
Building a Completely Adaptable Reflective System

Francisco Ortín Soler, Juan Manuel Cueva Lovelle

Campus Llamaquique, c/Calvo Sotelo s/n
33007 Oviedo (Spain)

{ortin, cueva}@pinon.ccu.uniovi.es

Abstract. Reflection is one of the main techniques used to develop adaptable sys-
tems and, currently, different kinds of reflective systems exist. Compile-time reflec-
tion systems provide the ability to customize their language but they are not adapt-
able at runtime. On the other hand, runtime reflection systems define meta-object
protocols to customize the system semantics at runtime. However, these meta-object
protocols restrict the way a system may be adapted before its execution, and they do
not permit the customization of its language.

Our system implements a non-restrictive reflection mechanism over a virtual ma-
chine, in which every feature may be adapted at runtime. No meta-object protocol is
used and, therefore, it is not needed to specify previously what may be reflected.
With our reflective system, the programming language may be also customized at
runtime.

1 Introduction

Many reflection techniques have been developed to build adaptable systems.
Compile-time reflection achieves adaptable programming languages with efficient per-
formance (e.g., openC++ [1], MPC++ [2] or openJava [3]); however, it lacks adaptability
at runtime [3]. Most of the runtime-reflection systems are based on the ability to modify
the programming language semantics while the application is running (e.g., message
passing mechanism). This adaptability is achieved by implementing a protocol as part of
the interpreter; the protocol specifies (and therefore, restricts) the way a program could be
modified at runtime.

We have designed a runtime reflective system, in which it is possible to change
every feature of the programming language at runtime without any restriction imposed by
an interpreter protocol.

Our first step was the implementation of a structural-reflective virtual machine
called nitrO Virtual Machine. Its basic object-oriented prototype-based computation
model plus its structural reflection feature, permit us to build the system with its own
language.

Codified with the nitrOVM programming language, we have developed a lan-
guage processor tool in order to construct generic interpreters. Specifying lexical, syntac-
tic and semantic rules of a programming language, an interpreter would be generated. At
runtime, every program will be able to customize its own language accessing its language
specification, nevertheless which language has been used.

The final system achieves complete adaptability at runtime, it may be used with
any programming language, and no protocol restrictions exist at runtime.

The rest of this paper is structured as follows. In the next section we briefly de-
scribe reflection classifications, its advantages and drawbacks. In section 3 we present the
nitrO Virtual Machine. The language processor tool and its benefits are described in sec-
tions 4 and 5. Then we comment related work, and our conclusions are shown on section
7.

2 Categorizing Reflection

We identify two main criteria to categorize reflective systems. These criteria are
when reflection takes place and what may be reflected. If we take what may be reflected
as a criterion, we can distinguish:

• Introspection: The system structure can be accessed but not modified. If we take
Java as an example, with its java.lang.reflect package, we can get informa-
tion about classes, objets, methods and fields at runtime [4].

• Structural Reflection: The system structure can be dynamically modified. An ex-
ample of this kind of reflection is the addition of object’s fields.

• Computational (Behavioral) Reflection: The system semantics (behavior) can be
modified. In the standard Java API v.1.3, the class java.lang.reflect.Proxy
has been added [5]; it can be used to modify the dispatching method mechanism,
being handled by a proxy object.

• A reflective programming language can be capable of changing itself, i.e. changing
its own lexical or syntactical specification; that is what we call Linguistic Reflec-
tion. As an example, with OpenJava reflective language, the own language can be
enhanced to be adapted to specific design patterns [6].

Taking when reflection takes place as the classification criterion, we have:

• Compile-time Reflection: The system customization takes place at compile-time
(e.g., OpenJava [3]). The benefits of this system are runtime performance and the
ability to adapt its own language (i.e., linguistic reflection).

• Runtime Reflection: The system may be adapted at runtime, once it has been cre-
ated and run (e.g., metaXa, formerly called MetaJava [7]). These systems have
greater adaptability but performance penalties. Computational reflective systems
are commonly implemented by using runtime reflection by they lack linguistic re-
flection capabilities.

Our system, nitrO, achieves computational and linguistic reflection at runtime.
Moreover, our reflection technique implementation is more flexible than common run-
time reflective systems –as we will explain in the next paragraph. Performance drawbacks
are not being considered in our first prototypes.

2.1 Meta-object Protocols Restrictions

Most runtime reflective systems are based on Meta-Object Protocols (MOPs); a
MOP specifies the implementation of a reflective object-model [8]. An application is
implemented by means of a programming language (base level). A program’s meta-level
is the implementation of the computational object model supported by the programming
language. Therefore, a MOP specifies the way a base-level application may access its
meta-level in order to adapt its behavior at runtime.

The way a MOP is defined restricts the amount of features that may be custom-
ized. If we do not consider a system feature to be adaptable by the MOP, this program
attribute will not be able to be customized once the application will be running.

nitrO runtime reflection mechanism is based on a meta-language specification.
The way the base level access to the meta-level (reification) is not defined by a MOP; it is
specified by another language (meta-language). The meta-language is capable to adapt
the structure, behavior and linguistic features of the base level system at runtime. Its de-
sign will be specified in section 4.

3 nitrO Virtual Machine

Achieving computational reflection by an interpreter is easier than generating na-
tive code to a specific platform (e.g., the difference between the java.lang.reflect
Java package [4] and the RTTI C++ mechanism [9]). In the case of interpretation, the
program and the own interpreter both run on the operating system process, achieving
interoperability between them in a simpler way. Common interpreted computational-
reflective programming language scenarios are:

• An interpreter of a language capable to modify its own semantics (e.g., CLOS [8]).
• A virtual machine that executes portable code over different platforms and is capa-

ble to change its own behavior (e.g. metaXa [7]).

Both scenarios are based on the use of meta-object protocols and, as we have
mentioned on the section above, they have certain limitations.

The use of a virtual machine has many advantages in order to build a flexible
computation pla tform:

• Portable code to any platform.
• Programming language independence (not designed to be used by just one lan-

guage).
• Unique object and computation model defined by the virtual machine, to be used in

the whole system.
• Easy development of distributed applications over different virtual machines.
• Code mobility and distribution over a network.

Therefore, we have implemented our system over a virtual machine called nitrO
Virtual Machine (nitrOVM). These are its main features:

Prototype-based object model: Our basic abstraction is the object. We use a prototype-
based object model in which classes do not exist.

• The virtual machine uses a simpler object model eliminating the class abstraction.
Trait objects may be used to describe behavior of a group of objects [10].

• There is no representation loss by using a prototype-based object model instead
of using a class-based model [11].

• Different object-oriented languages can be easily translated into a prototype-
based object-oriented language [12].

• In a class-based model, in order to change one object’s structure, the whole class
must be modified, but what happen to other class’ objects? MetaXa creates a new
class, called shadow class, just for this object, making the object model more
complex and difficult to implement [13]. In a prototype-based model this is easily
achieve by means of object cloning and dynamic inheritance (delegation) [10].

Structural reflection. Main features:

• An object is defined as a collection of references to other objects.
• There are two primitive objects: the nil object and string objects.
• Every object offers structural-reflective operations (delete, insert and iteration of

every element of the reference collection). A dynamic inheritance mechanism ex-
ists and the root object is nil –the one who offers the structural-reflective opera-
tions mentioned.

• Behavior is expressed by means of string objects; these may be dynamically cre-
ated, manipulated and evaluated (reflected) with the () operator. A method is de-
fined as an evaluable string that is a member of the object.

Extensibility: The virtual machine computational model has been designed to be very
reduced. By means of structural reflection, a programming environment has been devel-
oped over the basic virtual machine language (thus, it is platform-independent and port-
able code). This programming environment achieves a higher abstraction level: adaptable
persistence, distribution and thread scheduling systems have been developed in this pro-
gramming environment.

Applications interoperability: Just one virtual machine exists for every physical com-
puter. Opposite to Java Virtual Machine [14], different applications in the same physical
computer use the same nitrOVM. The main benefit is that every application is capable to
access every object in the virtual machine (not just its own objects) by using structural
reflection.

More information related to the virtual machine design and implementation as
well as its programming language and project status may be found in our web site [15].

4 Non-restrictive Computational Reflection System

Most common compiler and interpreter construction tools (from classic lex and
yacc to modern JavaCC [16] and AntLR [17]) have the same development process,
shown in figure 1:

Source Code to
be Processed

Language
Specification

C, C++ or Java
Language
Processor

Final Compiler
or Interpreter
Application

Compiler
Construction

tool

C, C++ or Java
Compiler

Language Processor Construction Process

Source Code
Compilation or
Interpretation

Language Processor

1

2 34

Fig. 1. Common compiler or interpreter development process.

1. The language specification is detailed using the tool’s language.
2. The language specification is preprocessed and a C, C++ or Java application is

generated.
3. Once the application has been generated, it is compiled to obtain the language

processor.
4. With the compiler or interpreter created, we can process source code of the de-

sired language.

If we want a language feature to be modified, the whole process has to be re-
peated. Therefore, by using this scheme, no dynamic modification may be done to the
language being processed.

"Generic Interpreter" [18] interpreter construction tool is an exception: language
specification may be dynamically changed. However, the changes must be codi-
fied and compiled previously to the interpreter execution.

Our language processor is defined as a Structural-Reflective Generic Interpreter
(SRGI). Lexical and syntactic specifications are represented by objects meaning free-
context grammar rules [19]. The object represents the left side of the rule and the right
side is represented by the member collection the object has. Rules may be created, ana-
lyzed and modified dynamically by using virtual machine structural reflection.

<Statements> → <Statement> ; <Statements>

name: “statements”
0 :
1 :
2 :

name: “statement”
...

name: “;”

Free-Context Grammar Rule:

Object-Oriented Representation:

Fig. 2. Object's structure representing a free-context grammar rule.

Semantic specification associated to syntactic rules is described as string objects.
These can be easily evaluated by the virtual machine, using the () operator.

The SRGI Engine has been designed to use a backtracking algorithm. Once the
language to be interpreted is specified, the SRGI Engine starts processing it following a
top-down scheme [19]. The result is a two-level interpreter tower [20]: first the virtual
machine and second the language being interpreted by the SRGI Engine.

Lexical Rules:

Syntactic Rules:

Semantic Rules:

L Language Specification

Structural-Reflective
Generic-Interpreter

Engine

Reads

Virtual Machine

Interprets

Program written
in L Language

Interprets
Second
Level of

Interpretation

First
Level of

Interpretation

Fig. 3. Structure of the two levels in generic interpretation.

The SRGI can interpret any language –we will generically call it L– based on its
specification, and it would be always capable to interpret one language without specifying
it: the nitrOVM language. Using the reserved word reflect, nitrOVM code may be

written. The SRGI Engine takes the code as a string object and evaluates it with the ()
operator. Thus, the first level (nitrOVM), instead of the second (SRGI), evaluates the
code written inside the reflect statement, so one level of interpretation has been
jumped (shown in figure 4).

class Car { // L (C++) Code
 const char *color;
 unsigned year;
public:
 reify “p←System:get(<parserCpp>);
 p:add(...);”

 unsigned getYear() const;
};

< // Statement Retrieval
 s←locals:get(<0>);
 // Evaluation of s
 nil:s(); >

1: L (C++) code is
being interpreted

2: Code to
be reified

3: The interpreter takes
the code and passes it to
the machine

4: The machine
modifies the language
specification

5: Code continues
evaluating with
new semantics

Interpreter
Interprets

Virtual Machine

Interprets

Second Level of
Interpretation

First Level of
Interpretation

Fig. 4. Achieving a jump in the two-level tower of interpreters.

If the reflected nitrOVM code modifies the L code specification by means of ni-
troVM structural reflection, what we achieve is a non-restrictive computational reflection
mechanism. With this scheme, the nitrOVM language becomes a meta-language to spec-
ify, and dynamically modify, the language that would be interpreting; no previous MOP
specifying what may be changed has to be defined.

5 System Benefits

Our flexible platform offers the following advantages:

• The system is platform independent: it has been developed over the virtual ma-
chine language.

• The system may be programmed by means of any programming language: the
SRGI can interpret any language; different language specifications can be
saved by the programming environment persistence system.

• The whole system is adaptable at runtime: any feature of the system may be
changed by means of the reflect statement, and there are no previous re-
strictions imposed by any protocol.

• Any feature may be reflected: introspection, structural reflection, computa-
tional reflection and “linguistic” reflection are achieved.

• Application interoperability: any program run by the nitrOVM may access, and
reflectively modify, any other program being executed by the same virtual ma-
chine. Therefore, there is no need to stop an application if we want to adapt it
at runtime: another application may be used to adapt the former.

The result is a universal computation platform that may be used to develop or test
any reflective or adaptable environment (e.g., fault-tolerant systems, adaptable operating
systems, knowledge base systems, etc.) without the necessity to modify the virtual ma-
chine source code.

The main disadvantage is performance penalties. Future work will be studying
and implementing optimization techniques as just in time compilation or native code gen-
eration.

6 Related Work

One of the most advanced computational-reflection systems based on the deve l-
opment of a virtual machine is MetaXa (formerly called MetaJava) [7]. It is based on a
runtime meta-object protocol over a modification of the Java virtual machine [14]. In our
research group, with have also defined a MOP over an object-oriented abstract machine
(our first prototype) in order to build an integral object-oriented system [21]. We realized
that the abstract machine should be modified every time a new feature would be added to
our MOP -as we have mentioned in section 2.1; therefore, we discarded MOP-based sys-
tems.

Another way to develop a language-independent flexible platform is designing
the virtual machine in a modular way; this technique has been used to build the "Virtual
Virtual Machine" [22]. Different parts of a platform are selected to make them adaptable
(e.g., thread scheduling or security policies), and many languages can be processed by
this platform. However, only those limited features selected in the platform architecture
would be adapted at runtime.

7 Conclusions

Most systems that offer computational reflection at runtime are based on the use
of a meta-object protocol (MOP). MOPs give a system the ability to customize at run-
time, but what may be adapted must be previously specified by the protocol. Different
approaches modifying the MOP are commonly needed to make the system adaptable to a
new characteristic. Moreover, this kind of system lacks the ability to modify its own lan-
guage ("linguistic" reflection) and the cross-customization between different applications
cannot be achieved either.

Our computation system’s root is an object-oriented prototype-based virtual ma-
chine endowed with structural reflection. Over this virtual machine, we have designed a
structural-based language specification that represents lexical, syntactic and semantic
free-context grammar rules. An application (engine) executes the language rules follow-
ing a top-down scheme, achieving any programming language interpretation.

The interpreter engine is capable to obtain virtual machine code (using the re-
flect statement) and make it evaluate by the virtual machine. Modifying the language
specification implies computational and “linguistic” reflection without any restriction. A

real meta-level jump is obtained and no changes to the virtual machine implementation
have to be done.

The final system is a computation platform that might be programmed by using
any language, it is completely adaptable, and it has a great level of application
interoperability; therefore, it can be used to create or test highly adaptable environments.

References

1 Shigeru Chiba. “A Metaobject Protocol for C++”. Proceedings of ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications. No. 10 in SIG-
PLAN Notices vol. 30, ACM, 1995.

2 Y. Ishikawa. “Meta-Level Architecture for Extendable C++”. Technical Report TR-94024.
Tsukuba Research Center. Japan, 1995.

3 Shigeru Chiba and Tatsubori Michiaki. “A Yet Another java.lang.Class”. ECOOP’98
Workshop on Reflective Object Oriented Programming and Systems. Brussels, Belgium.
July, 1998.

4 “The Java Core Reflection API and Specification”. Sun Microsystems Computer Corpo-
ration. January, 1997.

5 “Dynamic Proxy Classes”. Sun Microsystems Computer Corporation. 1997.
6 Michiake Tatsubori and Shigeru Chiba. “Programming Support of Design Patterns with

Compile-time Reflection”. OOPSLA’98 Workshop on Reflective Programming”. Vancou-
ver (Canada). October, 1998.

7 Jügen Kleinöder and Michael Golm. “MetaJava: An Efficient Run-Time Meta Architec-
ture for Java”. International Workshop on Object Orientation in Operating Systems,
IWOOOS’96. Seattle, Washington. October, 1996.

8 Gregor Kiczales, J. Des Rivieres and D. G. Bobrow. “The Art of Metaobject Protocol”.
MIT Press, 1992.

9 Bjarne Stroustrup. “The C++ Programming Language”. Addison Wesley Editorial, 3rd

Edition. October, 1998.
10 David Ungar and R. B. Smith. “SELF: The Power of Simplicity”. Object Oriented Pro-

gramming, Systems, Languages and Applications OOPSLA. 1987.
11 David Ungar, Craig Chambers, Bay-Wey Chang and Urs Hölzle. “Organizing Programs

without Classes”. Lisp and Symbolic Computation. 1991.
12 Mario Wolczko, Ole Agesen and Davied Ungar. “Towards a Universal Implementation

Substrate for Object-Oriented Languages”. Sun Microsystems Laboratories.December,
1996.

13 Michael Golm and Jügen Kleinöder. “MetaJava – A Platform for Adaptable Operating-
Systems Mechanisms” ECOOP Workshop on Object-Orientation and Operating Systems.
Jyväskylä , Finland. June, 1997.

14 “The Java Virtual Machine Specification”. Release 1.0 Beta. Draft. Sun Microsystems
Computer Corporation. August, 1995.

15 http://www.di.uniovi.es/reflection/lab/. "Computational Reflection Research Group". Uni-
versity of Oviedo. Spain.

16 "Java Compiler Compiler (JavaCC) -The Java Parser Generator". Sun Microsystems
Computer Corporation. 2000.

17 Terence Parr. Antlr Reference Manual. Magelang Institute. January 2000.

18 Craig A. Rich "Generic Interpreter 0.9" http://www.csupomona.edu/~carich/gi/. 2000.
19 Alfred V. Aho, Ravi Sheti and Jeffrey D. Ullman. "Compilers: Principles, Techniques and

Tools". Addison-Wesley. November, 1985.
20 B.C. Smith. “Reflection and Semantics in Procedural Language”. MIT-LCS-TR-272.

Massachusetts Institute of Technology. 1982.
21 Lourdes Tajes, Fernando Álvarez, María Ángeles Díaz, Juan Manuel Cueva. "Reflection

for Extending OO Systems with Distribution Capabilities". Simposio Español de Infor-
mática Distribuida SEID Ourense (Spain). September, 2000.

22 Bertil Folliot, Ian Piumarta and Fabio Riccardi. “A Dynamically Configurable, Multi-
Language Execution Platform”. 8th ACM SIGOPS European Workshop. September, 1998.

