
Implementing Producers/Consumers Problem
Using Aspect-Oriented Framework

Paniti Netinant1, 2 and Tzilla Elrad2

ABS

For software systems such as operating syst
more complex. This interaction may limit r
validate the design and correctness of the sy
might be inevitable to meet future requirem
design and implementation of operating sys
comprehension, reusability, extensibility and
However, in order to maximize these benefits
aspectual properties define as crosscutting
Examples of system aspectual properties ar
tolerance and etc. Aspect-Oriented Progr
separating components and aspects from t
combines them together at the implementatio
Oriented Framework (ACL) that can be used
also show how the separation of sy
Producers/Consumers problem is demonstrat
based on aspect-oriented technology as well
three-dimensional model consists of aspects, c

Keyword Adaptability, Aspect-Oriented Progr

1. Issues in the Design of Operating Sys

 The principle of separation of concerns
introduces a number of benefits, origina
understanding, extensibility, adaptability
concerns. Although these benefits hav
universally accepted methodology in or
separation of concerns. Concerns are
Operating systems consists of separa
components of the system. Systems are no
synchronization, scheduling, fault toler
crosscutting concerns as system aspectual
in the system can provide a number of
extensibility and adaptability for system
and implementation of the operating syste

1Computer Science Department
School of Science

Bangkok University
Bangkok, Thailand

netipan@iit.edu

2Concurrent Programming Research Group
Computer Science Department
Illinois Institute of Technology

Chicago, IL, U.S.A.
elrad@iit.edu

TRACT

ems, the interaction of their components becomes
eusability, adaptability, and make it difficult to
stem. As a result, re-engineering of these systems
ents. Supporting separation of concerns in the

tems can provide a number of benefits such as
 adaptability in both design and implementation.
, such a support is difficult to accomplish. System
 concerns of many components of the system.
e synchronization, scheduling, performance, fault
amming is a paradigm proposal that aims at
he early stages of the software life cycle, and
n phase. In this paper we demonstrate an Aspect-
for system software such as operating systems. We
stem aspectual properties from components.
ed using our framework. Our framework, which is
 as language and architecture independence, is a
omponents, and layers.

amming, Framework, Operating Systems, Reusability.

tems

 lies at the heart of software development as it
lly addressed by [8, 2]. These include better
 [3] of the system, and better reuse of the
e been well established, there is still no
der to guide a programmer to best achieve
divided into system and application level.
ting multiple concerns crosscutting many
torious of many crosscutting concerns such as

ance, logging, and etc. We refer to these
 properties. Supporting separation of concerns
benefits such as comprehension, reusability,
and application software. In both the design
m, the system designer has to consider how a

number of aspects can be captured, and how a separation of concerns [8] will be
addressed. Functional decomposition has so far been used as well as achieved along two
dimensions - based on the components and layering paradigm. In OOP, these
dimensions are layers and components; included methods, objects and classes. Current
programming languages and techniques have been supportive to functional
decomposition. However, languages are specific domain. Further more, operating
system design has also been aligned with traditional functional decomposition
techniques. No functional decomposition technique has yet managed to address a
complete separation of concerns. Object-Oriented Programming (OOP) seems to work
well only if the problem can be described with relatively simple interfaces among
objects. Unfortunately, this is not the case when we move from sequential programming
to concurrent and distributed programming. As distributed systems become larger, the
interaction of their components is becoming more complex. This interaction may limit
reuse, make it difficult to validate the design and correctness of operating systems, and
thus force reengineering of these systems either to meet new requirements or to improve
the system. Certain system aspectual properties of the system do not localize well. They
tend to crosscut groups of components or services (functions or methods) in the system.
System aspectual properties tangle in components or services making the system
difficult to understand and adapt. Changing needs to understand and correctly identify
both system aspectual properties and core service implementation of the component or
service. It is tightly couple design and implementation between components and system
aspectual properties.

2. System Aspectual Properties in the Operating Systems

 System aspectual properties are, for instances, mutual exclusion, scheduling,
synchronization, fault tolerance, security, load balancing, performance measurement,
testing, verifications and etc. They are all expressed in such a way that tends to cut
across groups of components or services. This tangling code of system aspectual
properties results increasing of code dependencies between components and properties
of the system. It makes their source code difficult to understand, reuse, adapt, and
maintain. One current attempt to resolve this issue is the Aspect-Oriented System
(AOS). AOS aims at language and architecture independence, where components and
system aspectual properties are separately decomposed in both design and
implementation. These properties can be reused and adapted in the application later.
Finally, components and system aspectual properties are combined together at run-time.
We distinguish between components and aspects in the design of systems. System
aspectual properties are defined as properties of the system that do not necessarily align
with the system's components or services but tend to cut across groups of functional
components, increasing either inter-dependency or intra-dependency, and thus affecting
the quality of the software. Intra-dependency defines as a system aspectual property that
crosscuts between many services (functionalities or methods) in the same components,
as illustrated in Figure 1. Inter-dependency defines as a system aspectual property that
crosscuts between many components or services, as illustrated in Figure 2.
 Although not bound to OOP, Aspect-Oriented Programming (AOP) [4, 5] is a
paradigm proposal that retains the advantages of OOP and aims at achieving a better

separation of concerns. AOP suggests that from the early stages of the software life
cycle aspects should be addressed relatively separately from the components. As a
result, aspectual decomposition manages to achieve a better design and implementation
for both operating system and application. At the implementation phase, aspectual
properties and components are combined together, forming the overall system.

as
op
wh
pr
hig
pr

3.

Or
co
on
as
co
tre

cro
co
pa
fra
co
fra
the
tog
as
pr
co
is

A1

A2

COMPONENT

Method
One

Method
Two

COMPONENT

Method
One

Method
Two

Figure 2. Inter-Dependency

A1

A2

COMPONENT

Method
One

Method
Two

Figure 1. Intra-Dependency
 In this paper we have shown system design and implementation based on system
pectual decomposition in the context of the aspectual decomposition in the design of
erating systems. Our approach is an aspect-oriented framework [6, 7]. Compared with
at has so far been able to be supported by traditional approaches, our goals are to

ovide a better design and implementation for operating systems, better flexibility,
her reusability and adaptability, as well as to provide a technique that would be

actical.

An Aspect-Oriented Framework for Operating Systems

 Our observation suggests that an Aspect-Oriented Systems (AOS) that uses Aspect-
iented Framework could support designers and programmers in cleanly separating
mponents and system aspectual properties from each other. Our framework is based
 Aspect-Oriented techniques and layered approach [1]. We argue that system
pectual properties of the operating system should be excluded from the system
mponents or services if there is a possibility to often change it, and it should not be
ated as a single monolithic aspect.
 Our proposed framework (ACL) is based on system aspectual decomposition of
sscutting concerns in operating system design and implementation. ACL framework

nsists of two frameworks: Based Layer and Application Layer Framework. In this
per, we show how producers/consumers problem can be implement in the based layer
mework. A system aspectual property is implemented in SystemAspect class, while a
mponent of the system is implemented as Component class. Alike AspectJ [9], our
mework uses PointCut, Precondition, and Advice. AspectModerator object, where
 point cut is defined, combines both system aspectual properties and components
ether at run-time. Pointcut is defined collections of join points, where system

pectual properties will be altered and executed in the program flow. Every aspectual
operty could identify and implement precondition. Precondition is defined a set of
nditions or requirements that must be hold in order to be executed an aspect. Advice
defined collections of methods for each aspectual property that should be executed at

join points. Advice could be either before or after. Before advice could be implemented
as blocking or non-blocking. Before advice executes when join point is reached, before
the component executed, and if the precondition is hold. After advice executes after the
component at the join point executes.

Every aspectual property will define advice methods. Figure 3 and 4 are illustrated the
execution model of a pointcut in the ACL framework based on inter-dependency and
intra-dependency.

4. Example of The Producers/Consumers Problem

To show and prove our approach, we present the producers-consumers example in C++
running on Window 2000.

Clien Object

Proxy

Clien Object

Ca
ll

Aspect Moderator

Switch

FactoryAspect

Synchonization

Tracing

Associate

after
before

Components

Method

Method

Figure 4. PointCut Defines Intra-dependency

Clien Object

Proxy

Clien Object

Ca
ll

Aspect Moderator

Sw
itch

FactoryAspect

Synchonization

Tracing

Associate

after
before

Components
Method

Method

Components

Method

In
te

r-O
bj

Figure 3. PointCut Defines Inter-dependency

Component

Smart &Protection
Proxy

AspectFactory

System Aspect
AbstractFactory

Aspect Moderator
Interface

System Aspect

System Aspect
Abstraction

Aspect
Moderator

Imp

Figure 5. Base Layer Framework

#ifndef Func H
#define Func_H

class FileBuffer
{
public:

FileBuffer() { in = 0; out = 0;};
int ReadFile();
int WriteFile(const int &);

protected:

DWORD getThreadId()
{ return m_ThreadId; };

DWORD m_ThreadId;
int iBuffer[20];
int in;
int out;

};

int FileBuffer::ReadFile()
{

int value;

value = iBuffer[out++];
if (out==20) out = 0;

return value;
}
int FileBuffer::WriteFile(const int &value)
{

iBuffer[in++] = value;
if (in == 20) in = 0;

return 0;
}
#endif

Figure 6.

The framework is promising the separation of system aspectual property, which is
synchronization, from the component- FileBuffer class. The pointcut is defined the join
point between FileBuffer component and Synchronization aspect in the
AspectModerator class. Adding the new system aspectual property, such as tracing
aspect, only requires join point of the pointcut between Tracing aspect and the
component in AspectModerator to be defined.

SynchronizationAspectOne::SynchronizationAspectOne()
{

---Initial values and queues---
}

bool SynchronizationAspectOne::precondition(const char * sFuncName)
{

if ((char *) sFuncName == "GET") {
return ((iBuffer > 0) && (!no_put));

}
else

if ((char *) sFuncName == "PUT") {
return ((iBuffer < 20) && (!no_put));

}
else return FALSE;

}

void SynchronizationAspectOne::before(const char * sFuncName)
{

BOOL bBlock = FALSE;

if ((char *) sFuncName == "GET") {
switch (precondition(sFuncName)) {
case FALSE:

WaitForSingleObject(cSemaphore, INFINITE);
WaitForSingleObject(Mutex, INFINITE);
break;

case TRUE:
WaitForSingleObject(Mutex, INFINITE);
break;

}
}
else if ((char *) sFuncName == "PUT") {

switch (precondition(sFuncName)) {
case FALSE:

WaitForSingleObject(pSemaphore, INFINITE);
WaitForSingleObject(Mutex, INFINITE);
break;

case TRUE:
WaitForSingleObject(Mutex, INFINITE);
no_put = TRUE;
break;

}
}

}

void SynchronizationAspectOne::after(const char * sFuncName)
{

if ((char *) sFuncName == "GET") {
iBuffer--;
ReleaseMutex(Mutex);

}
else if ((char *) sFuncName == "PUT") {

iBuffer++;
no_put = FALSE;
ReleaseSemaphore(cSemaphore, 1, NULL);
ReleaseSemaphore(pSemaphore, 1, NULL);
ReleaseMutex(Mutex);

}

Figure 6. Implementation of Synchronization Aspect
}

5. Conclusion

In this paper, we stressed the importance of the better separation of concerns within the
context of an Aspect-Oriented Frameworks. We discussed how this technique could
provide an alternative to operating system design and implementation, and show how
our approach can be achieved separation of crosscutting concerns of systems. Our work
concentrates on the decomposition of system aspectual properties crosscutting
components in systems and our goal is to achieve a better design and implementation of
operating systems to separate the crosscutting concerns. Our design framework provides
an adaptable model that allows for open languages and architectures where new aspects
and components can be easily manageable and added without invasive changes or
modifications. In application, system aspectual properties could be reused and redefined
from the system layer preventing the re-engineering of all aspects and components. The
framework approach is promising, as it seems to be able to address a large number of
system and application aspects and components. The advantage of decomposing of
functional components and aspects in every layer is to promote reusability, adaptability,
manageability, and extensibility of both components and aspects in system and
application software easier without interfering each other. In the future, the framework
will be extended and demonstrated for distributed object environment.

6. References

[1] Dijkstra, Edsger W. The Structure of THE Multiprogramming System. Communications of

ACM, Vol. 26, No. 1, pp.49-52, January 1983.
[2] Dijkstra, Edsger W. A Discipline of Programming. Englandwood Cliff, NJ: Prentice-Hall,

1976.
[3] Fayad, M. E., M. Cline. Aspect of Software Adaptabil-ity. Communications of ACM, Vol.

39, No. 10, pp.58-59, 1996.
[4] Kiczales G., J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J.

Irwin. Aspect-Oriented Programming. In M. Aksit and S. Matsuoka, editors. Proceedings
of the 11th European Conference on Object-Oriented Programming, number 1241 in
Lecture Notes in Computer Science, pp.220-242, Finland, June 9-13 1997. ECCOP’97,
Springer Verlag, Berlin.

[5] Lopes C., B. Tekinerdogan, W. de Meuter, and G. Kic-zales. Aspect-Oriented
Programming. In M. Aksit and S.Matsuoka, editors, Proceedings of the 12th European
Conference on Object-Oriented Programming EC-COP’98, Springer Verlag, 1998.

[6] Netinant P., C. A. Constantinides, T. Elrad, M. E. Fayad. Supporting Aspectual
Decomposition in the Design of Adaptable Operating Systems Using Aspect-Oriented
Frameworks. Proceedings of 3rd Workshop on Object-Orientation and Operating Systems
ECOOP-OOOWS 2000, pp.36-46, Sophia Antipolis, France, June 2000.

[7] Netinant P., C. A. Constantinides, T. Elrad, and M. E. Fayad, Supporting the Design of
Adaptable Operating Systems Using Aspect-Oriented Frameworks. Proceedings of the
International Conference of Parallel and Distributed Processing Techniques and
Applications (PDPTA), pp.271-278, Las Vegas, NV, June 2000.

[8] Parnas, D., On the Criteria to be Used in Decomposing Systems into Modules.
Communications of ACM, Vol. 15, No. 12, pp.1053-1058, December 1972.

[9] The AspectJ Primer, in WebPages at http://www.aspectj.org, The AspectJ Team.

http://www.aspectj.org/

	ABSTRACT

