
     
 

 
 
 

MySQL 5.0’s Pluggable Storage 
Engine Architecture 
   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

A MySQL® White Paper 
 
October 16, 2005 

Copyright © 2005, MySQL AB 



Table of Contents 
 
Introduction ....................................................................................................3 
Overview of the MySQL Pluggable  Storage Engine Architecture............3 
The Common MySQL Database Server Layer.............................................5 
Comparing Different Storage Engines.........................................................6 
A Quick Test Drive of the Pluggable  Storage Engine Architecture.........8 
The Impact of “Unplugging” a Storage Engine ........................................12 
Creating Your Own Storage Engine...........................................................14 
Conclusion....................................................................................................14 
About MySQL ...............................................................................................14 

Copyright © 2005, MySQL AB  Page 2  



 
Introduction 

The reasons for the huge popularity and increasing adoption of MySQL as a serious 
database platform can many times be boiled down to two, but surprisingly contrasting, 
considerations:  

1. How much MySQL is like other database platforms. 
2. How much MySQL is different than other database platforms. 

 
Of course, many companies are turning to MySQL because of the database server’s high 
performance, rock-solid reliability, and uncomplicated mode of operation.  But in addition, 
modern enterprises migrating from proprietary databases to MySQL find the transition very 
easy as MySQL sports ANSI standard SQL, a familiar stored procedure/function language, 
standard relational tables and indexes, and many other features that resemble most standard 
relational database characteristics.  In this fashion, MySQL mirrors other proprietary 
databases, which means that the migration from other systems and the ramp-up time of 
training database personnel in MySQL is very quick and painless.   

On the other hand, many large enterprises are choosing MySQL because it offers a new and 
different paradigm of database management.  Perhaps the one key differentiator between 
MySQL and other database platforms – whether they are proprietary or open source – is the 
pluggable storage engine architecture of MySQL.    

What exactly is the MySQL pluggable storage engine architecture and what benefits does it 
offer to today’s modern enterprises?  This paper addresses these questions and more by 
outlining what the MySQL pluggable storage engine architecture is, giving practical examples 
of how it works, and showcasing the many benefits that come from using it.   
  

Overview of the MySQL Pluggable  
Storage Engine Architecture   

The MySQL pluggable storage engine architecture allows a database professional to select a 
specialized storage engine for a particular application need while being completely shielded 
from the need to manage any specific application coding requirements.  The MySQL server 
architecture encapsulates the application programmer and DBA from all of the low-level 
implementation details at the storage level providing a consistent and easy application model 
and API.  So while there are different capabilities across different storage engines, the 
application is shielded from these.  

Graphically depicted, the MySQL pluggable storage engine architecture looks like Figure 1 
on the next page. 

Copyright © 2005, MySQL AB  Page 3  



 

 
Figure 1 – MySQL Pluggable Storage Engine Architecture is both flexible and modular 

 
The pluggable storage engine architecture provides a standard set of management and support 
services that are common among all underlying storage engines.  The storage engines 
themselves are the components of the database server that actually perform actions on the 
underlying data that is maintained at the physical server level.      

This efficient and modular architecture provides huge benefits for those wishing to specifically 
target a particular application need – such as data warehousing, transaction processing, high 
availability situations, etc. – while enjoying the advantage of utilizing a set of interfaces and 
services that are independent of any one storage engine.   

The application programmer and DBA interact with the MySQL database through Connector APIs 
and service layers that are above the storage engines.  If application changes bring about 
requirements that demand the underlying storage engine change, or that one or more additional 
storage engines be added to support new needs, no significant coding or process changes are 
required to make things work.  The MySQL server architecture shields the application from the 
underlying complexity of the storage engine by presenting a consistent and easy to use API that 
applies across storage engines. 

Let’s first take a look at the common layer of the MySQL database server and then examine what 
a storage engine actually is and how they compare to one another in terms of functionality and 
use. 

 

Copyright © 2005, MySQL AB  Page 4  



 

The Common MySQL Database Server Layer 

A MySQL pluggable storage engine is the component in the MySQL database server that is 
responsible for performing the actual data I/O operations for a database as well as enabling and 
enforcing certain feature sets that target a specific application need.  A major benefit of using 
specific storage engines is that you are only delivered the features needed for a particular 
application, and therefore you have less system overhead in the database, with the end result 
being more efficient and higher database performance.  This is one of the reasons that MySQL 
has always been known to have such high performance, matching or beating proprietary 
monolithic databases in industry standard benchmarks.   

From a technical perspective, what are some of the unique supporting infrastructure 
components that are in a storage engine?  Some of the key differentiations include: 

• Concurrency – some applications have more granular lock requirements (such as row-
level locks) than others.  Choosing the right locking strategy can reduce overhead and 
therefore help with overall performance.  This area also includes support for capabilities 
like multi-version concurrency control or “snapshot” read.     

• Transaction Support – not every application needs transactions, but for those that do, 
there are very well defined requirements like ACID compliance and more.   

• Referential Integrity – the need to have the server enforce relational database 
referential integrity through DDL defined foreign keys.   

• Physical Storage – this involves everything from the overall page size for tables and 
indexes as well as the format used for storing data to physical disk.  

• Index Support – different application scenarios tend to benefit from different index 
strategies, and so each storage engine generally has its own indexing methods, 
although some (like B-tree indexes) are common to nearly all engines.   

• Memory Caches – different applications respond better to some memory caching 
strategies than others, so while some memory caches are common to all storage 
engines (like those used for user connections, MySQL’s high-speed Query Cache, etc.), 
others are uniquely defined only when a particular storage engine is put in play.     

• Performance Aids – includes things like multiple I/O threads for parallel operations, 
thread concurrency, database checkpointing, bulk insert handling, and more. 

• Miscellaneous Target Features – this may include things like support for geospatial 
operations, security restrictions for certain data manipulation operations, and other like 
items.     
 

Each set of the pluggable storage engine infrastructure components are designed to offer a 
selective set of benefits for a particular application.  Conversely, avoiding a set of component 
features helps steer clear of unnecessary overhead.  So it stands to reason that understanding a 
particular application’s set of requirements and selecting the proper MySQL storage engine can 
have a dramatic impact on overall system efficiency and performance.   

Let’s now take a look at some of the more prominently used MySQL storage engines and how 
they compare to one another to understand the benefits each provides. 

 

Copyright © 2005, MySQL AB  Page 5  



  

Comparing Different Storage Engines 

As can be seen in Figure 1, there are a number of MySQL pluggable storage engines that can be 
used with the MySQL database server.  Some of the more common engines include: 

• MyISAM – the default MySQL pluggable storage engine and the one that is used the 
most in Web, data warehousing, and other application environments.  Note that a MySQL 
server’s default storage engine can easily be changed by altering the 
STORAGE_ENGINE configuration variable.     

• InnoDB – used for transaction processing applications, and sports a number of features 
including ACID transaction support. 

• BDB – an alternative transaction engine to InnoDB that supports COMMIT, ROLLBACK, 
and other transactional features. 

• Memory – stores all data in RAM for extremely fast access in environments that require 
quick look ups of reference and other like data. 

• Merge – allows a MySQL DBA or developer to logically group together a series of 
identical MyISAM tables and reference them as one object.  Good for VLDB 
environments like data warehousing.   

• Archive – provides the perfect solution for storing and retrieving large amounts of 
seldom-referenced historical, archived, or security audit information.  

• Federated – offers the ability to link together separate MySQL servers to create one 
logical database from many physical servers.  Very good for distributed or data mart 
environments.    

• Cluster/NDB – the Clustered database engine of MySQL that is particularly suited for 
applications with high performance lookup needs that also require the highest possible 
degree of uptime and availability. 

• Other – other storage engines include CSV (references comma-separated files as 
database tables), Blackhole (for temporarily disabling application input to the database) 
and an Example engine that helps jump start the process of creating custom pluggable 
storage engines.    
 

While the above brief descriptions will give you a general idea of what type of application might 
benefit from a particular storage engine, a more detailed look at various common database tasks 
and needs across the various engines may help delineate the differences a little more.  Keep in 
mind that the grid on the next page is not exhaustive by any means; for a more detailed analysis 
of each storage engine’s feature set, please see the MySQL Reference Manual. 

Copyright © 2005, MySQL AB  Page 6  



Feature MyISAM BDB Memory InnoDB Archive NDB 
Storage Limits No No Yes 64TB No Yes 
Transactions (commit, rollback, etc.)       
Locking granularity  Table Page Table Row Row Row 
MVCC/Snapshot Read       
Geospatial support       
B-Tree indexes       
Hash indexes       
Full text search index       
Clustered index       
Data Caches       
Index Caches       
Compressed data       
Encrypted data (via function)        
Storage cost (space used)  Low Low N/A High Very 

Low 
Low 

Memory cost  Low Low Medium High Low High 
Bulk Insert Speed High High High Low Very 

High 
High 

Cluster database support       
Replication support       
Foreign key support       
Backup/Point-in-time recovery       
Query cache support       
Update Statistics for Data Dictionary       
 

Of course, you can use multiple storage engines in a single application; you are not limited to 
using only one storage engine in a particular database.  So, you can easily mix and match 
storage engines for the given application need.  This is often the best way to achieve optimal 
performance for truly demanding applications: use the right storage engine for the right job. 

Because you have such flexibility and choice with MySQL, you should carefully weigh your 
application’s requirements before selecting a particular storage engine for use.  For example, 
let’s say you have a new world-wide Business Intelligence (BI) application with the following 
requirements: 

• Heavy amounts of nightly data loads with a small time window for the loads to complete. 
• Other than load activity, the only other operations are read-only in nature, which implies 

no need for high levels of data concurrency as only shared locks are used for reads. 
• Application will be hosted from a web interface that requires full-text search capabilities. 
• Transaction support is not necessary 
• Data referential integrity is assured via the source transactional system.   
• Data will be replicated to various geographical sites for performance benefits. 

 

For this application, the natural choice would likely be MyISAM.   Again, however, there may be 
more detailed parts of the application that are suited for a different storage engine.  For example, 
maybe the BI application described above has both current and seldom-referenced historical data 
that must be kept online for government compliance reasons.  In that case, a mixture of the 
MyISAM and Archive storage engines would be recommended.   

Copyright © 2005, MySQL AB  Page 7  



Let’s now examine the MySQL pluggable storage engine architecture in action to see how easy it 
is to make use of it and switch between various storage engines during an application design and 
testing phase. 
 

A Quick Test Drive of the Pluggable  
Storage Engine Architecture 

Let’s take a quick test drive to show how simple it is to use MySQL’s pluggable storage engine 
architecture and see the impact different storage engines can have on performance.  All tests 
below were conducted on a Dell Red Hat Fedora Core 4 box with a Pentium 4 3.00 GHz 
processor (hyperthreading enabled) and 1GB of RAM.   
 
For example, let’s say you have a very insert-intensive/logging application that requires the 
absolute fastest response times possible when it comes to handling incoming insert activity.  
Reads of loaded data for analysis purposes is also required.   
 
You want to test out different scenarios and find the best possible solution, so you settle on a 
simple iterative test of inserting three million sample logging records into a table to test insert load 
speed. 
 
First, because you have some legacy systems on another database, you decide to first give it a 
try and see how well it performs for your simple test.  You create the necessary test table and 
procedure, and then execute your test:  
 

 
SQL> desc test_insert; 
 Name                                      Null?    Type 

--------  ----------------------------------------- -------- -----------
 C1                                                 NUMBER(38) 
 C2                                                 VARCH
C3                                                 DATE 

AR2(20) 
 
 

ATE OR REPLACE PROCEDURE P_TEST_INSERT SQL> CRE
  2  AS 

CTR NUMBER;   3      v_
EGIN   4  B

  5   
-  start loop for insert   6  -

  7   
   FOR CTR IN 1..3000000 LOOP   8   

  9   
       INSERT INTO TEST_INSERT VALUES (1, 'sample audit string',sysdate);  10   

 11   
ND LOOP;  12      E

 13       
D;  14  EN

15  /  
 
rocedure created. P

 
SQL> set timing on; 
QL> exec p_test_insert; S

 
: 00:03:03.01 Elapsed

L>   SQ
 

The legacy database doesn’t do too bad and comes in at about one million records a minute.  
You now decide to try MySQL as you’ve heard MySQL is used on many high traffic web sites for 
its ability to handle heavy volumes of insert activity.  You first decide to view all the available 

Copyright © 2005, MySQL AB  Page 8  



storage engines for MySQL 5.0 by issuing a SHOW ENGINES from the MySQL command line 
utility: 
mysql> show engines; 
+------------+---------+----------------------------------------------------------------+ 
| Engine     | Support | Comment                                                        | 
+------------+---------+----------------------------------------------------------------+ 
| MyISAM     | DEFAULT | Default engine as of MySQL 3.23 with great performance         | 
| MEMORY     | YES     | Hash based, stored in memory, useful for temporary tables      | 
| HEAP       | YES     | Alias for MEMORY                                               | 
| MERGE      | YES     | Collection of identical MyISAM tables                          | 
| MRG_MYISAM | YES     | Alias for MERGE                                                | 
| ISAM       | NO      | Obsolete storage engine, now replaced by MyISAM                | 
| MRG_ISAM   | NO      | Obsolete storage engine, now replaced by MERGE                 | 
| InnoDB     | YES     | Supports transactions, row-level locking, and foreign keys     | 
| INNOBASE   | YES     | Alias for INNODB                                               | 
| BDB        | YES     | Supports transactions and page-level locking                   | 
| BERKELEYDB | YES     | Alias for BDB                                                  | 
| NDBCLUSTER | NO      | Clustered, fault-tolerant, memory-based tables                 | 
| NDB        | NO      | Alias for NDBCLUSTER                                           | 
| EXAMPLE    | NO      | Example storage engine                                         | 
| ARCHIVE    | YES     | Archive storage engine                                         | 
| CSV        | NO      | CSV storage engine                                             | 
| FEDERATED  | YES     | Federated MySQL storage engine                                 | 
| BLACKHOLE  | YES     | /dev/null storage engine (anything you write to it disappears) | 
+------------+---------+----------------------------------------------------------------+ 

You then duplicate your test and first target the InnoDB storage engine as you’ve heard it is very 
close to legacy databases in terms of functionality.  First you validate your test object is using 
the InnoDB storage engine through the SHOW CREATE TABLE command: 
 
Welcome to the MySQL monitor.  Commands end with ; or \g. 
Your MySQL connection id is 5 to server version: 5.0.12-beta-max 
 
Type 'help;' or '\h' for help. Type '\c' to clear the buffer. 
 
mysql> use test 
atabase changed D

 
mysql> show create table insert_test\G 

* 1. row *************************** **************************
       Table: insert_test 

nsert_test` ( Create Table: CREATE TABLE `i
  `c1` int(11) default NULL, 

t NULL,   `c2` varchar(20) defaul
  `c3` date default NULL 

CHARSET=latin1 ) ENGINE=INNODB DEFAULT 
 row in set (0.00 sec) 1

 
ow you create a test stored procedure and run your test:   N

 
mysql> delimiter // 

 procedure test_insert() mysql> create
    -> begin 

ediumint;     -> declare v_ctr m
    -> set v_ctr = 0; 

le v_ctr < 3000000     -> whi
    -> do 

 values (1,'sample audit string',now());     ->     insert into insert_test
tr = v_ctr + 1;     ->     set v_c

while;     -> end 
     -> end

    -> // 
uery OK, 0 rows affected (0.05 sec) Q

 
mysql> delimiter ; 
mysql> call test_insert(); 
Query OK, 1 row affected (3 min 4.75 sec)  

Performance of MySQL using the InnoDB storage engine is very close to the legacy database.  
You then decide to try the MyISAM storage engine, which is the default storage engine that 
comes with MySQL.  Testing the MyISAM storage engine requires only one simple DDL 

Copyright © 2005, MySQL AB  Page 9  



statement to change the current InnoDB table to MyISAM (the table was also truncated 
beforehand so it would be empty for the test): 
mysql> truncate table insert_test; 
Query OK, 0 rows affected (0.05 sec) 
 
mysql> alter table insert_test engine=myisam; 
Query OK, 0 rows affected, 0 warning (0.03 sec) 
Records: 0  Duplicates: 0  Warnings: 0 
 
mysql> call test_insert(); 
Query OK, 1 row affected (1 min 49.88 sec) 
 

MyISAM does pretty well beating the legacy database and InnoDB by over 73 seconds, which 
equates to about a 40% improvement in overall performance.  While you’re pleased, you’ve 
heard about a new storage engine in MySQL 5.0 called Archive that’s supposed to be even 
more efficient for insert activity, plus it offers the added benefit of transparent data compression 
(with reported storage savings being in the neighborhood of 80% in some cases), row-level 
locking, and a consistent/snapshot read.  As these features help support your application, you 
decide to give it try.  Testing the Archive engine again requires only one simple DDL statement 
to change the current MyISAM table to Archive: 
mysql> truncate table insert_test; 
Query OK, 0 rows affected (0.05 sec) 
 
mysql> alter table insert_test engine=archive; 
Query OK, 0 rows affected, 0 warning (0.03 sec) 
Records: 0  Duplicates: 0  Warnings: 0 
 
mysql> call test_insert(); 
Query OK, 1 row affected (1 min 13.83 sec) 
 

The MySQL 5.0 Archive engine beats the MyISAM insert test by 36 seconds, giving it a 33% 
improvement over MyISAM and a whopping 60% response time improvement over the legacy 
system and InnoDB. 

0

50

100

150

200

Legacy InnoDB MyISAM Archive

Load Time (Less
is Better)

 

Beyond the above insert speed test results, you can see how easy it is to switch from within 
MySQL to what amounts to a completely new database engine – one that can offer a 
dramatically positive impact for the properly targeted application.   

Copyright © 2005, MySQL AB  Page 10  



The beautiful thing is, you don’t have to worry about any dependencies that have been 
previously defined on the former storage engine object.  Whether you have created procedures, 
triggers, views, functions, base indexes (keep in mind, different storage engines support different 
indexing strategies), etc., they all are retained after the ALTER TABLE statement and support 
the new storage engine object.  Moreover, all the same SQL, SQL functions, and management 
functions such as replication transparently work without any changes or intervention necessary 
on part of the DBA or developer.   

After your test, you want to check table scan times for your legacy system and MySQL.  Once 
again, whether a table is loaded with data or not, switching between MySQL storage engines is 
a piece of cake.  First, you perform a full table scan of the three million row legacy table with the 
following results: 
SQL> select count(*) from test_insert where c1 = 1; 
 
  COUNT(*) 
---------- 
   3000000 
 
Elapsed: 00:00:01.43 
SQL> 
 

Then you try scan times for the MySQL Archive, MyISAM, and InnoDB storage engines: 
mysql> show create table insert_test\G 
*************************** 1. row *************************** 
       Table: insert_test 
Create Table: CREATE TABLE `insert_test` ( 
  `c1` int(11) default NULL, 
  `c2` varchar(20) default NULL, 
  `c3` date default NULL 
) ENGINE=ARCHIVE DEFAULT CHARSET=latin1 
1 row in set (0.00 sec) 
 
mysql> select count(*) from insert_test where c1 = 1; 
+----------+ 
| count(*) | 
+----------+ 
|  3000000 | 
+----------+ 
 row in set (1.98 sec) 1
 
mysql> alter table insert_test engine=myisam; 
Query OK, 3000000 rows affected, 0 warning (5.86 sec) 
Records: 3000000  Duplicates: 0  Warnings: 0 
 

 count(*) from insert_test where c1 = 1; mysql> select
+----------+ 
| count(*) | 
+----------+ 
|  3000000 | 
+----------+ 
 row in set (1.86 sec) 1
 

; mysql> alter table insert_test engine=innodb
Query OK, 3000000 rows affected (35.89 sec) 
ecords: 3000000  Duplicates: 0  Warnings: 0 R
 

 count(*) from insert_test where c1 = 1; mysql> select
+----------+ 
| count(*) | 
+----------+ 
|  3000000 | 
+----------+ 
1 row in set (4.05 sec) 

Copyright © 2005, MySQL AB  Page 11  



 

In these tests, the legacy system has a slight performance advantage in the full table scan with 
MyISAM coming in at less than half a second difference, followed closely by the Archive storage 
engine ( with each scan being under two seconds), and then finally InnoDB.  Notice how easy 
and quick it is to change MySQL storage engines, even when millions of rows of data exist in a 
table. 

  

The Impact of “Unplugging” a Storage Engine 

Because of MySQL’s unique architecture, you can easily disable certain engines if you choose.  
This can actually have positive benefits as some engines carry various amounts of overhead 
when enabled even though they are not used.  “Unplugging” them can ensure that only the 
necessary amount of resources are used by the MySQL server.   

Of course, you don’t want to disable engines that carry specific feature sets that pertain to your 
particular application, but once you determine your system’s needs, you should then evaluate 
which MySQL storage engines you can “unplug” from the server. 

Some have worried that certain large-scale features such as replication, stored procedures, etc., 
are embedded in the various storage engines, and disabling or not using a certain engine will 
have far reaching implications.  As we’ve already seen in the above discussion on the various 
MySQL layers, this isn’t true. 

Let’s say you determine you don’t need the InnoDB transactional engine for your particular 
application.  Disabling InnoDB in MySQL is quite easy and involves setting only one configuration 
parameter in the MySQL configuration file:  
# The MySQL Server 
[mysqld] 
skip-innodb  
. 
. 
. 

We then stop and start the MySQL server and check if InnoDB is truly disabled. 
mysql> show engines; 
+------------+---------+----------------------------------------------------------------+ 
| Engine     | Support | Comment                                                        | 
+------------+---------+----------------------------------------------------------------+ 
| MyISAM     | DEFAULT | Default engine as of MySQL 3.23 with great performance         | 
| MEMORY     | YES     | Hash based, stored in memory, useful for temporary tables      | 
| HEAP       | YES     | Alias for MEMORY                                               | 
| MERGE      | YES     | Collection of identical MyISAM tables                          | 
| MRG_MYISAM | YES     | Alias for MERGE                                                | 
| ISAM       | NO      | Obsolete storage engine, now replaced by MyISAM                | 
| MRG_ISAM   | NO      | Obsolete storage engine, now replaced by MERGE                 | 
| InnoDB     | DISABLED| Supports transactions, row-level locking, and foreign keys     | 
| INNOBASE   | DISABLED| Alias for INNODB                                               | 
| BDB        | YES     | Supports transactions and page-level locking                   | 
| BERKELEYDB | YES     | Alias for BDB                                                  | 
| NDBCLUSTER | NO      | Clustered, fault-tolerant, memory-based tables                 | 
| NDB        | NO      | Alias for NDBCLUSTER                                           | 
| EXAMPLE    | NO      | Example storage engine                                         | 
| ARCHIVE    | YES     | Archive storage engine                                         | 
| CSV        | NO      | CSV storage engine                                             | 
| FEDERATED  | YES     | Federated MySQL storage engine                                 | 
| BLACKHOLE  | YES     | /dev/null storage engine (anything you write to it disappears) | 
+------------+---------+----------------------------------------------------------------+ 

Copyright © 2005, MySQL AB  Page 12  



Then we test a variety of MySQL support features to ensure all is well.  Let’s first test stored 
procedures: 
mysql> show create table SH_Part\G 
*************************** 1. row *************************** 
       Table: SH_Part 
Create Table: CREATE TABLE `SH_Part` ( 
  `Model` int(11) NOT NULL, 
  `ProductID` int(11) NOT NULL, 
  `Serial_Number` char(12) NOT NULL, 
  `Sub_Category` char(5) NOT NULL, 
  `Version` int(11) NOT NULL, 
  `Part_Name` char(24) NOT NULL, 
  `Comment1` char(30) NOT NULL, 
  `Price` double NOT NULL, 
  `VendorID` int(11) NOT NULL 
) ENGINE=MyISAM DEFAULT CHARSET=latin1 
1 row in set (0.00 sec) 
 
mysql> delimiter // 
mysql> create procedure testing () 
    -> begin 
    -> sele
    -> end 

ct count(*) from SH_Part; 

    -> // 
Q
 
uery OK, 0 rows affected (0.03 sec) 

mysql> delimiter ; 
esting(); mysql> call t

+----------+ 
| count(*) | 
+----------+ 
|    40000 | 
+----------+ 
 row in set (0.00 sec) 1

 
uery OK, 0 rows affected (0.00 sec) Q

 
ow, how about a trigger that encrypts data on insert: N

 
 username varchar(20), userssn varchar(15)); mysql> create table test (userid int,

uery OK, 0 rows affected (0.00 sec) Q
 
mysql> delimiter // 

r t_test_insert before insert on test mysql> create trigge
ch row     -> for ea

    -> begin 
NEW.userssn = aes_encrypt(NEW.userssn,'password');     -> set 

     -> end
    -> // 
uery OK, 0 rows affected (0.01 sec) Q

 
mysql> delimiter ; 

2123454'); mysql>  insert into test values (1, 'robin','43
uery OK, 1 row affected, 0 warning (0.01 sec) Q

 
mysql> select * from test; 
+--------+----------+-----------------+ 
| userid | username | userssn         | 
+--------+----------+-----------------+ 
|      1 | robin    | O╗¿▓A"⌡╕Qi►ô╫█v | 

--------------+ +--------+----------+---
 row in set (0.00 sec) 1

 

We could continue on with all other MySQL 5.0 features, but the above tests should suffice to 
prove beyond any doubt that 5.0 features such as stored procedures, triggers, and views are not 
dependent on InnoDB or any other particular storage engine.   

 

Copyright © 2005, MySQL AB  Page 13  



Copyright © 2005, MySQL AB  Page 14  

Creating Your Own Storage Engine 

The marriage of open source freedom and the MySQL pluggable storage engine architecture 
means that you can extend the MySQL database server to include custom storage engines that 
meet specialized application needs that aren’t 100% addressed by bundled MySQL storage 
engines.  Many MySQL customers have done this and are experiencing great success in both 
small and large enterprises.  To assist customers, MySQL ships with an Example storage engine 
that can be used to jump-start any custom storage engine project. 

The subject matter for creating a custom storage engine is beyond the scope of this paper; 
however, a nice short tutorial on how to create a custom storage engine exists on the MySQL 
developer zone web site at http://dev.mysql.com/tech-resources/articles/creating-new-storage-
engine.html.  For anyone wishing to build a MySQL custom storage engine, the above 
referenced article offers a very nice start.  MySQL and the open source community continue to 
develop new storage engines regularly both for specialized and mainstream purposes. 

  

Conclusion 

The growing popularity of MySQL 5.0 can be attributed to many factors, but one thing that is 
particularly attractive is MySQL’s pluggable storage engine architecture, which affords great 
flexibility and choice to any IT professional that is charged with designing high-powered database 
applications.  The benefits of working with a transparent data management support and services 
layer that is joined to interchangeable database storage engines is indeed unique in the database 
industry and is a combination that is hard to beat.     
 
     

About MySQL  
MySQL AB develops and supports a family of high performance, affordable database products — 
including MySQL Network, a comprehensive set of certified software and premium support 
services. The company's flagship product is MySQL, the world's most popular open source 
database, with more than 6 million active installations. Many of the world's largest organizations, 
including Yahoo!, Sabre Holdings, The Associated Press, Suzuki and NASA are realizing 
significant cost savings by using MySQL to power high-volume Web sites, business-critical 
enterprise applications and packaged software. 

With headquarters in Sweden and the United States — and operations around the world — 
MySQL AB supports both open source values and corporate customers' needs in a profitable, 
sustainable business. For more information about MySQL, please visit www.mysql.com. 
 

 


	A MySQL® White Paper��October 16, 2005
	Introduction
	Overview of the MySQL Pluggable �Storage Engine Architecture
	The Common MySQL Database Server Layer
	Comparing Different Storage Engines
	A Quick Test Drive of the Pluggable �Storage Engine Architecture
	The Impact of “Unplugging” a Storage Engine
	Creating Your Own Storage Engine
	Conclusion
	About MySQL

