabilities, implies structural reflection of
any running application.

3. Adapting the language semantics located in the
language specification, the running application
may customize its behavior achieving
computational reflection.

Language Specification Application’s
Symbol Table

User Application

Executes

Reads
and

Modifies

Reads

Generic
Interpreter

Introspection and
Structural Reflection

In
te

rp
re

te
r

C
o

m
p

u
ta

ti
o

n
a
l

E
n

v
ir

o
n

m
e
n

t

A
p

p
li
ca

ti
o

n
C

o
m

p
u

ta
ti

o
n

a
l

E
n

v
ir

o
n

m
e
n

t

Computational Reflection

Fig. 3. Language specification and symbol table modification.

The main question of this design is how the
application computational-environment may
access and modify the interpreter computational-
environment –i.e., how a user application may
access to different language specifications and
application’s symbol tables.

Every language in our system includes the
reify statement; the generic interpreter
automatically recognizes it, no matter the language
being used. Inside a reify statement Python code
can written. This Python code will not be
processed as the rest of the application code:
independently of the programming language
selected, every time the interpreter recognizes a
reify statement, its Python code will be taken and
evaluated invoking the exec function. This code,
using Python structural reflection, may access and
modify application’s symbol tables and language
specifications. This scheme is shown in Figure 4.

The code written inside a reify statement is
evaluated in the interpreter computing-
environment, not in the application computing-
environment –the place where it was written. So,
Python becomes a meta-language to specify, and
dynamically modify, any language and application
that would be running in our system. There is no
need to specify a MOP that would previously
restrict what language features could be adapted.

Looking for good performance, MOP-based
systems simulate this computational-environment

jump by offering meta-objects to the programmer;
these are executed in the application environment,
not at the interpreter level. That is the reason why
they lacks features pointed in section 2.

5 Languages and Applications
Representation

As we have seen in the previous section,
applications in our system may dynamically access
language specifications and application symbol
tables in order to achieve different levels of
reflection. What we present in this point is how
languages and applications are represented by
means of object structures.

Programming languages are specified with
language specification files. Their lexical and
syntactic features are expressed by means of
context-free grammar rules; their semantics, by
means of Python code placed at the end of each
rule. This is an example of a very simple language
definition:
Language = VerySimple

Scanner = {
 "Digit Token"
 digit -> "0" | "1" | "2" | "3" | "4" |
 "5" | "6" | "7" | "8" | "9"
 ;
 "Number Token"
 NUMBER -> digit moreDigits
 ;
 "Zero or more digits token"
 moreDigits -> digit moreDigits
 |

a=10*2;
b=a/-18;
a;
b;
Reify <#

vars["a"]=1
vars["a"]=2

#>
a;
b;
Reify <#

code=“...”
language.["asignment"].

actions.append(code)
#>
a=10*2;

Language
Specification

Symbol
Table

vars["a"]=1
vars["a"]=2

code=“...”
language.["assignment"].

actions.append(code)

Generic
Interpreter

1) High-level application
is being executed by the
interpreter 2) The generic

interpreter
recognizes a “reify”
statement

5) Another “reify” statement
modifies the assignment
statement semantics:
computational reflection

Python Interpreter Computational Environment

Application Computational
Environment

Executes

3) Python code is
processed as a
string and
evaluated with the
“exec” function, at
the interpreter
computational level

4) Using Python structural
reflection, application
symbol-table might be
inspected and modified

6) The rest of the
application is executed
with the new semantics
reflected

Fig. 4. Achieving a real computational jump.

 ;
 "Characacter Token"
 char -> "a" | "b" | "c" | "d" | "e" | "f" |
 "g" | "h" | "i" | "j" | "k" | "l" |
 "m" | "n" | "o" | "p" | "q" | "r" |
 "s" | "t" | "u" | "w" | "x" | "y" |
 "z"
 ;
 "Character or Digit Token"
 charOrDigit -> char
 | digit
 ;
 "ID Token"
 ID -> char moreCharsOrDigits
 ;
 "Zero or more chars or digits token"
 moreCharsOrDigits -> charOrDigit
 moreCharsOrDigits
 |
 ;
 "SEMICOLON Token"
 SEMICOLON -> ";"
 ;
 "ASSIGN token"
 ASSIGN -> "="
 ;
}

Parser = {
 "Initial Context-Free Rule"
 S -> statement moreStatements SEMICOLON <#
global vars
vars={}
nodes[1].execute()
nodes[2].execute()
#>
 ;
 "Zero or more Statements"
 moreStatements -> SEMICOLON statement
moreStatements <#
nodes[2].execute()
nodes[3].execute()
#>
 |
 ;
 "Statement"
 statement -> _REIFY_ <#
nodes[1].execute()
#>
 | assignment <#
nodes[1].execute()
#>
 | expression <#
nodes[1].execute()
write("Expression value: "+
 str(nodes[1].value)+".\n")
#>
 ;
 "Assignment Statement"
 assignment -> ID ASSIGN
expression <#
nodes[3].execute()
vars[nodes[1].text]=
 nodes[3].value
#>
 ;
 "Binary Expr. Factor"
 expression -> ID <#
nodes[0].value=
 vars[nodes[1].text]
#>
 | NUMBER <#
nodes[0].value=
 int(nodes[1].text)
#>
 ;
}

Skip = {"\t"; "\n"; " ";}

NotSkip = { }

The _REIFY_ reserved word indicates where a
reify statement might be syntactically placed.
Every application must identify its programming
language previously to its source code. When the
application is about to be executed, its respective
language specification file is analyzed and
translated into an object representation.

NonTerminal objects, symbolizing rule’s left
non-terminal symbols, represent each language
rule. These objects are associated to a group of
Right objects, which represent its rule’s right
sides. A Right object has two attributes:

1. Attribute nodes: Collects Terminal and
NonTerminal objects representing the rule’s
right side.

2. Attribute actions: List of SemanticAction
objects that stores the Python code located at
the end of each rule’s description. This code
will be executed at the application
interpretation.

Figure 5 shows a fragment of the object
diagram representing the example shown above.

Any application code starts with its unique ID
followed by its language name. This is an example
of an application:

statement:
NonTerminal

:Right

:Reify

S:NonTerminal :Right

statement
:NonTerminal

nodes

nodes

moreStatements
:NonTerminal

SEMICOLON
:NonTerminal

:SemanticAction
action=“global vars

vars={}
nodes[1].execute()
nodes[2].execute()”

actions

:SemanticAction
action=“nodes[1].execute()”actions

:Right

assignment
:NonTerminalnodes

:SemanticAction
action=“nodes[1].execute()”actions

:Right

expression
:NonTerminalnodes

:SemanticAction
action=“nodes[1].execute()”actions

Assignment
:NonTerminal

:Right

ID
:NonTerminal

nodes

ASSIGN
:NonTerminal

expression
:NonTerminal

:SemanticAction
action=“nodes[3].execute()

vars[nodes[1].text]=nodes[3].value”actions

Fig. 5. Fragment of the language specification object diagram.

Application = "Very Simple App"
Language = "VerySimple"
 a=10;
 b=a;
 a;
 b;

Once the application’s language specification
has been translated into its respective object
structure, a backtracking algorithm parsers the
application’s source code, creating an abstract
syntax tree (AST). Then, the initial non-terminal’s
code is executed. The tree walking process is
defined by the way grammar-symbols execute
methods are invoked: the non-terminal execute
method evaluates its associated semantic action.
So, changes on language semantics may be
automatically reflected on the applications being
executed.

Interoperability between different applications
–programmed in different languages– is achieved
with the nitrO global object. Its attribute
applications is a hash table of the existing
applications in the system. Each Application
object has two attributes:

1. Attribute language: Its language specification.

2. Attribute applicationGlobalContext: Its
dynamic symbol table.

6 Dynamic Application Adaptation
Accessing the nitrO object attributes, any

application can adapt another one’s behavior or
structure at runtime, without any restriction and in
a language-independent way. Following the
example presented in this paper, the next group of
reify sentences would dynamically adapt the
running application, no matter which program or
language might be used.

Our fist example shows the existing variables
and its values: introspection.
reify <#
vars=nitrO.apps
 ["Very Simple App"].
 ApplicationGlobalContext
 ["vars"]
Shows {'b': 10, 'a': 10}
write(str(vars)+"\n")
#>;

Structural reflection means modifying, creating
or erasing symbol-table objects:
reify <#
vars=nitrO.apps["Very Simple App"].
 applicationGlobalContext["vars"]
vars["a"]=vars["a"]*2 # Modifies the structure
vars["c"]=0 # Creates a new variable
del vars["b"] # Erases a variable
#>;

We may enhance the assignment statement by
showing a trace message every time an assignment
takes place: computational reflection.
reify <#
from langSpec import SemanticAction
assignment=nitrO.apps["Very Simple App"].
 language.syntacticSpec["assignment"]
code="write(\"Assignment of \"+nodes[1].text"
code=code+"\" with value \"+
 str(nodes[3].value)"
code=code+"\".\\n\")"
Behavior adaptation
assignment.options[0].actions.append(
 SemanticAction(code))
#>;

7 System Benefits
Our reflective system has the following

advantages:

• The whole system is adaptable at runtime. Any
system’s feature can be adapted by means of
the reflect statement, and there are no previous
restrictions imposed by any protocol.

• Expressiveness improvement. The way
behavior is customized is not restricted to a
framework that relies on method overriding –
as happens with the use of MOPs. We offer a
complete language (Python) that can be used
to adapt any other language’s feature.

• Language independence. The system may be
programmed using any programming
language. The inputs to our generic interpreter
are both the application source code and the
language specification.

• What can be reflected. Three levels of
reflection are achieved at runtime:
introspection, structural reflection and
computational reflection.

• Application interoperability. Any application,
whatever its programming language would be,
may access, and reflectively modify, another
program being executed. Therefore, there is no
need to stop an application in order to adapt it
at runtime: another application may be used to
customize the former.

The result is a universal computation platform
that may be used to develop or test at runtime any
reflective or adaptable environment (e.g., fault-
tolerant systems, adaptable operating systems,
knowledge base systems or even web-based
systems) without the necessity to modify the
interpreter implementation. It might be also
applied as a dynamic application aspect adaptation
platform: as the back-end of an AOP tool that

achieves dynamic inspection, selection and
modification of reusable and language-
independent crosscutting concerns [11].

Our higher adaptability technique has
performance penalties. Future work will be
focused on studying and implementing
optimization techniques like just in time
compilation to native code, combining interpreter
and compiler techniques [12].

8 Conclusions
Most systems that offer computational

reflection capabilities at runtime are based on the
use of meta-object protocols (MOPs). MOPs give
a system the ability to customize itself at runtime,
but what may be adapted must be previously
specified by the protocol. Different approaches
modifying the MOP are commonly needed to make
the system adaptable to a new characteristic.
Changing the MOP specification could involve
different interpreter and language versions and,
therefore, making the previous existing code been
deprecated. Moreover, these systems use the same
programming language at application and
interpreter computational-environments, lacking
cross-customization between different applications
regardless the programming language they have
been coded in.

Using the structural reflection features of the
Python programming language, we have developed
a generic interpreter capable of interpreting every
application written in any programming language.
A language specification syntax has been defined
in order to represent any context-free language.

The generic interpreter can obtain Python code
(using the reflect statement) and evaluate it at
the interpreter computational-environment: a real
computational jump is achieved, and no changes to
the interpreter implementation have to be done.
This computational jump may be used by an
application to customize, at runtime, any program
structure or behavior, without any previous
restriction –no matter which programming
language might be selected.

The final system is a computation platform that
can be programmed using any language, it is
completely adaptable, and it has a great level of
application interoperability. Therefore, it can be
used to create or test highly adaptable
environments based on dynamic separation of
concerns.

The prototype source code and some testing
applications can be freely downloaded from:
http://www.di.uniovi.es/reflection/lab/pro
totypes.html#nrrs

9 References
[1] Kiczales, G., Lamping, J., Mendhekar, A.,

Maeda, C., Videira Lopes, C., Loingtier, J. M., and
Irwin, J. 1997. Aspect Oriented Programming.
European Conference on Object-Oriented
Programming Conference, Finland, June 1997.

[2] IBM Research. Multi-Dimensional Separation of
Concerns: An Overview”.[Online]. Available:
http://www.research.ibm.com

[3] Kiczales, G., Des Rivieres, J., and Bobrow, D.
G. 1992. The Art of Metaobject Protocol. MIT
Press.

[4] Ortín, F., and Cueva, J. M. Building a
Completely Adaptable Reflective System. 2001.
ECOOP’2001. Workshop on Adaptive Object-
Models and Metamodeling Techniques, Budapest,
Hungary, June 2001.

[5] Kiczales, G., Des Rivieres, J., and Bobrow, D.
G. 1992. The Art of Metaobject Protocol. MIT
Press.

[6] Kleinöder J., and Golm M. MetaJava: An
Efficient Run-Time Meta Architecture for Java .
1996. International Workshop on Object
Orientation in Operating Systems, IWOOOS’96,
Seattle, Washington, October 1996.

[7] Douence, R., and Südholt, M. The next
Reflective 700 Object-Oriented Languages. 1999.
Technical Report 99-1-INFO, École des Mines de
Nantes, Dept. Informatique, France.

[8] Rossum, G. Python Reference Manual. 2001.
Fred L. Drake Jr. Editor. Relesase 2.1.

[9] Andersen, A. A note on reflection in Python 1.5.
1998. Distributed Multimedia Research Group
Report, MPG-98-05, Lancaster University, UK,
March 1998

[10] Smith, B. C. Reflection and Semantics a
Procedural Language. 1982. Ph. D. Thesis.
Massachusetts Institute of Technology
MIT/LCS/TR-272.

[11] Hürsch, W. L., and Videira Lopes, C.
Separation of Concerns. 1995. Technical Report
UN-CCS-95-03, Northeastern University, Boston,
January 1995.

[12] Hölzle, U., and Ungar, D. A Third-Generation
SELF Implementation: Reconciling Responsiveness
with Performance 1994. OOPSLA’94, Portland,
Oregon. October 1994.

