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Abstract This research presents a hybrid artificial intelligent procedure for electrical

energy distribution and set point temperature tracking in electrical domestic heating

systems. The Spanish Regulations for Heating Systems in Buildings should be accom-

plished in designing such procedure. The procedure is a multi-objective solution to the

presented problem as it should maintain the set point temperature while distributes the

available electrical energy between the heaters in the building. The proposal includes

the use of Fuzzy Controllers (FC) that is trained in the design stage and an an opera-

tion stage in which the trained FCs are used to distribute the electrical energy between

the heaters. There exists an FC for each Spanish climate zone and, consequently, it

should be trained with the data from the corresponding climate zone by means of a

multi-objective algorithm. In operation, a Central Control Unit is the responsible of

carrying on with the energy distribution in co-operation with the heaters in a MAS

architecture. The research results and the developed prototype are to be integrated

in a new device in the electrical dry heaters catalogue of a local company. This new

device, which represents an energy rationaliser and a temperature controller in one

device, will allow users to efficiently control their electrical energy consumption due to

the heating system.
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1 Introduction

The greater the society prosperity the greater the required comfort in the houses and

the higher the amount of electrical energy requirements. A direct consequence is the

policies to promote the reduction of energy consumption. However, the energy con-

sumption reduction in the construction of buildings has not been defined yet [4,17,30].

In buildings, heating systems represent the main energy consumption source. It is well

known that global sustainability must begin with human actions. A reduction in the

electrical energy consumption in electrical heating systems is one such possible action.

Spanish regulations changed in 2007 so that new building constraints for materials,

isolation covering dimensions arise. Indeed, a Spanish Regulation was introduced which

establishes the dimensions for the heating systems according to the corresponding

climate zone in Spain.

In the middle of 2008, a local company started to develop a new catalogue of dry

electrical heaters. Using such electrical heaters in a average domestic heating system,

the total power installed in Spain easily surpasses 7 kW. According to the total electric

power installed in a house, the energy suppliers recommend an upper limit for the

electrical consumption, which is called the common contracted power limit (for short,

CPL). Of course, the higher the CPL the greater the expense. In order to avoid such

a great expense, consumers usually choose lower CPLs and install energy distribution

devices, also known as rationalisers, which share the available electrical energy between

the electrical heaters. Rationalisers manage to keep the electrical energy consumption

under control, but they have one main drawback: the confort in the house is not

considered. Specifically, the inhabitants establish the comfort level in the house or

in a room by setting the predefined suitable environmental variables. In the case of

this work, only the temperature in each room (the reference temperature stands for

set point temperature) is considered due to economic reasons. Future works should

consider other measurements, such as the humidity percentage.

Therefore, to improve the efficiency of the electrical heating system, the local com-

pany desires to design a Central Control Unit (CCU) in order to save energy and

distribute it among the heaters in a building while maintaining the set point temper-

ature profiles in the house. In previous works, a multi-agent hybrid fuzzy system has

been proposed [48,49] and the development of such device has been analyzed.

The solution integrates the electric heaters and the CCU. The CCU is responsible

for distributing the available electric energy among the heaters based on the energy bal-

ance concept and with the objective of keeping the user defined set point temperature

in the house.

Although the proposal has been proved successfully in the suitable distribution of

the available electric energy, it suffers from some deficiencies. Specifically, some bias

was found in the steady state. Also, there was a lack of stability in the electric energy

output due to fluctuations that should be faced.

Moreover, there were several improvements that must be achieved so the final heat-

ing system could be marketed, including the capacity of learning from the environment,

the detection of a window opening or closing, an auto-discovering network, etc.
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This paper deals with the description of the whole multiobjective rationaliser sys-

tem including the latest improvements. In Section 2 the context information is given,

including the Spanish Regulations and the problem description. Related work is also

detailed. In Section 3 the intelligent energy distribution and each design decision are

detailed, while in Section 4 the experiments and results are commented. Finally, con-

clusions are included.

2 Preliminaries

All the contextual information the reader needs to understand the design decisions is

included in this section. Firstly, the Spanish Regulations are summarised as the final

product must accomplish them. Secondly, the problem description is detailed. Finally,

related work is analysed as a previous stage in the design of a solution.

2.1 The Spanish Regulations for domestic heating system installations

In the first quarter of 2007, the Spanish Parliament approved a new building regulation

-in what follows, RITE [39]-. As a result, building methods have been updated [15].

This new regulation had many consequences, as it determined how new buildings must

be accomplished [14]: materials, insulation, energy efficiency, ventilation rates, etc. In

Spain, the LIDER software has been developed and should be used to calculate the

heating installation in a building [13]: the number of heaters and their nominal power

are fixed.

The RITE establishes 5 climate winter zones, named with a letter from A to E,

where E represents the maximum in weather severity. A peculiar fact is that in Spain

only 3 of the 5 winter zones defined in the RITE are considered [39]. Moreover, a

number between 1 and 5, related with the summer weather severity, is also given. The

combination of winter and summer severities determines the climate zone for each

location in Spain.

Furthermore, the constructors build many different kinds of buildings: condomini-

ums -each apartment includes 2, 3 or 4 bedrooms-, detached and terraced houses, etc.

All of them can have an electrical heating system installed, so the design of an energy

distribution device must consider all the possible cases. The term building topologies

refers to all of the building parameters that influence the heating system. Such pa-

rameters include the type of house, the geometrical aspects, the inner partition, the

materials, etc. For example, the building envelope could help in reducing the heating

losses. The building topologies have been extracted from the analysis of the building

market, and have been reported in [48,49]. These building topologies are included in

Table 1 for the sake of readability. The proposed building topologies should be used to

validate any proposal of an electrical energy distribution for electrical heating systems.

2.2 A formal description of the problem

A local company produces a catalogue of electric dry heaters for domestic heating

systems. The nominal power of any heater in the catalogue varies among 500, 750, 1000,

1250 and 1500 watts (W). The heaters works in stand alone mode, with an ON/OFF
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Table 1 The building topologies considered representative of the building market.

Topology Topology No of Area Description
type name Bedrooms in m2

1 Condo 3 85–95 A house in a condominium
2 House 4 220–250 An individual isolated

house, a cottage or a
lodge

3 Office - 85–130 An office in an office
building

control loop to set the temperature reference. Each heater has a temperature sensor

and a simple human machine interface (HMI) to set the temperature reference and the

heating system timetable. The catalogue is designed to be included in heating system

in Spain, so the Spanish regulations related to building and heating systems should be

accomplished.

The local company catalogue of heating systems is to be extended with a new

complementary device to share the available electric power among the installed heaters

allowing to set an upper bound for the electric energy consumption due to the heating

system. A distributed architecture is arranged between the installed heaters and the

new complementary device, which is called central control unit (CCU). The CCU

should be the responsible of the sharing the electric power among the installed heaters.

The heaters should have a collaborative mode -interchanging data with the CCU to

share the electric power- and an autonomous -or local- mode, in which the heater acts

as if no CCU were installed.

The electric power sharing will be based in optimising some objectives. At a first

glance, the sharing would be based in the temperature in each room. However, a better

power sharing could be afforded if more variables are considered; i.e., taking the thermal

inertia of the rooms into account [12]. If the electric power spent in heating is to be

bounded and a the sharing is linear with the temperature error in each room, then

the higher the inertia of a room the larger the difference between the electric energy

spent in heating and the energy required to reach the temperature set point. Therefore,

such energy difference -or energy deficit- would be used as a measure of the thermal

inertia. Then, the electric sharing should consider the temperature error and a measure

of the thermal inertia. The use of a multi-objective sharing is twofold: firstly, the

electric power sharing is supposed to be better. Secondly, the multi-objective sharing

strategy would allow the local company distinguishing in the market, as no multi-

criteria energy sharing device is included any catalogue. In the same way, the diversity

in the different climate zones defined in the Spanish regulation and different buildings

should be considered using a soft computing technique in order to obtain a better

sharing algorithm.

The installation costs should be as low as possible. The temperature measurements

in each room should be carried out by the temperature sensors in the heaters. The

only new instrumentation considered is the instantaneous electric consumption mea-

surement sensor, so the power sharing avoids surpass the electric power bound. The

communication between the heaters and the CCU should be wireless, specifically, a

Zigbee network. Finally, the system start up should be simple and intuitive, allowing

installers can set the CCU up easily and costless.
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2.3 Related work

Although there exists literature background related with the improvement of the heat-

ing systems [27], the most part of the literature considers the optimisation of the whole

Heating and Ventilation Automated Control (HVAC) energy management systems [5,

31,19,23,50], thus, the domestic heating systems are not analysed. In [27], a study

about the comfort level in the working spaces and in homes in Finland are compared.

Due to the fact that people have no access to the comfort settings, the former case

has shown as less comfortable. One conclusion extracted from this research is that the

relevance of measuring the energy consumption and the comfort variables would help

to improve the comfort in the buildings. Nevertheless, the majority of the contributions

in the literature try to optimise the HVAC energy management systems with the goal

of obtaining an energy consumption reduction or with the goal of comfort optimisa-

tion. Several different approaches have been considered in optimising HVACs energy

management systems: i.e. evolutionary algorithms [18], ANFIS and neural networks

learning methods [45], genetic fuzzy systems [6] among others. An in-depth study of

the different approaches can be obtained in [16]. All of this researches make use of

a Fuzzy Controller (FC) to control the indoor temperature [5,31,50] or the energy

consumption [19,23].

Only a few researchers had considered the multi-objective issues in heating systems.

In [3,2] it was documented the use of FC optimised to control an HVAC. Several

different membership functions tuning techniques and rule selection approaches are

analysed, all of them based in searching the best solution by means of genetic algorithms

(AG) and a multi-objective scalar function. To our knowledge, only one research has

been published with a Pareto optimisation method [11]. In this work, an FC is trained

to control the position of the blinds using two objectives: the energy consumption

minimisation and the optimisation of the thermal comfort. Nevertheless, bounding

the energy consumption has never being considered in the above related temperature

control approaches for heating systems.

Also, [9] shows the relevance of different variables, such as seasonal aspects, role and

occupational aspects, etc., in the indoor temperature and the set point temperature in

the spaces.

Comfort in buildings should be faced in different areas. One of those areas is the

insulation reinforcement and testing. Studies concerning with the improvement in the

energy saving attending to the building insulation in Spain and in Greece are presented

in [42] and [41], respectively. Nevertheless, the technical issues related with measuring

the energy efficiency in houses and in buildings represent a challenge that have not be

solved yet. Both comfort variables and energy measurements are to be considered, but

how to merge these different measures is not a simple task. Perhaps more than one

index should be used [36], so multiobjective techniques should be employed to evaluate

building and insulation designs. To our knowledge, single objective techniques have

been considered for insulation and building design computer aided tools [1].

A recent approach in improving heating systems is by using more than one type of

heating energy: green energy based heating systems are combined with conventional

ones in order to increase the energy efficiency in buildings, [20,43,7,29].

In HVACs, one of the big issues to be solved is how to determine the indoor tem-

perature in spaces. Recently, the use of sensor networks and information fusion has

been used for such purposes [25]. The estimation of the temperature in spaces using

neural networks or mathematical models have also been applied [46,34,12].
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Finally, the application of multi-agent systems in heating system energy manage-

ment can be found in the literature [12,48,49].

3 An Intelligent Electrical Energy Distribution and Control System

In Spain, the total electric power due a usual electrical domestic heating installation

easily reaches 7 kW or more. Therefore, the inhabitants of such houses should contract

large CPL so the monthly electricity bill is highly incremented.

Due to the possible large electrical consumption rate, consumers usually establish

agreements with the energy suppliers for a lower CPL in order to reduce their bills.

Therefore, the electrical consumption due to the small power devices, the lights and

the domestic heating system electrical consumption can not surpass such CPL. This is

the reason why users need to limit the power spent on heating the house, establishing a

compromise between keeping the set point temperature and the electrical consumption.

A CCU is needed to assist inhabitants in establishing such compromise.

Some definitions are used in the description that follows. We shall call available

electrical power (AEP for short) the amount of power that is currently available for

the heating system that the CCU can distribute among all the installed heaters. The

required power (RP) is the estimated amount of electrical power the heaters should

consume in order to keep the set point temperature in each room of the house. Anal-

ogously, the instantaneous electrical power consumed by the heaters represents the

heating power (HP). Both RP and HP are measured for each heater and room and also

accumulated for the building.

The required energy (RE) is the integral in the time of the RP, while the heating

energy (HE) is the integral in the time of the HP. Finally, the energy deficit (∆E) is

the difference between the RE and the HE. The available electrical energy (AEE) is

the integral in the time of the AEP. In what follows, each pair of climate zone and

building topology will be referred to as configuration for the sake of simplicity. Also,

each space in a building will be referred to as room.

This section is organised as follows. Firstly, the proposal is outlined. The design

decisions about the FC are included then. In Sub-Sections 3.3 and 3.4 the Design Stage

and the Run Stage are analysed, respectively. Finally, some improvements included in

this proposal are given.

3.1 The description of the proposal

Fig. 1 shows a description of the hybrid artificial intelligent system for energy distri-

bution. The electrical heating installation is compound of electrical heaters (1) that

collaborate with the CCU (2). A wireless connection -a Zigbee network- is used so the

installation cost is reduced. A two step procedure has been designed. The first stage,

called the Design Stage, is the responsible of learning a Fuzzy Controller (FC) for each

configuration (see Fig. 2). The Run Stage is the operational stage, where the specific

FC corresponding to the current configuration is used to distribute the AEP between

the collaborative heaters in Fig. 3.

The procedure will distribute the instantaneous heating power among the collabo-

rative heaters considering two objectives. The first objective is to minimize the temper-

ature error in the room, measured as the difference between the room temperature set
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point and the current room temperature. The second objective is to minimize the en-

ergy deficit in the room. The reasons of using the energy deficit ∆E is twofold. Firstly,

if a room is cold, the lower the HP assigned to the room the higher its ∆E. Secondly,

the higher the inertia of the room -that is, the bigger the volume of the room is- the

higher the ∆E if the HP is bounded. With this two objectives the criteria for energy

distributing in the problem definition is accomplished.

The heaters can collaborate in the network or act as stand alone devices. In the

collaboration mode, the CCU drives the distribution of the AEP among the remaining

collaborative heaters. In the latter case, the heaters HMI is used to set the temperature

set point and a operational program and the heaters do not communicate with the

CCU.The heaters can change their mode from collaborative to stand alone if the CCU

becomes unavailable. In the left of this work, the terms local behaviour, local mode or

stand alone mode are considered totally equivalent.

A multi-agent system architecture was designed to introduce the intelligent be-

haviour and robustness to the system. An FC is learned for each configuration and,

when tuned the CCU, the current configuration’s FC is copied for each room in the

building. In operation, the CCU will distribute the AEP according to the room FC

output. To distribute the AEP between the heaters, the CCU arranges the time in

periods of 10 minutes. In each period, the CCU establishes the instantaneous power

rate of each collaborative heater during the whole period. The heaters are ON/OFF

devices, so they can not heat at any rate but 0 W or nominal power. Then, a time

interval is calculated as the time needed for the heater in the ON state -at its nominal

power- so the same amount of energy is spent in heating, as shown in Fig. 4.

For this purpose, the 10 minute period is divided in 24 slots of time. In a slot,

each heater is assigned with the ON or OFF stated. The CCU guarantees that the

AEP is never surpassed for all the slots. The length of each period, fixed in design to

10 minutes, is considered suitable to evaluate the thermal dynamic in each room. The

number of bits in the period has been set to 24 because, in this manner, with just 3

bytes, the ON/OFF profile of each heater can be completely defined, but also because

the implicit bit time length is suitable to avoid heater fatigue.

For the sake of robustness, the heaters detect system collapses so they can auto-

matically change to the local behaviour. A heater establishes the system is collapsed if

during a period of time it can not communicate with the CCU. In this case, the heater

changes to the local control state until the communication with the CCU is recovered.

Moreover, users can activate, deactivate or switch to local mode as many heaters as

desired. The CCU will only consider the collaborative heaters in the distribution of

the AEP, which is decreased by sum the nominal power of all the local mode heaters.

Indeed, the comfort settings introduced in the CCU are shared with the heaters, so in

local mode the heater comfort settings remain the same if the user does not change

them through its human-machine interface.

The CCU is responsible for distributing the AEP among the collaborative heaters

according to the following two objectives: the temperature error ∆T and the energy

deficit ∆E. The former is calculated as the difference between the set point temperature

and the instantaneous room temperature. Both objectives should be minimised for all

the rooms in the building. As stated before, the ∆E is the difference between the RE

and the HE.

To accomplish both objectives the following procedure is carried out. Each heater

sends to the CCU the room mean temperature and the room ∆E according to its

knowledge. Both measurements are introduced as inputs to the room’s FC, which
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estimates the power rate the heater should perform during the next period in order

to reach both objectives. Then the power rate for each heater is prorated to avoid

surpassing the AEP, so the HP for each of the bits of the next period and for each

heater is calculated.

A two steps procedure is designed to train the FC and to carry out the energy

distribution algorithm in the CCU. The first step is called the design stage, which is

responsible for the learning and training of the FCs for each topology, and is shown in

Fig. 2. The FC is a Mamdani FC and it is specific for the configuration, so it has to be

trained to accomplish with the two objectives. Correspondingly, the AEP distribution

using such FC is also optimised. The FC design and training descriptions are detailed

in Subsection 3.2, and are included in the design stage detailed in Subsection 3.3. The

second stage is called the run stage, and can be seen in Fig. 3. In the run stage the

energy distribution is carried out once the CCU is configured and the heater network

is up. The run stage is described in Subsection 3.4.

3.2 The Fuzzy Logic Controller

The Fuzzy Controller is a Mamdani fuzzy system initially designed by experts [24].

The FC was designed using the Matlab Fuzzy Toolbox [38], and the experts chose the

FC characteristics graphically. In this way, the following design decisions were made.

Firstly, for all the fuzzy operations aggregation of antecedents and implication the

product is the t-norm used in the FC, while for the aggregation of rules the t-conorm

used is the maximum. All rules have the same weight (1.0). The defuzzyfication method

is the mean of the maximums.

Each variable, either it can be input or output, is defined with three uniform and

normalised linguistic variables called LOW, MEDIUM, HIGH. The LOW and HIGH

linguistic variable have trapezoidal membership functions while the MEDIUM one has

a triangular membership function.

For each heater installed in a room the FC associated to that room is evaluated.

The FC inputs are the room temperature error (∆T ) and the energy deficit in that

room (∆E). The temperature error is calculated as the difference between the tem-

perature set point -as given in the timetable profiles for that room- and the room

mean temperature measured by the heaters. The ∆E is calculated in each heater as

the difference between its RE and its HE. The FC output is the percentage of the

heater nominal power needed for the room to reach the set point temperature during

the next 10 minute period. The output of every heater installed in the building is then

normalised. In Table 2 the membership functions for the linguistic variables of each

variable set by the experts are shown.

The FC should be initially learned and trained as detailed in the following subsec-

tion. Although the rule set is learned, the best suite rule set is chosen for all the FCs

for the sake of minimising the memory requirements of the micro-controller devices in

which the FCs are to be deployed. It is worth noting that, while in operation, any FC

can be tuned up to fit the specific room to which it is associated. In this case, only

the consequences of the rules, that is, the three fuzzy sets are to be tuned up using

fuzzy set classical local tuning methods [10,21,22,26,28,40]. As it is desired to keep

the variables uniform and normalised, tuning up an FC only modifies the three values

{A, B, C} given in Table 2.
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Table 2 The Fuzzy Controller designed by the experts, the initial values for A, B, and C are
0.25, 0.5 and 0.75, respectively.

Membership Temperature ∆E output
Function Error

LOW trap(0, 0, 0.5, 1) trap(0, 0, 0.25, 0.5) trap( 0, 0,A, B)
MEDIUM trap(0.5, 1, 1.5, 2) triang(0.25, 0.5, 0.75) triang(A, B, C)

HIGH trap(1.5, 2, 10, 10) trap(0.5, 0.75, 1, 1) trap(B, C, 1, 1)

3.3 The design and learning of the FCs

The design stage starts when the configurations have been completely defined. For each

configuration several steps are carried out. Firstly, the historical meteorological data for

a climate zone has to be gathered. Specifically, the outdoor temperature, the humidity

percentage and the solar radiation must be harvested. Moreover, the building topology

-its dimensions and characteristics- should be exactly modelled as detailed in advance.

Therefore, the building materials and their properties -trasmittance, emissivity,etc.-

should be given. At the same time, all the relevant profiles should be fixed: i.e. the

building dimensions and orientation, the heating profiles, the electric consumption

profiles or the occupancy profiles. The HTB2 software is then run with all the gathered

data to calculate the thermal dynamics in every room of the building and also the

instantaneous heating power required to reach the set point temperature. The HTB2

is a publicly available software that can be obtained from [33].

The outcome of the HTB2 is a high dimensional data set which must be post-

processed so two data sets are generated. The first one is used to estimate the thermal

parameters of each room in the building, while the second data set is used to train

an FC for the current topology. When training the FC for a configuration with the

latter data set the two electric power distribution objectives -the energy deficit and the

temperature error- should be considered, so a multi-objective should be used. In this

research, the simulated annealing technique is used [44].

In order to train the FCs and to evaluate how the heating system performs, the

estimation of the thermal dynamics of each room in the building is needed. For each

configuration, the step response of the building is simulated with the HTB2. The

building thermal dynamics is analysed both when the heater changes from OFF to ON

and from ON to OFF. From the HTB2 output data set only the relevant information

is used, that is, the transitions between steady states in order to extract the dynamics.

The use of Artificial Neural Network (ANN) to define prediction models for building

variables as indoor temperature or relative humidity, has grown in last years [35,47].

In this research, a two-layer network of fast-forward type, with tan-sigmoid transfer

function in the hidden layer and a linear transfer function in the output layer. This is a

useful structure for function approximation (or regression) problems. The ANN inputs

are the indoor temperature (Tx), the outdoor temperature (Tout) and the heating power

spent in the room (Px). Thirty neurons are used in the hidden layer. The network should

have one output neuron since there is only one target, the indoor temperature in the

next period. We will use the Levenberg-Marquardt [32,37] algorithm for training, and

an ANN is found for each room. We propose the use of train-test procedure that will

be repeated until the validation error stops decreasing or 100 epochs, whichever occurs

first. The train, the test and the validation data sets are chosen as the first half of the
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input data set, the second half of the input data set and the whole input data set,

correspondently.

Once the thermal dynamics of all rooms of the configuration are defined, the learn-

ing and training of the FCs is carried out. As detailed in the previous Subsection, the

basic FC established by the experts is optimised. The objective to be accomplished is

to minimise both the ∆E and the ∆T for each room in the building. This is a multi-

objective problem, and the multi-objective simulated annealing algorithm presented in

[44] is used. This multi-objective algorithm is a Pareto based approach and is shown

in Fig. 5.

Each individual represents an FC. The MOSA should optimise both the rule set

and the parameters set. As stated before, the rule set is to be optimised for the first

configuration considered only, while in the left configurations the rule set remains

unchanged and only the consequences are evolved. Consequently, all the FCs have

the same rule set. In this way, the memory requirements of the micro-controller is

minimised and so the cost of the device. When no rule set optimisation is to be carried

out the individual is represented only by means of a parameter set. The rule set is

represented as a vector of integers, each one is an index on the membership function

used in the rule for the corresponding variable. The parameters set is a vector of float,

a float for each membership function of all the variables -∆T , ∆E and the output-.

The reader should recall that only three uniform and normalised membership functions

are used for all variables, the inner one is a triangular membership function, while the

others are trapezoid functions. In this case, only the three parameters of the triangular

membership functions are to be optimised, [2]. Therefore, the integers are in the range

[0, 2]. The floats are in the range [0, 2], [0, 1] and [0, 1] for the temperature error, energy

deficit and the output variable, respectively. Also, restrictions related with the semantic

of each linguistic label are included, i.e. the parameter for the LOW label should be

lower than the parameter for the MEDIUM label.

The mutation randomly changes the values of the individual parameters according

to the restrictions mentioned above. The distance between individuals is calculated as

the square root of the squares of the difference between the parameters. The multi-

objective fitness function includes the cumulative of the ∆E and mean square error

in the ∆T input for all the rooms in the building. To evaluate each individual, which

in fact is an FC for the current configuration being analysed, the electrical energy

distribution algorithm detailed in the following Subsection is used. The evaluation of

each individual is done using the post-processed HTB2 output data set, with only

the relevant information from the data set for each room. This data set includes the

outdoor temperature, the temperature in each room, the temperature set point for each

room and the power requirement for each room. The corresponding thermal model is

used to calculate the temperature in each step according to the FC and the electrical

energy distribution. From the individuals in the elite population the best suite FC is

chosen, the one nearest to the identity line in a plot of ∆E against ∆T .

3.4 The rationaliser algorithm and the system operation

The Run Stage represents the algorithm carried out in the CCU to distribute the

electrical energy, called Energy Distribution Algorithm (EDA), shown in Fig. 3. The

EDA is responsible for the energy distribution, and it is assumed that the CCU has

been configured according to the configuration and current heating system -all the
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rooms in the building have been defined and also the associations between heaters and

rooms-.

According to the configuration, the CCU chooses the corresponding FC and makes

a copy for each defined room. The CCU stores in ROM the best suite controllers

obtained in the previous stage, an FC for each configuration. Every 10 minutes the

EDA is run in the CCU to distribute the AEE for the next period, that is, to fix the

24 bits for all collaborative heaters.

The inputs of the EDA are the instantaneous electrical consumption in the build-

ing, the set point temperature timetable, the mean temperature and the ∆E measured

in each heater. The instantaneous electrical consumption is used to calculate the in-

stantaneous AEP and, thus, the AEE. The mean temperature and the ∆E are obtained

from the heaters, the former is measured through the temperature sensor built in each

heater.

The ∆E is calculated as the difference between the RE and the HE. Both the

RE and the HE are calculated as the integral in the time of the RP and the HP,

respectively. As the heaters are ON/OFF devices, some simplification can be assumed.

The instantaneous power in a heater can be zero or its whole nominal power. So the

RE is linear with the number of bits that the heater considers should be ON divided

by the total number of bits in a period of 10 minutes, that is, 24 bits. In the same way,

the HE is linear with the number of bits the CCU sets the heater to be in the ON state

divided by the total number of bits in a period of 10 minutes, that is, 24 bits.

Consequently, the ∆E is calculated as follows: for each bit, if the remote heater

considers that in the local behaviour it should be ON but the CCU has established

the state of OFF then ∆E is incremented in 1 (the 100% of the nominal power of the

heater can’t be used). Conversely, if the remote heater considers it should be OFF but

the CCU has given the ON state then ∆E is decremented in 1. In any other case ∆E

remains unchanged. The accumulation of the ∆E of the heaters installed in the same

room is proportional to the nominal power of each one divided by the sum of installed

power in the room.

The data gathered from each heater are the inputs to the FC of the associated

room. The outcome of the FC is the proposal of heating energy for the next period

of 10 minutes. So for each heater with a temperature error higher than 0 we obtain a

proposal of heating energy (PHE) according to the corresponding FC. Let TPHE be

the accumulative of the proposal of heating energy for each heater.

The CCU assigns the HE for each heater as the percentage of AEE corresponding

to its PHE and the TPHE. Once the HE has been assigned for each heater, then it is

distributed among the 24 intervals in the period according to: a) the AEP must not

be reached in any interval, and b) the HE should be assigned in consecutive intervals

so that the number of transitions between the ON and OFF states in the heaters is

minimised. The shorter the number of transitions the longer the heater life will be.

3.5 Some extra improvements in the Electrical Energy Rationalization

Several improvements have been included in the energy distribution system. Firstly,

the CCU is able to learn from the environment by tuning the FC associated to a room

in the building. To do so, the CCU expands or contracts the membership functions of

the FC output variable linguistic labels. In other words, the CCU expands or contracts

the values of the parameters { A,B,C } in Table 2.



12

The new set of parameters is obtained as { Ap, Bp, Cp }. To obtain p, the CCU does

as follows. When the user sets the auto-tuning option for a room, the CCU requests

the associated heaters the ∆Elt value. This is the long term energy deficit in a heater.

This value is calculated in the same way as the ∆E but for a period of a week, that is,

7 days.

If the heater gets into LOCAL mode, the ∆Elt is fixed to 0. When more than one

heater is associated to the room which is to be tuned, the ∆Elt is rated according to

the nominal power of the heaters. Once the CCU receives information from each heater

the value of p is calculated with Eq. 1, where the functions fx are shown in Table 3.5

with trap referring to trapezoidal membership functions.

p = 0.9f0.9(∆Elt)+0.95f0.95(∆Elt)+1f1(∆Elt)+1.05f1.05(∆Elt)+1.1f1.1(∆Elt) (1)

Name Function

f0.9 trap(−∞,−∞,−0.6,−0.35)

f0.95 trap(−0.6,−0.35,−0.35,−0.25)

f1 trap(−0.35,−0.25, 0.25, 0.35)

f1.05 trap(0.25, 0.35, 0.35, 0.6)

f1.1 trap(0.35, 0.6,∞,∞)

A second improvement of the proposal is the synchronisation algorithm that has

been integrated so the heaters and the CCU always have approximately the same time.

The algorithm to synchronise the heaters and the CCU is the well-known Berkeley

algorithm. Finally, the CCU and the heaters also interchange messages in order to

keep a better knowledge of the state of the system. Each time a heater changes from

local mode to remote mode or viceversa it sends a message to the CCU. If the CCU

has not received messages from a heater then it sends a message to request its state.

If no response is received then the heater is believed to be in local mode. If a heater

does not receive messages from the CCU, then it requests its state, and if no answer

is received it changes to local mode.

4 Experiments and Results

In this section, the results obtained from the Design stage are presented and the energy

distribution approach is evaluated in physical prototype to validate it (the Run stage).

Los pasos que se han seguido para el desarrollo de los experimentos que se muestran

en esta seccin son los siguientes:

– Seleccin de la configuracin que se va a emplear con el fin de evitar un explosin

innecesaria de experimentos en esta fase de prototipado.

– Obtener un controlador subptimo para la configuracin elegida (fase de diseo).

– Obtener un modelo de dinmica trmica para configuracin anterior.

– Probar el controlador junto con el modelo trmico para la configuracin elegida (fase

de diseo).

– Probar el controlador elegido sobre un prototipo fsico para la configuracin elegida

(fase de ejecucin).
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4.1 Configuration selection

The Design stage has been carried out for each pair of building topology and climate

zone, specifically, for the same climate zone mentioned above. The apartment belongs

to the building topology of Condo (see Table 1). Then the Design stage was run from

the data gathered for the E1 zone, the realistic profiles and the Condo topology. For

validation purposes an example of a real installation is considered: an apartment in

the city of Ávila is the building to be tested (Fig. 11). Ávila is the capital city of the

province of the same name in centre of Spain. The climate zone is E1 according to the

Spanish Regulations. The nominal powers of the electrical heaters are also calculated

as the corresponding Spanish Regulations state: 1000 W, 1000 W, 500 W and 500 W

are the nominal powers of the electrical heaters to be installed in the living room, in

the bedroom, in the kitchen and in the bathroom, respectively.

4.2 Fuzzy controller learning

The aim was to learn the FC for the pair <Condo, E1 climate zone>.

4.3 Thermodinamical model

The error evolution for the ANN to learn the thermal dynamics of a room in a house

for a Condo building type and the E1 climate zone is presented in Fig. 6.

4.4 Design stage - fuzzy controller results

In Fig. 7 the evolution of the power distribution for the Condo is presented for a period

of three and a half days when the AEP is equal or higher to the total installed power.

The upper part is the evolution of the total heating power compared with the obtained

from HTPB, while the lower part is its extension for showing a higher level of detail.

The corresponding signals evolution when the AEP is lower than the total installed

power can be seen in Fig. 8. It is worth noting that the heating power surpasses the

neither the AEP not the CPL.

The indoor temperature and the heating power evolution in the living room of the

Condo with no AEP limit set is shown in Fig. 9 . Both variables are presented as the

percentage of the temperature set point and the heater’s nominal power, respectively.

In Fig. 10, the same graphic is shown for a bedroom. In this case, the temperature

reaches the set point and the ∆E is kept low. The outcome of the Design stage, as

stated before, are the FCs for all the configurations.

4.5 Run stage - Results

The system is implemented in a prototype using the RZ200 Zigbee Evaluation Kit from

Atmel [8], which is shown in Fig. 12. The building has been built in the laboratory

-scale 3/50, and the electrical heaters have been simulated by means of resistors of the

corresponding rate. A realistic heating profile has been used, and two different electrical
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energy scenarios are tested: when there is no bound and with an upper bound for the

electrical energy consumption. In the former, the building should reach the equilibrium

temperature, while in the latter the electrical energy consumption should not surpass

such limit. In this second case, no set point temperature can be reached if the RE is

higher than the HE.

Results gathered from the prototype are shown in Fig. 13 to Fig. 16. In Fig. 13, it is

shown the evolution of the heating power with a reduced heating power limit of 4kWh

and 3.2 kWh, respectively. It can be seen that there is a higher energy consumption

when there is no upper limit, allowing a better heating of the house. In this Figure, the

effect of the FC attending both the energy deficit and the error temperature, reducing

the energy consumption. Perhaps, the FC should be less conservative that it is, and a

better training should be carried out in order to increase the heating power output.

The evolution of the heating power and the temperature for the living room and

the bathroom in the apartment when there is no electrical power limit set is shown

in Fig. 14. Both variables, indoor temperature and heating power, are presented in

percentages with respect to the set point temperature and with the heater power rate,

correspondently. In this case, the house is little cold, and the heating system manages

to reach the temperature set point.

The same variables evolution for the case of an electrical power limit set to 3.2 kWh

is shown in Fig. 15. In this experiment, the house is in thermal equilibrium state, and

the heating system manages to keep the house in such state. Finally, in Fig. 16 shows

the evolution of the total heating power for the same experiment in the apartment.

Analysing the results it can be said that the FC should be improved as it behaves

conservative. This behaviour should be avoided because if the house is too cold it

will take a quite long time to reach the set point temperature. It is thought that the

training should be larger, using a higher number of iterations in order to choose a

better fit FC. Also, it should be analysed if both objectives have the same relevance or

not. Recall that the same relevance was given to both objective, and that the FC was

chosen as the intersection between the Pareto front and the identity line. If this is not

desired, then the FC is to be chosen as the intersection between the Pareto front and

the corresponding line representing the relevance ratio.

The approach here detailed is now under the load test. Three scale models are

being analysed. Each test is run for different electrical energy consumption bounds

and for different outdoor temperatures. Also, the analysis of all the different scenarios

are tested. It is estimated that by the end of this year the approach will be accepted

and the final product can be designed.

5 Conclusions

In this work, a multi-agent system for the energy management of domestic electrical

heating systems accomplishing the Spanish Regulations is detailed. In order to consider

the efficiency of the heating system in any possible location in Spain according to the

current Regulations, uncertainty in the process is dealt with by fuzzy controllers. The

proposal includes a two steps procedure. The first step includes a hybrid artificial

intelligent system to train the thermal dynamics and a fuzzy controller for each pair of

climate zone and building topology. The second step includes the energy distribution

algorithm, the multi-agent interaction, etc., in order to distribute the available electrical

energy among the collaborative electrical heaters. Although the FC needs some extra
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adjustment, this approach has been found valid for domestic heating installations in

Spain, and is expected to be included in a local company’s catalogue.

An exhaustive study of the Spanish Regulations was carried out and the most se-

vere cities have been chosen to train the fuzzy controllers. Then the historical real data

was gathered and a multi-objective algorithm was used. The multi-agent system appli-

cation and the different refinements included in the final solution make this approach

interesting.
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Fig. 1 The EHEID schema. The heaters (1) collaborate with the CCU (2) to distribute the
AEP and to keep the set point temperature profiles in the house.
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Fig. 2 The Design Stage: an FC for each configuration is obtained.
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Fig. 3 The Run Stage: the EHEID algorithm sets the energy restrictions while attempting to
maintain the set point temperature profiles in the building.
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Fig. 4 upper figure) Determining ON state interval for each heater. The FC output for a
heater is a power rate (Pr) during T=10 minutes period, an amount of energy E is spent. The
equivalent energy is spent in Th seconds at nominal power (Pn). Thus, the heater will be ON
Th seconds in the next 10 minute period. A black square represents a heater in ON state. lower
figure) Time slots distribution between heaters. For each slot, the sum of the nominal power
Of all the heaters in ON state is lower than the AEP. A black square represents a heater in
ON state.
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Needs:
Initial and final temperatures: Tinitial, Tfinal

Cooling factor : C

Produces:
A set of nondominated models: PARETO

Initialize the population of models: X = {x0}
Initialize the set of elites : PARETO = X
T← Tinitial

while T ≥ Tfinal

// X’ is the intermediate population
X′ ← ∅
for each x ∈ X

xmutated ← mutation(x)
if xmutated ≺ x then

X′ = X′ ∪ {xmutated}
else if x ≺ xmutated then

if rnd() < exp(-distance(x, xmutated)/T) then
X′ = X′ ∪ {xmutated}

else X′ = X′ ∪ {x}
else

X′ ← X′ ∪ {x, xmutated}
end if

end for
PARETO← nondominated models of the joint set PARETO ∪X′

X← selection(X′)
T← T · C

end while

Fig. 5 Pseudocode of the MOSA algorithm
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Fig. 6 Evolution of the ANN error: the thick line is the training error, the intermediate width
line is the test error and the thin line is the validation error.
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Fig. 7 Evolution of the heating required power calculated by HTB2 -the thick line- and
the heating power propose by the distribution algorithm -the thin line- after the FC has been
trained. The upper figure corresponds with the unlimited AEP, the lower figure is an extension
of a interval included in the upper one.
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Fig. 8 Evolution of the heating required power calculated by HTB2 -the thick line- and the
heating power propose by the distribution algorithm -the thin line- after the FC has been
trained. The upper figure corresponds with the limited AEP (AEP equals to 5500 kW), the
lower figure is an extension of an interval included in the upper one.



24

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

2500 2550 2600 2650 2700 2750 2800 2850
0

0.2

0.4

0.6

0.8

1

Fig. 9 Evolution of the heating power -the thin line- and the in-room temperature -the thick
line- for the living room of the Condo an unlimited AEP is used. The upper figure is the
evolution of both signals in a long period. The lower one is an extension of an interval included
in the upper one.
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Fig. 10 Evolution of the heating power -the thin line- and the in-room temperature -the thick
line- for a bedroom of the Condo an unlimited AEP is used. The upper figure is the evolution
of both signals in a long period. The lower one is an extension of an interval included in the
upper one.
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Fig. 11 The apartment in the city of Avila, in the E1 climate zone.

Fig. 12 The prototype boards for testing and validating the approach.
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Fig. 13 Evolution of the total heating system in the apartment. The upper part of the figure
corresponds with the evolution of the total HP in the apartment when the electrical power
upper limit is the same the installed heating power. The lower part corresponds with a power
limit of 3.2 kWh.



28

0

0,2

0,4

0,6

0,8

1

1,2

1 101 201 301 401 501 601 701 801 901

0

0,2

0,4

0,6

0,8

1

1,2

1 101 201 301 401 501 601 701 801 901

Fig. 14 Evolution of the heating power and the indoor temperature for the living room and
the bathroom on the apartment is shown. In this case, no upper power limit is set. The thick
line corresponds with the indoor temperature, while the thinner one corresponds with the
heating power evolution.
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Fig. 15 Evolution of the heating power and the indoor temperature for the living room and
the bathroom on the apartment is shown. In this case, the upper power limit is set to 3.2 kWh.
The thick line corresponds with the indoor temperature, while the thinner one corresponds
with the heating power evolution.
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Fig. 16 Evolution of the total heating power for the validation Condo when the energy is
limited to 3.2 kWh.


