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Abstract: The detection of insulation failures in buildings could potentially con-
serve energy supplies and improve future designs. Improvements to thermal insula-
tion in buildings include the development of models to assess fabric gain -heat flux
through exterior walls in the building- and heating processes. Thermal insulation
standards are now contractual obligations in new buildings, and the energy effi-
ciency of buildings constructed prior to these regulations has yet to be determined.
The main assumption is that it will be based on heat flux and conductivity mea-
surement. Diagnostic systems to detect thermal insulation failures should recognize
anomalous situations in a building that relate to insulation, heating and ventilation.
This highly relevant issue in the construction sector today is approached through a
novel intelligent procedure that can be programmed according to local building and
heating system regulations and the specific features of a given climate zone. It is
based on the following phases. Firstly, the dynamic thermal performance of differ-
ent variables is specifically modeled. Secondly, an exploratory projection pursuit
method called Cooperative Maximum-Likelihood Hebbian Learning extracts the
relevant features. Finally, a supervised neural model and identification techniques
constitute the model for the diagnosis of thermal insulation failures in building
due to the heat flux through exterior walls, using relevant features of the data set.
The reliability of the proposed method is validated with real data sets from several
Spanish cities in winter time.
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1. Introduction

The diagnostic system for identification of thermal insulation failures (TIF) could
significantly increase building energy efficiency and substantially contribute to re-
ductions in energy consumption and in the carbon footprints of domestic heating
systems. Conventional methods can be greatly improved through the application
of learning techniques to detect TIF when a building is in operation through a heat
flux model - heat flux through exterior walls in a building-.

Assessing thermal insulation in new buildings is a well-known problem that has
not as yet been fully resolved [21, 50]. Several different techniques are proposed in
the literature. In [23], thermal insulation leaks are found by measuring thermal re-
sistance and infrared (IR) thermography, while in [2], [37] only IR thermography is
used to locate thermal insulation failures. As the main drawback of using IR ther-
mography is the high cost of equipment, alternatives using different technologies
are always of interest.

Nevertheless, predicting the thermal dynamics of a building in operation is a
complex task. The dynamic thermal performance of a building has mainly been
used to estimate its power requirements. As an example, the difficulties of obtaining
a black-box model for a generic building are documented in [47]. Furthermore, [11]
cites examples of the errors associated with different kinds of techniques while
providing possible solutions. Local building regulations need to be analyzed in the
determination of TIF in order to profile the premises and the legal specifications
for their physical parameters.

This interdisciplinary research represents a step forward in the development of
techniques to improve dynamic thermal efficiency in existing buildings through a
diagnostic system -modeling of heat flux- in the building. Although this may at
first appear simple, noise due to occupancy and lighting profiles can introduce dis-
tortions and complicate detection. A novel three-step soft computing procedure for
testing and validating the model -used in the diagnostic system- is proposed: firstly,
the dynamic thermal behavior of a specific configuration is calculated using HTB2
software [29]. The outcome of the HTB2 should then be post-processed to obtain
a suitable dataset. Subsequently, the dataset is analyzed using an exploratory pro-
jection pursuit (EPP) method [9], [16] called Cooperative Maximum-Likelihood
Hebbian Learning (CMLHL) [6, 7], to extract the dataset structure and key re-
lationships between the variables. Finally, a dynamic ANN model is trained and
validated with them, which is used for fault diagnosis. This diagnosis dynamic
model is responsible for estimating the heat flux through the exterior walls in the
building and the results are then compared with the real heat flux. Differences
between the estimated and the real measures -above a reference value- are detected
which indicate the TIF.

Soft Computing represents a set of several technologies that aim to solve inexact
problems [51]. It investigates, simulates, and analyzes very complex issues and
phenomena in order to solve real-world problems [40]. Soft Computing has been
successfully applied in feature selection, and plenty of algorithms are reported in
the literature [4], [5], Principal Component Analysis (PCA) among others [30]. In
this study, an extension of a neural PCA version [17] and other extensions are
used to select the most relevant input features in a data set as well as to study its
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internal structure.
This paper is organized as follows. Following this introduction, Section 2 de-

scribes the problem. Section 3 introduces the unsupervised connectionist tech-
niques for analyzing the datasets in order to extract their relevant internal struc-
tures. Section 4 deals with classical identification techniques used in the diagnostic
system –modeling system-. Section 5 describes a real case study in detail and the
multi-step procedure. Section 6 describes the experiments and results obtained and
finally, the conclusions are set out and comments are made on future lines of work.

2. Spanish regulations and the problem descrip-
tion

Several national regulations on buildings and their construction were approved in
Spain, 2007. The minimum pre-requisites for energy efficiency with which buildings
must comply are given in the European Directive 2002/91/CE [13]. Project speci-
fications, construction conditions and the basic requirements in Spain are specified
in the CTE (Código Técnico de Edificación [Building Regulations]) [36]. One of
the basic requirements is document HE1 that specifies the energy consumption
limitation in buildings [36] and its revised updates.

Local regulations will be analyzed to extract the minimum requirements and
parameters for heating systems and thermal comfort, and the certification proce-
dure for energy efficiency. In Spain, energy efficiency is calculated as the ratio
of combustible consumption needed to satisfy the energy demand of the building.
Energy efficiency in the case of buildings constructed before the CTE approval is
still an open issue, and the assumption is that it will be based on heat flux and
conductivity measurement.

In these conditions, it could be interesting to model the heat flux in order to
detect the isolation failures in buildings in operation. It is interesting that such
model could distinguish the climate zone to analyze, the specific building geometry
and orientation, etc. For this modeling task, a novel procedure is proposed. This
procedure includes several steps: the thermal dynamics simulation, the feature se-
lection, the heat flux identification using neural networks models and the detection
of failures.

3. Analysis of the Internal Structure of the data
set

In general, to obtain an efficient diagnostic system it is necessary to model it with
a good dataset. Often, the systems are modeled using all the variables collected.
This is not a proper way as some of them influence in the dynamic of the system and
its inclusion only adds complexity to the model process degrading the effectiveness
of the final model. For this reason, in this research, it is proposed a previous
analysis of the dataset using statistical methods and neural models, as Principal
Component Analysis (PCA) [27, 35] and the Cooperative Maximum Likelihood
Hebbian Learning model (CMHL) [6, 8], respectively, in order to know if the dataset
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is informative enough and to extract the most relevant variables in order to model
it using only the main variables.

3.1 Component Analysis

Principal Component Analysis (PCA) originated in work by Pearson [35], and in-
dependently by Hotelling [27] describing multivariate data set variations in terms
of uncorrelated variables, each of which is a linear combination of the original vari-
ables. Its main goal is to derive new variables, in decreasing order of importance,
which are linear combinations of the original variables and are uncorrelated with
each other.

3.2 A Neural Implementation of Exploratory Projection Pur-
suit

The standard statistical method of EPP [9, 16], provides a linear projection of a
data set, but it projects the data onto a set of basic vectors which best reveal the
interesting structure in data; interestingness is usually defined in terms of how far
the distribution is from the Gaussian distribution [42].

One neural implementation of EPP is Maximum Likelihood Hebbian Learning
(MLHL) [9, 18]. It identifies interestingness by maximizing the probability of the
residuals under specific probability density functions that are non-Gaussian.

An extended version of this model is the Cooperative Maximum Likelihood
Hebbian Learning (CMLHL) [6] model. CMLHL is based on MLHL [9, 18] adding
lateral connections [6, 8], which have been derived from the Rectified Gaussian
Distribution [42]. The resultant net can find the independent factors of a data set
but does so in a way that captures some type of global ordering in the data set.

Considering an N-dimensional input vector (x), and an M-dimensional output
vector (y), with Wij being the weight (linking input i to output j), then CMLHL
can be expressed [8, 18] as:

1. Feed-forward step:

yi =

N∑
j=1

Wijxj , ∀i (1)

2. Lateral activation passing:

yi(t+ 1) = [yi(t) + τ(b−Ay)]+ (2)

3. Feedback step:

ej = xj −
M∑
i=1

Wijyi,∀j (3)

4. Weight change:

∆Wij = η.yi.sign(ej)|ej |p−1 (4)
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Where: η is the learning rate, [ ]+ is necessary to ensure that the y-values
remain within the positive quadrant, τ is the ”strength” of the lateral connections,
b the bias parameter, p a parameter related to the energy function [9, 8, 18] and
A the symmetric matrix used to modify the response to the data [6]. The effect of
this matrix is based on the relation between the distances separating the output
neurons.

4. Diagnostic System Using Identification Algo-
rithms

Among the different methods for the detection and diagnosis of faults are: checking
limits or thresholds, physical redundancy, deterministic methods -mathematical
models-, methods based on knowledge and so on. Some examples are found in the
literature [1, 28, 44, 45, 48].

In this context, System identification [31] is concerned with obtaining a model
that best suits a given process behavior [31]. Firstly, several measurements are
sampled from the process. The data gathered is then analyzed to obtain a model
that estimates the desired process behavior. The model is then used to optimize the
process output. Finally, the process is modified in order to enhance its outcome.
If more adjustments are needed the cycle is repeated.

The system identification procedure includes the experiment design, the data
visualization and analysis, the model learning and testing, and the model validation
[31, 32, 33, 38, 39, 46, 49].

The experimental design determines the signals to be measured, the sensors to
be used and their placement, the sample rate, and the generation of the data sets.
Expertise is required as the experimental design decisions are problem dependant.
Moreover, it is not always feasible in real world applications to gather data from
the most relevant variables and, in most cases, the data is limited by the locations
of the sensors that are installed. In other cases, portable instrumentation can be
employed to measure some extra process variables. Nevertheless, the human-expert
who designs the experiment always has a priori theory and knowledge about the
relationships between the variables.

When the data set is gathered, several tasks should be carried out: eliminating
missing data and outliers [3, 12, 14, 19, 20] scaling and normalizing the data [43],
etc. Whenever the data gathering is expensive and little data is available, it is
usual to partition the data generating several train and test data sets. Standardized
partitioning schemas are the k-fold cross validation and the 5x2 cross validation.
This is all included in the data pre-processing and analysis step.

The selection of the model structure, their training and validation represents
the core of the system identification. The classic theory includes a vast amount
of model structures and training methods [31, 41]. Well-known functions are also
used to rank the goodness of the models. These functions are used as the criteria
in the optimization problem of training the model. In the next subsection several
criteria functions are introduced and the use of Artificial Neural Networks in system
identification is outlined.
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4.1 The system identification criteria

According to [31], several measures have been proposed in the literature to evaluate
the goodness of a model:

• The representation percentage of the estimated model in relation to the true
system, that is, the numeric value of the normalized mean error. There are
several typical estimation models used in the literature such as the one-step
ahead prediction error (FIT1), the ten-step ahead prediction error (FIT10)
and the simulation error (FIT). Equations (5) to (10) are used to calculate
the FIT1 and FIT indexes. The FIT10 index can be derived in a similar
manner as FIT1. In these equations, u(t) is the input, y(t) is the output,
ŷ1(t|m) is the one-step ahead prediction, ŷ∞(t|m) is the simulated output of
the model, Ĝ(q) is the estimated transfer function from u(t) to y(t), Ĥ(q) is
the estimated transfer function from e(t) to y(t) and q is the forward shift
operator. The term e(t) represents the white noise signal and it is included
in the modeling errors. The term e(t) is associated with a series of random
variables of mean null value and variance λ.

ŷ1(t|m) = Ĥ−1(q)Ĝ(q)u(t) + (1− Ĥ−1(q))y(t) (5)

J1(m) =
1

N

N∑
t=1

|y(t)− ŷ1(t|m)|2 (6)

FIT1(%) = (1−
√

J1(m)√
1
N

∑N
t=1 |y(t)|2

)100 (7)

ŷ∞(t|m) = Ĝ(q)u(t) (8)

J∞(m) =
1

N

N∑
t=1

|y(t)− ŷ(t|m)|2 (9)

FIT (%) = (1−
√
J∞(m)√

1
N

∑N
t=1 |y(t)|2

)100 (10)

• The loss or error function (V): the numeric value of the mean square error
(MSE) that is calculated from the estimation data set by means of Eq. (6).

• The generalization error value: the numeric value of the normalized sum
of squared errors (NSSE) that is computed with the validation data set by
means of Eq. (6).

• The average generalization error value: the numeric value of the final predic-
tion error (FPE), which is a criterion that is calculated from the estimation
data set. Eq. (11) is used to calculated the FPE value, where dM is the
dimension of θ -the estimated parametrical vector- and N is the number of
samples of the estimation data set.

FPE = Jp(m) ≈ J1(m) +
J1(m)

1− (dM

N )

2dM
N

(11)

6



author: title

• The graphical representations of true system output and both the one-step
ahead prediction ŷ1(t|m) , the ten-step ahead prediction ŷ10(t|m) , and the
model simulation ŷ∞(t|m).

4.2 The ANN in the identification process

The use of ANN in the process of identification requires the selection of several pa-
rameters: the number of layers, the number of neurons per layer and the activation
functions. The methods by which the parameters are set up are fully documented
in the literature. It was found that ANN with two layers using non-linear functions
in the hidden layer are universal approximators or predictors [10, 26].

The number of neurons per layer is also a relevant design parameter, and it
should be analyzed in order to avoid over fitting [22, 24]. Each algorithm in-
troduces some restrictions in the weight matrix. The most widely used training
algorithms in system identification are the Lenvenberg-Marquardt method [15], the
recursive Gauss-Newton method [31] and the batch and recursive versions of the
back-propagation algorithm [25].

When using ANN, the purpose of an identification process is to determine the
weight matrix based on the observations Zt , so as to obtain the relationships
between the nodes in the network. The weight matrix is usually referred as w, W
or θ.

The supervised learning algorithm is then applied to find the estimator θ, so
as to obtain the identification criterion [40]. Several well-known model structures
are used when merging system identification with ANN. If the AutoRegressive
with eXternal input model (ARX) is used as the regression vector, the model
structure is called a Neural Network for ARX model (NNARX). Likewise, the
Neural Network for Finite Impulse Response model (NNFIR), the Neural Network
for Autoregressive Moving Average with eXternal input model (NNARMAX), and
the Neural Network for Output Error model (NNOE), are also extensively used
[40]. In the same way, it is possible to use an estimator for the one-step ahead
prediction of the output ŷ1(t|m) , where the polynomial degree values -na, nb, nc,
nd, nf and nk- are given as parameters.

5. A multi-step method for modeling heat flux in
buildings

The novel three-step Soft computing method proposed to diagnose insulation fail-
ures, for the detection of heat flux through exterior walls in the building incor-
porates a diagnostic system that integrates different methodologies, to obtain a
parametric model which performs the diagnosis.

Firstly, the building is parameterized and its dynamic thermal performance in
normal operation is obtained by means of simulation. Then, the data gathered
is processed using CMLHL as a dimensionality reduction technique to choose the
most relevant features in order to determine the heat flux. The second step outcome
is a data set, which is finally used to train and validate the heat flux nonparametric
model that was used in the diagnostic system.
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Fig. 1 shows the diagnostic system in a global manner. It indicates how training
data are acquired from a theoretical model -HTB2-, which incorporates all the
dynamic characteristics of thermal system. After data are preprocessed, using
feature selection techniques and attributes. A dynamic ANN model is trained
and validated with them, which is used for fault diagnosis. The actual data -real
data set- of the building’s thermal system will be evaluated in the model that is
generated by assessing two indexes: the representation percentage of the estimated
output in relation to the true output (FIT1), Eq. (7) and the numeric value of the
error, which is the difference between the responses of the heat flux -y1(t)- in the
building and the estimated heat flux -ŷ1(t|m)- in the diagnostic system.

When the error exceeds a certain value -threshold value- or the FIT1 is less
than a reference value, then the diagnostic system determines a failure.

Fig. 1 The diagnostic system: the data are obtained from a theoretical model -
through HTB2-. They are then processed and a better data set is found. The data
set is used to train the dynamic ANN model. Actual data - from a thermal system
in operation- will be evaluated on the model, identifying errors that will determine
the failure.

5.1 Thermal dynamics data gathering by means of simula-
tion

The following variables and data sets should be gathered in order to simulate
the thermal behavior of a building: building topology; climate zone according
to the specific regulations; building materials that comply with local regulations
for the chosen climate zone; meteorological data for the climate zone and the
simulated time period: such as solar radiation, outdoor temperature, wind speed,
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etc., and realistic profiles for heating, lighting, small power devices, occupancy and
ventilation.

In this study, the system is applied is Spain where the regulations establish
five winter/summer zones, from E1 (a more severe climate zone) to A3 (a gentler
climate zone).

Having defined and/or gathered these data sets, then the chosen simulation tool
is applied to obtain the output data. In our case, the simulation software used is
HTB2 [29]. The typical values that each variable could take for an E winter climate
zone of maximum severity in Spain -i.e. the cities of Leon, Burgos or Soria among
others- are shown in Table I.

Variable (Units) Range of
values

Transmittance level (W/m2K)

Fabric gain -heat flux-
(w), y1(t).

0 to -7,100 -External cavity wall: 0.54
-Double glazing: 2.90
-Floor/ceiling: 1.96
-Party wall between buildings: 0.96
-Others party wall: 1.05
-Internal partition: 2.57

Heater gain (w), u1(t). 0 to 4,500
Occasional gain small
power, occupancy and
lighting gain- (w), u2(t).

0 to 5,500

Ventilation gain (w),
u3(t).

0 to -5,500

Exterior air temperature
in February (◦C ), u4(t).

1 to 7

Air temperature of the
house (◦C), u5(t).

14 to 24

Tab. I Typical values of each variable in an E winter climate zone city in Spain.

5.2 Selection of the relevant features

As detailed in Section 2, PCA (Fig. 2.a) and CMLHL (Fig. 2.b), which were
both applied to this real-life problem, are instrumental in identifying the internal
structure of the data. In this procedure, the data set gathered in the previous step
is analyzed. The objective is to find the relationships between the input variables
with respect to the heat flux. CMLHL (Fig. 2.b) allows to detect the relations of
dependence and to choose the most relevant features. The outcome of this step is a
new data set with the features for which a relationship with the heat flux is found.

5.3 System identification applied to model normal building
operation

Once the relevant variables and their transformations have been extracted from the
thermal dynamics data, then a model to fit the normal building operation should
be obtained in order to identify bias in the heat flux through exterior walls in
the building. The heating process exhibits nonlinear behavior between output and
inputs, due to which the linear modeling techniques do not behave properly except
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in the linear behavior zones of the process. Consequently, the heating process has
been modeled using soft computing techniques, specifically an ANN.

The different learning methods used in this study were implemented in Matlab©
[34]. The experiment followed the identification procedure detailed in Section 4:
the model structures were analyzed in order to obtain the models that best suited
the dataset. The Akaike Information Criterion (AIC) is used to obtain the best
degree of the model and its delay for each model structure. A total of thirty four
different combinations of model structures and optimization techniques were con-
sidered -such as the Levenberg-Marquardt method and the recursive Gauss-Newton
method for the NNARX, NNFIR, NNARMAX and NNOE models [31, 34].

Three different residual analyses based on cross correlation were performed:
residual analysis between the residual R̂N

ε (τ) , between the residual and the input
R̂N

εu(τ) and the non-linear residual correlation R̂N
ε2u2(τ).

6. Experimentation and results

The theoretical model has been generated from realistic situations. The model used
in this study was implemented in HTB2 [29] and used to gather the initial data set.
The main output of a HTB2 simulation is the heater gain –the power requirements
in the modeled building-, but also the Fabric gain -heat flux- the temperature and
other variables in table I.

The realistic materials in the construction, the volumetric measures of each
room, the neighbourhood of the rooms, the orientation and geographical earth
zone, the solar radiation profile, the environment data, the heating subsystems,
the occupancy profile, the temperature-time profile for each heating subsystem,
the small power devices and the light ON profileswere considered, among others,
to validate the proposal. A building in the E winter zone, in the city of Avila is
used as the actual building location. Different sample periods and the length of
the simulations have been fixed too.

This initial data set has been analyzed, then, in order to select the features that
best describe the relationships with the heat flux. As may be seen in Fig. 2, PCA
(Fig. 2.a) and CMLHL (Fig. 2.b), both methods have identified the occasional
gain as the most relevant variable but more structured clusters than in the PCA
projections may be noted in the CMLHL projections (Fig. 2.b).

Having analyzed the results obtained with the CMLHL model (Fig. 2.b) it can
be concluded that CMLHL has identified four relevant variables and seven clus-
ters ordered by occasional gain. Inside each cluster there are further classifications
according to heater gain, ventilation gain and, to a lesser degree, exterior air tem-
perature. Accordingly, it may be said that the heat flux and the dataset have an
interesting internal structure. When the dataset is considered sufficiently informa-
tive, then the third step of the process begins. This step performs an accurate and
efficient optimization of the heating system model to detect the heat flux model in
the building, through the application of several conventional modeling systems.

Thus, an ANN was used to monitor the thermal dynamics of the building. The
objective was to find the best suite of polynomial model orders [na, nb1, nb2, nb3,
nb4, nc, nd, nf , nk1, nk2, nk3, nk4]. Using the data set from the previous stage and
the Optimal Brain Surgeon (OBS) [22, 24] network pruning strategy to remove
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Ocassional gain

Occasional gain

Heater gain

Ventilation gain

Fig. 2 PCA projections in left figure (Fig. 2.a) and CMLHL projection in the
right figure (Fig. 2.b) after 20000 iterations using a learning rate of 0.05, 3 output
neurons p=0.3 and τ=0.3.

superfluous weights, the best suite model was found from the residual analysis.
Table II shows the estimation and prediction characteristics and qualities of the
chosen ANN, along with their indexes.

Fig. 3 shows the time responses of the heat flux -y1(t)- and of the estimated
heat flux -ŷ1(t|m)- for the NNARX model [40]. The x-axis shows the number of
samples used in the estimation and validation of the model and the y-axis represents
the normalized output variable range: which is the normalized heat flux of the
house. The estimation and validation data sets include 2000 and 1126 samples,
respectively, and have a sampling rate of 1 sample/minute. Fig. 4 indicates the
final neural network structure chosen for modeling heat flux, both of which are
polynomial model orders. These orders specify the inputs to the ANN –four for a
full connected–and the indices of the orders represent each of the thermal system
inputs.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−5

−4

−3

−2

−1

 0

 1

2

3
Measured True (solid line) and Estimate Output (dotten line)

0 200 400 600 800 1000 1200
−2

−1.5

−1

−5 

0

5  

1 

1.5 

2 

2.5 

3 
Measured True (solid line) and Estimate Output (dotten line)

Fig. 3 Output response of NNARX model: the actual output (solid line) is graph-
ically presented with one-step-ahead prediction (dotted line). In Fig. 3.a (left) the
real measure can be compared with the estimated data, while in Fig. 3.b (right) the
real measure is compared with the validation data.
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y1(t−1)

y1(t−2)

y1(t−3)

y1(t−4)

u1(t−2)

u1(t−3)

u1(t−4)

u1(t−5)

u2(t−2)

u2(t−3)

u2(t−4)

u2(t−5)

u2(t−6)

u3(t−2)

y1(t|m)^

Fig. 4 Optimal architecture of the NNARX model, with the pruned network, for
the heat flux through the exterior walls of the building -output ŷ1(t|m) -. Positive
weights are represented in solid lines, while a dashed line represents a negative
weight. A vertical line through the neuron represents a bias.

From, Fig. 4 it can be concluded that the pruned network of the NNARX model
is able to simulate and predict the behavior of the heat flux through exterior walls in
the building as a consequence of the heating process- and it is capable of modeling
more than 91.4% of the actual measurements. This model does not only present a
lower loss function (V) and error values (NSSE and FPE), but also a higher system
representation index value (FIT1).

Model Indexes
ANN model for the heating process, NNARX regressor, the or-
der of the polynomials of the initial fully connected structure
are na=4, nb1=4, nb2=5, nb3=1, nb4=4, nk1=2, nk2=2, nk3=2,
nk4=2, [4 4 5 1 4 2 2 2 2]. The model was obtained using the
regularized criterion. This model was optimised by CMLHL anal-
ysis, residual analysis and the pruned network, using OBS. The
model structure has 10 hidden hyperbolic tangent units and 1 lin-
ear output unit. The network is estimated using the Levenberg-
Marquardt method, and the model order is decided on the basis
of the best AIC criterion of the ARX model.

FIT1:91.4%
V:0.0068
FPE:0.12
NSSE:0.0049

Tab. II The value of the quality indexes obtained for the proposed model. FIT1, V,
NSSE and FPE stand for the graphical representation percentage, the loss function
error, the normalised sum of squared error and the final prediction error.
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7. Conclusions and future work

Effective thermal insulation is an essential component of energy efficient heating
systems in buildings. Thus, the possibility of improving the detection of thermal
insulation failures represents a fresh challenge for building energy management.

The new methodology proposed in this study to diagnose insulation failures
from the heat flux through exterior walls in the building can be used to determine
the normal operating conditions of thermal insulation in buildings in Spain, which
has recently became a mandatory test in the evaluation of building insulation.

The novel soft computing diagnostic system as presented here improves fault
detection with respect to detection systems that rely on isolated signals -used in the
industrial processes-. The detection is based in the analysis of the numeric value of
the error -difference between the responses of the real heat flux and the estimated
heat flux in the building- and the representation percentage of the estimated output
in relation to the true output. This analysis presents a low dependency respect to
the input signals.

Future work will create a standard of theoretical failures -data set- in the normal
conditions of heating, lighting, small power devices, occupancy and ventilation, so
that the diagnostic system in the building –thermal system- can incorporate a
global fault classifier. Moreover, automation of the diagnostic system will further
improve its performance.
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