
Abstract-- Adaptable software systems and 
architectures give the programmer the ability to create 
applications that might customize themselves to 
runtime-emerging requirements. Computational 
reflection is a programming language technique that is 
commonly used to achieve the development of this kind 
of systems. Most of runtime reflective systems use meta-
object protocols (MOPs). However, MOPs restrict the 
amount of features an application may customize, and 
the way they can express its own adaptation. 
Furthermore, this kind of systems uses a fixed 
programming language: they develop an interpreter, 
not a whole language-independent platform. 

What we present in this paper is nitrO, a non-
restrictive reflective platform that achieves a real 
computational-environment jump, making every 
application and language feature adaptable at runtime 
–without any previously defined restriction. Moreover, 
the platform has been built using a generic interpreter, 
in which the reflection mechanism is independent of the 
language selected by the programmer. Different 
applications may dynamically adapt each other, 
regardless the programming language they use. 

Keywords: reflection, computational jump, generic 
interpreter, separation of concerns. 

1  Introduction 
Adaptability has become an important feature 

in modern computing systems, languages and 
software engineering methods. Different 
techniques are emerging in order to build 
adaptable computing systems and software 
engineering methods. Two examples in the 
software engineering field are aspect-oriented 
programming (AOP) [1] and multi-dimensional 
separation of concerns [2]. They distinguish 
functional code from reusable crosscutting aspects, 
creating the final application by weaving the 
program and its specific aspects. They lack 
runtime adaptability, simply offering design-time 
adaptation. 

Reflection is a programming language 
technique that achieves dynamic adaptability. It 
can be used to reach aspect adaptation at runtime. 

Most runtime reflective systems are based on the 
ability to modify the programming language 
semantics while the application is running (e.g., 
the message passing mechanism). However, this 
adaptability is commonly achieved by 
implementing a protocol (Meta-Object Protocol, 
MOP [3]) as part of the language interpreter that 
specifies –and therefore, restricts– the way a 
program can be modified at runtime. As we will 
explain, other common MOP-based system 
limitations are their language-dependence and 
their restrictions expressing system’s features 
modification. 

What we present here is nitrO [4]: a non-
restrictive reflective platform, in which it is 
possible to change every feature of its 
programming languages and applications at 
runtime, without any kind of restriction imposed 
by an interpreter protocol. Any programming 
language can be used, and every application is 
capable of adapting another one’s features, no 
matter whether they use the same programming 
language or not. 

By using our system, it is possible to develop 
applications that may be adapted to unpredictable 
design-time requirements, changing its own 
structure and behavior at runtime, regardless of 
which programming language has been used. 

The rest of this paper is structured as follows. 
In the next section we briefly describe meta-object 
protocol reflective systems as well as its main 
drawbacks; we also present the Python 
programming language and its reflective features. 
Section 3 introduces our system architecture and 
its design is presented in section 4. How 
applications and programming languages are 
represented is described in section 5 and dynamic-
adaptation sample code is shown in the following 
section. We summarize our system’s benefits in 
section 7, and section 8 presents the final 
conclusions. 
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2 Meta-Object Protocols Restrictions 
Most runtime reflective systems are based on 

Meta-Object Protocols (MOPs). A MOP specifies 
the implementation of a reflective object-model 
[5]. An application is developed by means of a 
programming language (base level). The 
application’s meta-level is the implementation of 
the computational object model at the interpreter 
execution environment. Therefore, a MOP 
specifies the way a base-level application may 
access its meta-level in order to adapt its behavior 
and structure at runtime. 

As shown in Figure 1, the implementation of 
different meta-objects can be used to override the 
system’s semantics. For example, in MetaXa [6], 
we can implement the class Trace inherited from 
the class MetaObject (offered by the language as 
part of the MOP), overriding the 
eventMethodEnter method. Its instances are meta-
objects that can be attached to user objects. Every 
time a message is passed to these user objects, the 
eventMethodEnter method of its attached meta-
objects would be called –showing a trace message 
and, therefore, customizing its message-passing 
semantics. 
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Fig. 1. MOP-based system architecture. 

 
This Meta-Object Protocol reflective technique 

has different drawbacks: 

1. The way a MOP is defined restricts the 
amount of features that may be customized [7]. 
If we do not consider a system feature to be 
adaptable by the MOP, this program attribute 
will not be able to be customized once the 
application is running. In our example, if we 
want to adapt the way objects are created, we 
must stop the program execution and modify 
the MOP implementation. 

2. Changing the Meta-Object Protocol in order to 
achieve higher adaptability means different 
interpreter and language versions and, 
therefore, could make the previous existing 
code been deprecated. 

3. The way a semantic feature can be customized 
has expressiveness restrictions. One object’s 
behavior may be overridden by attaching a 
meta-object to him. This meta-object may 
express the way it would modify its semantics 
by just overriding its super-class’ methods –
the interpreter will call this new method every 
time a message would be passed to the object. 
The use of a meta-language would be a richer 
mechanism to express the way an application 
may be adapted.  

4. Finally, MOP-based systems are language-
dependent. Meta-level and base-level 
programming languages are always the same; 
they do not offer runtime adaptability in a 
language-independent way. 

Our nitrO runtime reflection mechanism is 
based on the use of a meta-language. The base-
level access to the meta-level (reification) by 
means of another language (meta-language) –not 
by using a MOP. The meta-language is capable of 
adapting the structure and behavior of the base 
level at runtime without any restriction –whatever 
the programming language has been used. Its 
design will be specified in section 4. 

2.1 Python’s Reflective Capabilities 
We have selected the Python programming 

language [8] to develop our system because of its 
reflective capabilities [9]: 

• Introspection. At runtime, the programmer 
may inspect any object, its attributes, class and 
inheritance graph. It may also be inspected the 
application’s dynamic symbol table: the 
existing modules, classes, objects and 
variables at runtime. 

• Structural Reflection. It is possible to modify 
the set of methods a class offers and the set of 
fields an object has. We can also modify the 
class an object is instance of, and the set of 
super-classes a class inherits from. 

• Dynamic evaluation of code represented as 
strings. Python offers the exec function that 
evaluates a string as a set of statements. This 



feature can be used to 
evaluate code generated at 
runtime. 

3  System Architecture 
The theoretical definition 

of reflection uses the notion of 
a reflective tower [10]: we have 
a tower in which an 
interpreter, that defines its 
operational semantics, is 
running the user program. A 
reflective computation is a 
computation about the computation, i.e. a 
computation that accesses the interpreter. 

If the application would be able to access its 
interpreter at runtime, it would be able to inspect 
the existing system objects (introspection), modify 
its structure (structural reflection) and customize 
its language semantics (computational reflection). 
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Fig. 2. System architecture. 
 

However, this mechanism is complicate to 
implement. Interpreters commonly have complex 
structures representing different functionality like 
parsing mechanism, semantics interpretation, and 
runtime user-application representation. For 
instance, modifying by error the parsing 
mechanism would involve unexpected results. 

What we have developed is a generic 
interpreter that separates the structures accessible 
by the base-level from the fixed mechanism that 
should never be modified. This generic interpreter 
is language-independent: its inputs are both the 
user application and the language specification; it 
is capable of interpreting any programming 
language by previously reading its specification. 

At runtime, any application may access one 
language specification by using the whole 
expressiveness of the Python programming 
language; there are no previous restrictions 
imposed by a protocol –any feature can be 
adapted. Changes to language specifications are 
automatically reflected on the application 
execution because the generic interpreter uses the 
language specification while the application is 
running. 

4 System Design 
In Figure 3 we show how the generic 

interpreter, every time an application is running, 
offers two sets of objects to the reflective system: 
the first one is the language specification 
represented as a graph of objects (we will explain 
its structure in the next section); the second group 
of objects is the application’s runtime symbol 
table: variables, objects and classes created by the 
user. 

Any running application may access and 
modify these object structures by using the Python 
programming language; its reflective features will 
be used to: 

1. If an application symbol table is inspected, 
introspection between different applications 
(independently of the language used) is 
achieved. 

2. Modifying the symbol table structure, by 
means of Python structural reflection 
capabilities, implies structural reflection of 
any running application. 

3. Adapting the language semantics located in the 
language specification, the running application 
may customize its behavior achieving 
computational reflection. 
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Fig. 3. Language specification and symbol table modification. 



The main question of this design is how the 
application computational-environment may 
access and modify the interpreter computational-
environment –i.e., how a user application may 
access to different language specifications and 
application’s symbol tables. 

Every language in our system includes the 
reify statement; the generic interpreter 
automatically recognizes it, no matter the language 
being used. Inside a reify statement Python code 
can written. This Python code will not be 
processed as the rest of the application code: 
independently of the programming language 
selected, every time the interpreter recognizes a 
reify statement, its Python code will be taken and 
evaluated invoking the exec function. This code, 
using Python structural reflection, may access and 
modify application’s symbol tables and language 
specifications. This scheme is shown in Figure 4. 

The code written inside a reify statement is 
evaluated in the interpreter computing-
environment, not in the application computing-
environment –the place where it was written. So, 
Python becomes a meta-language to specify, and 
dynamically modify, any language and application 
that would be running in our system. There is no 
need to specify a MOP that would previously 
restrict what language features could be adapted. 

Looking for good performance, MOP-based 
systems simulate this computational-environment 

jump by offering meta-objects to the programmer; 
these are executed in the application environment, 
not at the interpreter level. That is the reason why 
they lacks features pointed in section 2. 

5 Languages and Applications 
Representation 

As we have seen in the previous section, 
applications in our system may dynamically access 
language specifications and application symbol 
tables in order to achieve different levels of 
reflection. What we present in this point is how 
languages and applications are represented by 
means of object structures. 

Programming languages are specified with 
language specification files. Their lexical and 
syntactic features are expressed by means of 
context-free grammar rules; their semantics, by 
means of Python code placed at the end of each 
rule. This is an example of a very simple language 
definition: 
Language = VerySimple 
 
Scanner = { 
  "Digit Token" 
    digit -> "0" | "1" | "2" | "3" | "4" |  
             "5" | "6" | "7" | "8" | "9" 
          ; 
  "Number Token" 
    NUMBER -> digit moreDigits 
          ; 
  "Zero or more digits token" 
    moreDigits -> digit moreDigits 
          | 

a=10*2;
b=a/-18;
a;
b;
Reify <#

vars["a"]=1
vars["a"]=2

#>
a;
b;
Reify <#

code=“...”
language.["asignment"].

actions.append(code)
#>
a=10*2;
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Fig. 4. Achieving a real computational jump. 



          ; 
  "Characacter Token" 
    char -> "a" | "b" | "c" | "d" | "e" | "f" | 
            "g" | "h" | "i" | "j" | "k" | "l" | 
            "m" | "n" | "o" | "p" | "q" | "r" | 
            "s" | "t" | "u" | "w" | "x" | "y" | 
            "z"  
          ; 
  "Character or Digit Token" 
    charOrDigit -> char  
          | digit 
          ; 
  "ID Token" 
    ID -> char moreCharsOrDigits 
          ; 
  "Zero or more chars or digits token" 
    moreCharsOrDigits -> charOrDigit  
                         moreCharsOrDigits 
          | 
          ; 
  "SEMICOLON Token" 
    SEMICOLON -> ";" 
          ; 
  "ASSIGN token" 
    ASSIGN -> "=" 
          ; 
} 
 
Parser = { 
  "Initial Context-Free Rule" 
    S -> statement moreStatements SEMICOLON <# 
global vars 
vars={} 
nodes[1].execute() 
nodes[2].execute() 
#> 
          ; 
  "Zero or more Statements" 
    moreStatements -> SEMICOLON statement 
moreStatements <# 
nodes[2].execute() 
nodes[3].execute() 
#> 
          | 
          ; 
  "Statement"  
    statement -> _REIFY_ <# 
nodes[1].execute() 
#> 
          | assignment <# 
nodes[1].execute() 
#> 
          | expression <# 
nodes[1].execute() 
write("Expression value: "+ 
 str(nodes[1].value)+".\n") 
#> 
          ; 
  "Assignment Statement" 
    assignment -> ID ASSIGN 
expression <# 
nodes[3].execute() 
vars[nodes[1].text]= 
        nodes[3].value 
#> 
          ; 
  "Binary Expr. Factor" 
    expression -> ID <# 
nodes[0].value= 
    vars[nodes[1].text] 
#> 
          | NUMBER <# 
nodes[0].value= 
     int(nodes[1].text) 
#> 
          ; 
} 
 
Skip = {"\t";  "\n"; " ";} 
 
NotSkip = {  } 

The _REIFY_ reserved word indicates where a 
reify statement might be syntactically placed. 
Every application must identify its programming 
language previously to its source code. When the 
application is about to be executed, its respective 
language specification file is analyzed and 
translated into an object representation. 

NonTerminal objects, symbolizing rule’s left 
non-terminal symbols, represent each language 
rule. These objects are associated to a group of 
Right objects, which represent its rule’s right 
sides. A Right object has two attributes: 

1. Attribute nodes: Collects Terminal and 
NonTerminal objects representing the rule’s 
right side. 

2. Attribute actions: List of SemanticAction 
objects that stores the Python code located at 
the end of each rule’s description. This code 
will be executed at the application 
interpretation. 

Figure 5 shows a fragment of the object 
diagram representing the example shown above. 

Any application code starts with its unique ID 
followed by its language name. This is an example 
of an application: 
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Fig. 5. Fragment of the language specification object diagram. 



Application = "Very Simple App" 
Language = "VerySimple" 
 a=10; 
 b=a; 
 a; 
 b; 
 

Once the application’s language specification 
has been translated into its respective object 
structure, a backtracking algorithm parsers the 
application’s source code, creating an abstract 
syntax tree (AST). Then, the initial non-terminal’s 
code is executed. The tree walking process is 
defined by the way grammar-symbols execute 
methods are invoked: the non-terminal execute 
method evaluates its associated semantic action. 
So, changes on language semantics may be 
automatically reflected on the applications being 
executed. 

Interoperability between different applications 
–programmed in different languages– is achieved 
with the nitrO global object. Its attribute 
applications is a hash table of the existing 
applications in the system. Each Application 
object has two attributes: 

1. Attribute language: Its language specification. 

2. Attribute applicationGlobalContext: Its 
dynamic symbol table. 

6 Dynamic Application Adaptation 
Accessing the nitrO object attributes, any 

application can adapt another one’s behavior or 
structure at runtime, without any restriction and in 
a language-independent way. Following the 
example presented in this paper, the next group of 
reify sentences would dynamically adapt the 
running application, no matter which program or 
language might be used. 

Our fist example shows the existing variables 
and its values: introspection. 
reify <# 
vars=nitrO.apps 
     ["Very Simple App"]. 
       ApplicationGlobalContext 
         ["vars"] 
# Shows {'b': 10, 'a': 10} 
write( str(vars)+"\n" )  
#>; 
 

Structural reflection means modifying, creating 
or erasing symbol-table objects: 
reify <# 
vars=nitrO.apps["Very Simple App"]. 
              applicationGlobalContext["vars"] 
vars["a"]=vars["a"]*2 # Modifies the structure 
vars["c"]=0 # Creates a new variable 
del vars["b"] # Erases a variable 
#>; 

We may enhance the assignment statement by 
showing a trace message every time an assignment 
takes place: computational reflection. 
reify <# 
from langSpec import SemanticAction 
assignment=nitrO.apps["Very Simple App"]. 
      language.syntacticSpec["assignment"] 
code="write(\"Assignment of \"+nodes[1].text" 
code=code+"\" with value \"+ 
               str(nodes[3].value)" 
code=code+"\".\\n\")" 
# Behavior adaptation 
assignment.options[0].actions.append( 
                         SemanticAction(code) ) 
#>; 

7 System Benefits 
Our reflective system has the following 

advantages: 

• The whole system is adaptable at runtime. Any 
system’s feature can be adapted by means of 
the reflect statement, and there are no previous 
restrictions imposed by any protocol. 

• Expressiveness improvement. The way 
behavior is customized is not restricted to a 
framework that relies on method overriding –
as happens with the use of MOPs. We offer a 
complete language (Python) that can be used 
to adapt any other language’s feature. 

• Language independence. The system may be 
programmed using any programming 
language. The inputs to our generic interpreter 
are both the application source code and the 
language specification. 

• What can be reflected. Three levels of 
reflection are achieved at runtime: 
introspection, structural reflection and 
computational reflection. 

• Application interoperability. Any application, 
whatever its programming language would be, 
may access, and reflectively modify, another 
program being executed. Therefore, there is no 
need to stop an application in order to adapt it 
at runtime: another application may be used to 
customize the former. 

The result is a universal computation platform 
that may be used to develop or test at runtime any 
reflective or adaptable environment (e.g., fault-
tolerant systems, adaptable operating systems, 
knowledge base systems or even web-based 
systems) without the necessity to modify the 
interpreter implementation. It might be also 
applied as a dynamic application aspect adaptation 
platform: as the back-end of an AOP tool that 



achieves dynamic inspection, selection and 
modification of reusable and language-
independent crosscutting concerns [11]. 

Our higher adaptability technique has 
performance penalties. Future work will be 
focused on studying and implementing 
optimization techniques like just in time 
compilation to native code, combining interpreter 
and compiler techniques [12]. 

8 Conclusions 
Most systems that offer computational 

reflection capabilities at runtime are based on the 
use of meta-object protocols (MOPs). MOPs give 
a system the ability to customize itself at runtime, 
but what may be adapted must be previously 
specified by the protocol. Different approaches 
modifying the MOP are commonly needed to make 
the system adaptable to a new characteristic. 
Changing the MOP specification could involve 
different interpreter and language versions and, 
therefore, making the previous existing code been 
deprecated. Moreover, these systems use the same 
programming language at application and 
interpreter computational-environments, lacking 
cross-customization between different applications 
regardless the programming language they have 
been coded in. 

Using the structural reflection features of the 
Python programming language, we have developed 
a generic interpreter capable of interpreting every 
application written in any programming language. 
A language specification syntax has been defined 
in order to represent any context-free language. 

The generic interpreter can obtain Python code 
(using the reflect statement) and evaluate it at 
the interpreter computational-environment: a real 
computational jump is achieved, and no changes to 
the interpreter implementation have to be done. 
This computational jump may be used by an 
application to customize, at runtime, any program 
structure or behavior, without any previous 
restriction –no matter which programming 
language might be selected. 

The final system is a computation platform that 
can be programmed using any language, it is 
completely adaptable, and it has a great level of 
application interoperability. Therefore, it can be 
used to create or test highly adaptable 
environments based on dynamic separation of 
concerns. 

The prototype source code and some testing 
applications can be freely downloaded from: 
http://www.di.uniovi.es/reflection/lab/pro
totypes.html#nrrs 
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