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Abstract
RDF is one of the cornerstones of the Semantic
Web. It can be considered as a knowledge represen-
tation common language based on a graph model.
In the functional programming community, induc-
tive graphs have been proposed as a purely func-
tional representation of graphs, which makes rea-
soning and concurrent programming simpler. In
this paper, we propose a simplified representation
of inductive graphs, called Inductive Triple Graphs,
which can be used to represent RDF in a purely
functional way. We show how to encode blank
nodes using existential variables, and we describe
two implementations of our approach in Haskell
and Scala.

1 Introduction
RDF appears at the basis of the semantic web technologies
stack as the common language for knowledge representation
and exchange. It is based on a simple graph model where
nodes are predominantly resources, identified by URIs, and
edges are properties identified by URIs. Although this appar-
ently simple model has some intricacies, such as the use of
blank nodes, RDF has been employed in numerous domains
and has been part of the successful linked open data move-
ment.

The main strengths of RDF are the use of global URIs to
represent nodes and properties and the composable nature of
RDF graphs, which makes it possible to automatically inte-
grate RDF datasets generated by different agents.

Most of the current implementations of RDF libraries are
based on an imperative model, where a graph is represented
as an adjacency list with pointers, or an incidence matrix.
An algorithm traversing a graph usually maintains a state in
which visited nodes are collected.

Purely functional programming offers several advantages
over imperative programming [13]. It is easier to reuse and
compose functional programs, to test properties of a program
or prove that a program is correct, to transform a program,
or to construct a program that can be executed on multi-core
architectures.

In this paper, we present a purely functional representation
of RDF Graphs. We introduce popular combinators such as

fold and map for RDF graphs. Our approach is based on Mar-
tin Erwig’s inductive functional graphs [10], which we have
adapted to the intricacies of the RDF model. The main con-
tributions of this paper are:

• a simplified representation of inductive graphs

• a purely functional representation of RDF graphs

• a description of Haskell and Scala implementations of
an RDF library

This paper is structured as follows: Section 2 describes
purely functional approaches to graphs. In particular, we
present inductive graphs as introduced by Martin Erwig, and
we propose a new approach called triple graphs, which is
better suited to implement RDF graphs. Section 3 presents
the RDF model. Section 4 describes how we can represent
the RDF model in a functional programming setting. Sec-
tion 5 describes two implementations of our approach: one
in Haskell and another in Scala. Section 6 describes related
work and Section 7 concludes and describes future work.

2 Inductive Graphs
2.1 General inductive graphs
In this section we review common graph concepts and the
inductive definition of graphs proposed by Martin Erwig [10].

A directed graph is a pair G = (V, E) where V is a set of
vertices and E ⊆ V × V is a set of edges. A labeled directed
graph is a directed graph in which vertices and edges are la-
beled. A vertex is a pair (v, l), where v is a node index and
l is a label; an edge is a triple (v1, v2, l) where v1 and v2 are
the source and target vertices and l is the label.

Example 2.1. Figure 1 depicts the labeled directed
graph with V = {(1, a), (2, b), (3, c)}, and E =
{(1, 2, p), (2, 1, q), (2, 3, r), (3, 1, s)}.

In software, a graph is often represented using an impera-
tive data structure describing how nodes are linked by means
of edges. Such a data structure may be an adjacency list
with pointers, or an incidence matrix. When a graph changes,
the corresponding data structure is destructively updated. A
graph algorithm that visits nodes one after the other uses an
additional data structure to register what part of the graph has
been visited, or adapts the graph representation to include ad-
ditional fields to mark nodes and edges in the graph itself.
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Figure 1: Simple labeled directed graph

Implementing graph algorithms in a functional program-
ming language is challenging as one has to either pass an ad-
ditional parameter to all the functions with that data structure
or use monads to encapsulate the imperative style. This style
complicates correctness proofs and program transformations.

Martin Erwig [9] introduces a functional representation of
graphs where a graph is defined by induction. He describes
two implementations that enable persistent graphs [8], and an
implementation in Haskell [10], which we summarize in this
section. He defines a graph as either 1) an empty graph or 2)
an extension of a graph with a node v together with its label
and a list of v’s succesors and predecessors that are already
in the graph.

The type of the values used in an extension of a graph is
given by the type Context.

1 -- Context of a node in the graph
2 type Context a b =
3 (Adj b, Node, a, Adj b)
4

5 -- Adjacent labelled nodes
6 type Adj b = [(Node,b)]
7

8 -- Labelled nodes
9 type LNode a = (a,Node)

10

11 -- Index of nodes
12 type Node = Int
13

14 -- Labelled edges
15 type LEdge b = (Node,Node,b)

A context of a node is a value (pred,node,lab,succ),
where pred is the list of predecessors, node is the index of
the node, lab is the label of the node and succ is the list of
successors. Labelled nodes are represented by a pair consist-
ing of a label and a node, and labelled edges are represented
by a source and a target node, together with a label.

Example 2.2. The context of node b in Figure 1 is:

1 ([(1,’p’)],2,’b’,[(1,’q’),(3,’r’)])

Although the graph type is implemented as an abstract type
for efficiency reasons, it is convenient to think of the graph
type as an algebraic type with two constructors Empty and
:&.

1 data Graph a b = Empty
2 | Context a b :& Graph a b

Example 2.3. The graph from Figure 1 can be encoded as:

1 ([(2,’q’),(3,’s’)],1,’a’,[(2,’p’)]) :&
2 ([],2,’b’,[(3,’r’)]) :&
3 ([],3,’c’,[]) :&
4 Empty

Note that there may be different inductive representations
for the same graph.

Example 2.4. Here is another representation of the graph in
Figure 1:

1 ([(2,’r’)],3,’c’,[(1,’s’)]) :&
2 ([(1,’p’)],2,’b’,[(1,’q’)]) :&
3 ([],1,’a’,[]) :&
4 Empty

The inductive graph approach has been implemented in
Haskell in the FGL library1. FGL defines a type class Graph
to represent the interface of graphs and some common opera-
tions. The essential operations are:

1 class Graph gr where
2 empty:: gr a b
3 isEmpty:: gr a b -> Bool
4 match:: Node -> gr a b ->
5 (Context a b, gr a b)
6 mkGraph::[LNode a] -> [LEdge b]
7 -> gr a b
8 labNodes :: gr a b -> [LNode a]

Figure 2: Inductive graph representation using M. Erwig ap-
proach

A problem with this interface is that it exposes the manage-
ment of node/edge indexes to the user of the library. It is
for example possible to construct graphs with edges between
non-existing nodes.

Example 2.5. The following code compiles but produces a
runtime error because there is no node with index 42:

1 gErr :: Gr Char Char
2 gErr = mkGraph
3 [(’a’,1)]
4 [(1,42,’p’)]

2.2 Inductive Triple graphs
We propose a simplified representation of inductive graphs
based on three assumptions:

• each node and each edge have a label

• labels are unique

• the label of an edge can also be the label of a node
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Figure 3: A triple graph with an edge acting also as a node

These three assumptions are motivated by the nature of
RDF Graphs, which we will explain in the next section. As
we will see in Section 2.3, our approach is general enough to
represent any graph.

One advantage of this representation is that a user does not
have to be aware of node indexes. Also, there is no need for
two different types for nodes/edges simplifying the develop-
ment of an algebra of graphs.

A graph of elements of type a is described by a set of
triples where each triple has the type (a,a,a). We will call
these kind of graphs TGraph (triple based graphs).

We assume triple graphs are defined by the following
datatype. Practical implementations may use a different rep-
resentation.

1 data TGraph a = Empty
2 | TContext a :& Graph a

where TContext a is defined as:

1 type TContext a =
2 (a, [(a,a)], [(a,a)], [(a,a)])

A TContext of a node is a value (node,pred,succ,
rels) where node is the node itself, pred is the list of
predecessors, succ is the list of successors and rels is the
list of pairs of nodes related by this node when it is an edge.
Example 2.6. The graph from Figure 1 can be defined as:

1 (’a’,[(’c’,’s’),(’b’,’q’)],
2 [(’p’,’b’)],
3 []) :&
4 (’b’,[],[(’r’,’c’)],[]) :&
5 (’c’,[],[],[]) :&
6 (’p’,[],[],[]) :&
7 (’q’,[],[],[]) :&
8 (’r’,[],[],[]) :&
9 (’s’,[],[],[]) :&

10 Empty

With this representation it is easy to model graphs in which
edges are also nodes.
Example 2.7. The graph from Figure 3 can be defined by:

1 (’a’,[],[(’p’,’b’)],[]) :&
2 (’b’,[],[],[]) :&
3 (’p’,[],[(’q’,’r’)],[]) :&

1http://web.engr.oregonstate.edu/~erwig/
fgl/haskell

4 (’q’,[],[],[]) :&
5 (’r’,[],[],[]) :&
6 Empty

As in Erwig’s approach, it is possible to have different rep-
resentations for the same graph.
Example 2.8. The previous graph can also be defined as fol-
lows, where we reverse the order of the nodes:

1 (’r’,[],[(’p’,’q’)],[]) :&
2 (’q’,[],[],[]) :&
3 (’p’,[],[],[(’a’,’b’)]) :&
4 (’b’,[],[],[]) :&
5 (’a’,[],[],[]) :&
6 Empty

In Haskell, we implement TGraph as a type class with the
following essential operations:

1 class TGraph gr where
2 -- empty graph
3 empty :: gr a
4

5 -- decompose a graph
6 match :: a -> gr a -> (TContext a,gr a)
7

8 -- make graph from triples
9 mkGraph :: [(a,a,a)] -> gr a

10

11 -- nodes of a graph
12 nodes :: gr a -> [a]
13

14 -- extend a graph (similar to :&)
15 extend :: TContext a -> gr a -> gr a

Figure 4: TGraph representation

Using this simplified interface, it is impossible to create
graphs with edges between non-existing nodes.

2.3 Representing Graphs at triple Graphs
We can represent general inductive graphs [10] using induc-
tive triple graphs. The main difference between general in-
ductive graphs and inductive triple graphs is that in general
inductive graphs, labels of nodes and edges have an index (an
Int), which does not need to be different. We represent a
general inductive graph using a record with a triple graph that
stores either the index of the node or the index of the edge,
and two maps, one from indexes to node labels and another
from indexes to edge labels.

1 data GValue a b = Node a | Edge b
2

3 data Graph a b = Graph {
4 graph :: TGraph (GValue Int Int),
5 nodes :: Map Int a
6 edges :: Map Int b

http://web.engr.oregonstate.edu/~erwig/fgl/haskell
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Example 2.9. The graph from example 2.4 can be repre-
sented as:

1 Graph {
2 graph =
3 (Node 1,[(Node 3,Edge 4),
4 (Node 2,Edge 2)],
5 [(Edge 1,Node 2)],
6 [] :&
7 (Node 2,[],
8 [(Edge 3,Node 3)],
9 []) :&

10 (Node 3,[],[],[]) :&
11 (Edge 1,[],[],[]) :&
12 (Edge 2,[],[],[]) :&
13 (Edge 3,[],[],[]) :&
14 (Edge 4,[],[],[]) :&
15 Empty,
16 nodes = Map.fromList
17 [(1,’a’),(2,’b’),(3,’c’)],
18 edges = Map.fromList
19 [(1,’p’),(2,’q’),(3,’r’),(4,’s’)]
20 }

The conversion between both representations is straightfor-
ward and is available at https://github.com/labra/
haws.

Conversely, we can also represent inductive triple graphs
using general inductive graphs. As we describe in Section 5,
our Haskell implementation is defined in terms of Martin Er-
wig’s FGL library.

2.4 Algebra of graphs
Two basic operators on datatypes are the fold and the
map [17] . The fold is the basic recursive operator on
datatypes: any recursive function on a datatype can be ex-
pressed as a fold. Using the representation introduced above,
we can define foldGraph:

1 foldGraph :: TGraph gr =>
2 b -> (TContext a -> b -> b) ->
3 gr a -> b
4 foldGraph e f g = case nodes g of
5 [] -> e
6 (n:_) -> let (ctx,g’) = match n g
7 in f ctx (foldGraph e f g’)

The map operator applies an argument function to all values
in a value of a datatype, preserving the structure. It is the
basic functorial operation on a datatype. On TGraph’s, it
takes a function that maps a-values in the context to b-values,
and preserves the structure of the argument graph. We define
mapGraph in terms of foldGraph.

1 mapTGraph :: TGraph gr =>
2 (TContext a -> TContext b) ->
3 gr a -> gr b
4 mapTGraph f =
5 foldTGraph empty
6 (\ctx g -> extend (mapCtx f ctx) g)

7 where
8 mapCtx f (n,pred,succ,rels) =
9 (f n,

10 mapPairs f pred,
11 mapPairs f succ,
12 mapPairs f rels)
13 mapPairs f = map
14 (\(x,y) -> (f x, f y))

An interesting property of mapTGraph is that it maintains
the graph structure whenever the function f is injective. Oth-
erwise, the graph structure can be completely modified.
Example 2.10. Applying the function mapTGraph (\_
-> 0) to a graph returns a graph with a single node.

Using mapGraph, we define some common operations
over graphs.
Example 2.11. The following function reverses the edges in
a graph.

1 rev :: (TGraph gr) => gr a -> gr a
2 rev = mapTGraph swapCtx
3 where
4 swapCtx (n,pred,succ,rels) =
5 (n,succ,pred,map swap rels)

We have defined other graph functions implementing
depth-first search, topological sorting, strongly connected
components, etc. 2

3 The RDF Model
The RDF Model was accepted as a recommendation in
2004 [1]. The 2004 recommendation is being updated to RDF
1.1, and the current version [5] is the one we use for the main
graph model in this paper. Resources in RDF are globally de-
noted IRIs (internationalized resource identifiers [7]).3 No-
tice that the IRIs in the RDF Model are global identifiers for
nodes (subjects or objects of triples) and for edges (predi-
cates). Therefore, an IRI can be both a node and an edge.
Qualified names are employed to shorten IRIs. For example,
if we replace http://example.org by the prefix ex:,
ex:a refers http://example.org/a. Throughout the
paper we will employ Turtle notation [6]. Turtle supports
defining triples by declaring prefix aliases for IRIs and in-
troducing some simplifications.
Example 3.1. The following Turtle code represents the graph
in Figure 1.

1 @prefix : <http://example.org/>
2

3 :a :p :b .
4 :b :q :a .
5 :b :r :c .
6 :c :s :a .

2The definitions can be found on https://github.com/
labra/haws.

3The 2004 RDF recommendation employs URIs, but the current
working draft uses IRIs.
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An RDF triple is a three-tuple 〈s, p, o〉 ∈ (I∪B)× I×
(I∪B∪L), where I is a set of IRIs, B a set of blank nodes,
and L a set of literals. The components s, p, o are called,
the subject, the predicate, and the object of the triple, respec-
tively. An RDF graph G is a set of RDF triples.

Example 3.2. The following Turtle code represents the graph
in Figure 3.

1 :a :p :b .
2 :p :q :r .

Blank nodes in RDF are used to describe elements whose
IRI is not known or does not exist. The Turtle syntax for
blank nodes is _:id where id represents a local identifier
for the blank node.

Example 3.3. The following set of triples can be depicted by
the graph in Figure 5.

1 :a :p _:b1 .
2 :a :p _:b2 .
3 _:b1 :q :b .
4 _:b2 :r :b .

:a _:b1

_:b2 :b

:p

:p

:r

:q

Figure 5: Example with two blank nodes

Blank node identifiers are local to an RDF document and
can be described by means of existential variables [16]. In-
tuitively, a triple 〈b1, p, o〉 where b1 ∈ B can be read as
∃b1〈b1, p, o〉. This predicate holds if there exists a resource
s such that 〈s, p, o〉 holds.

When interpreting an RDF document with blank nodes, ar-
bitrary resources can be used to replace the blank nodes, re-
placing the same blank node by the same resource.

Currently, the RDF model only allows blank nodes to ap-
pear as subjects or objects, and not as predicates. This re-
striction may be removed in future versions of RDF so we
do not impose it in our graph representation model. Literals
are used to denote values such as strings, numbers, dates, etc.
There are two types of literals: datatype literals and language
literals. A datatype literal is a pair (val, t) where val ∈ L is
a lexical form representing its value and t ∈ T is a datatype
URI. In Turtle, datatype literals are represented as val^^t.
A language literal is a pair (s, lang) where s ∈ L is a string
value and lang is a string that identifies the language of the
literal.

In the RDF data model, literals are constants. Two liter-
als are equal if their lexical form, datatype and language are
equal. The different lexical forms of literals can be consid-
ered unique values. Although the current RDF graph model
restricts literals to appear only as objects, we do not impose
that restriction in our model. For simplicity, we only use lex-
ical forms of literals in the rest of the paper.

4 Functional representation of RDF Graphs
An RDF document in the RDF model is a labeled directed
graph where the nodes are resources. A resource can be mod-
eled as an algebraic datatype:

1 data Resource = IRI String
2 | Literal String
3 | BNode BNodeId
4

5 type BNodeId = Int

The RDF graph model has three special aspects that we need
to take into account:

• edges can also be nodes at the same time (subjects or
objects)

• nodes are uniquely identified. There are three types of
nodes: resource nodes, blank nodes and literals

• the identifier of a blank node is local to the graph, and
has no meaning outside the scope of the graph. It follows
that a blank node behaves as an existential variable [16]

To address the first two aspects we employ the triple induc-
tive graphs introduced in Section 2.2, which support defining
graphs in which edges can also appear as nodes, and both
nodes and edges are uniquely identified. The existential na-
ture of blank nodes can be modeled by logical variables [19].

The type of RDF graphs is defined as:

1 data RDFGraph = Ground (Graph Resource)
2 | Exists (BNodeId -> RDFGraph)

Example 4.1. The graph from Figure 5 is defined as:

1 Exists (\b1 ->
2 Exists (\b2 ->
3 Ground (
4 (’a’,[],[(’p’,b1),(’p’,b2)],[]) :&
5 (’b’,[(b1,’q’),(b2,’r’)],[],[]) :&
6 (b1, [], [], []) :&
7 (b2, [], [], []) :&
8 (p, [], [], []) :&
9 (q, [], [], []) :&

10 (r, [], [], []) :&
11 Empty)))

This RDFGraph encoding makes it easy to construct a
number of common functions on RDF graphs. For example,
two RDFGraph’s can easily be merged by means of function
composition and folds over triple graphs.



1 mergeRDF :: RDFGraph -> RDFGraph ->
RDFGraph

2 mergeRDF g (Exists f) = Exists (\x ->
mergeRDF g (f x))

3 mergeRDF g (Ground g’) = foldTGraph g
compRDF g’

4 where
5 compRDF ctx (Exists f) =
6 Exists (\x -> compRDF ctx (f x))
7 compRDF ctx (Ground g) =
8 Ground (comp ctx g)

We define the map function over RDFGraphs by:

1 mapRDFGraph::(Resource -> Resource) ->
2 RDFGraph -> RDFGraph
3 mapRDFGraph h (Basic g) =
4 Basic (gmapTGraph (mapCtx h) g)
5 mapRDFGraph h (Exists f) =
6 Exists (\x -> mapRDFGraph h (f x))

Finally, to define foldRDFGraph, we need a seed gener-
ator that assigns different values to blank nodes. In the fol-
lowing definition, we use integer numbers starting from 0.

1 foldRDFGraph ::
2 a -> (Context Resource -> a -> a) ->
3 RDFGraph -> a
4 foldRDFGraph e h =
5 foldRDFGraph’ e h 0
6 where
7 foldRDFGraph’ e h seed (Ground g) =
8 foldTGraph e h g
9 foldRDFGraph’ e h seed (Exists f) =

10 foldRDFGraph’ e h (seed+1) (f seed)

5 Implementation
We have developed two implementations of inductive triple
graphs in Haskell4: one using higher-order functions and an-
other based on the FGL library. We have also developed a
Scala implementation5 using the Graph for Scala library.

5.1 Implementation in Haskell
Our first implementation uses a functional representation of
graphs. A graph is defined by a set of nodes and a function
from nodes to contexts.

1 data FunTGraph a =
2 FunTGraph (a -> Maybe (Context a,

FunTGraph a))
3 (Set a)

This implementation offers a theoretical insight but is not
intended for practical proposes.

4Haskell implementations are available at https://github.
com/labra/haws.

5Scala implementation is available at https://github.
com/labra/wesin.

The second Haskell implementation is based on the FGL
library. In this implementation, a TGraph a is represented
by a Graph a and a map from nodes to the edges that they
relate.

1 data FGLTGraph a = FGLTGraph {
2 graph :: Graph a a,
3 nodeMap :: Map a (ValueGraph a)
4 }
5

6 data ValueGraph a = Value {
7 grNode :: Node,
8 edges :: Set (a,a)
9 }

nodeMap keeps track of the index of each node in the
graph and the set of (subject,object) nodes that the node re-
lates if it acts as a predicate. Any inductive triple graph can
be converted to an inductive graph using Martin Erwig’s ap-
proach.

5.2 Implementation in Scala
In Scala, we define a Graph trait with the following inter-
face:

1 trait TGraph[A] {
2 def empty : TGraph[A]
3

4 def mkTGraph
5 (triples : Set((A,A,A))): TGraph[A]
6

7 def nodes : Set[A]
8

9 def decomp
10 (node : A): (Context[A],TGraph[A])
11

12 def extend
13 (ctx : Context[A]): TGraph[A]

The Scala implementation is based on the Graph for Scala
library developed by Peter Empen. This library provides an
in-memory Graph library with a default implementation us-
ing adjacency lists and Scala inner classes. It is important to
notice that although the base library can employ an underly-
ing non-purely functional approach, the API itself is purely
functional.

The library contains a generic trait Graph[N, E] to de-
fine graphs with nodes of type N and edges of kind E. There
are four edge categories: hyperedge, directed hyperedge,
undirected and directed edge. Each of these categories has
predefined edge classes representing any combination of non-
weighted, weighted, key-weighted, labeled and key-labeled.
In our case, we will employ 3-uniform directed hypergraphs
given that an edge relates three elements (origin, property and
destiny). The library offers both a mutable and immutable
implementation of graphs.

The functions from the Graph for Scala library used in this
paper are given in Table 1.

Our implementation defines a case class TGraphImpl
which takes a Graph[A,Triple] as a parameter.

https://github.com/labra/haws
https://github.com/labra/haws
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Table 1: Functions employed from the Graph for Scala library

empty Returns an empty Graph
nodes List of nodes of a graph
edges List of edges of a graph. For each edge e, we can obtain its 3 components

using e._1, e._2 and e.last
isEmpty Checks if graph is empty
+ Adds an edge to a graph returning a new graph. A 3-edge between a, b and

c is expressed as a~>b~>c

e1 p

a

b

e2

q r

_1

_2

_3

_1 _2 _3

Figure 6: RDF graph as an hypergraph. ei are 3-hypergedges

Triple is defined as an instance of DiHyperEdge re-
stricted to hyperedges of rank 3 (triples). Figure 6 depicts
the graph from Figure 3 using 3-ranked hyperedges. e1 and
e2 are the hyperedges that relate the 2 triples.

Following is a sketch of the TGraphImpl code:

1 case class TGraphImpl[A]
2 (graph: Graph[A,Triple])
3 extends TGraph[A] {
4

5 def empty: TGraph[A] =
6 TGraphImpl(graph.empty)
7

8 def nodes : Set[A] =
9 graph.nodes.map(_.value)

10

11 def extend
12 (ctx : Context[A]): TGraph[A] = {
13 TGraphImpl(
14 ((((graph + ctx.node)
15 /: ctx.succ) {(g,p) => g +
16 Triple(ctx.node,p._1,p._2)}
17 /: ctx.pred) {(g,p) => g +
18 Triple(p._1,p._2,ctx.node)}
19 /: ctx.rels) {(g,p) => g +
20 Triple(p._1,ctx.node,p._2)})}
21

22 def decomp:
23 Option[(Context[A],TGraph[A])]={
24 if (graph.isEmpty) None

25 else {
26 val node = nodes.head
27 for {
28 pred <- pred(node)
29 succ <- succ(node)
30 rels <- rels(node)
31 } yield(Context(node,pred,succ,rels),
32 TGraphImpl(graph - node))
33 }
34 }

Notice that we employ the operator + to add elements and
edges to a graph returning a new graph. The Graph for Scala
library provides an implementation with mutable graphs, and
another with immutable graphs. Since we work in a purely
functional setting, we prefer to work with immutable data
structures. Further work remains to be done to compare the
efficiency of the implementations, or to further optimise an
implementation.

A context of a node in a graph is defined with the following
case class:

1 case class Context[A](
2 node : A,
3 pred: Set[(A,A)],
4 succ: Set[(A,A)],
5 rels: Set[(A,A)])

Following the encoding presented in previous section, we
define RDF graphs as:

1 abstract class RDFGraph
2 case class Ground
3 (graph : TGraph[RDFNode])
4 extends RDFGraph
5 case class Exists
6 (fn: BNode => RDFGraph)
7 extends RDFGraph

where RDF nodes are defined by the RDFNode class.

1 abstract class RDFNode
2 case class IRI(iri: IRI)
3 extends RDFNode
4 case class Literal(lit: Literal)
5 extends RDFNode
6 case class BNode(id: String)
7 extends RDFNode



Now, it is possible to define mapRDFGraph as:

1 def mapRDFGraph
2 (fn : RDFNode => RDFNode,
3 graph : RDFGraph
4 ) : RDFGraph = {
5 graph match {
6 case Ground(g) =>
7 Ground(g.mapTGraph(fn))
8 case Exists(f) =>
9 Exists ((x : BNode) => f(x))

10 }
11 }

In the same way, we have defined other common functions
like foldRDFGraph.

6 Related Work
There are a number of RDF libraries for imperative languages
like Jena6, Sesame7 (Java), dotNetRDF8 (C#), Redland9 (C),
RDFLib10 (Python), RDF.rb11 (Ruby), etc.

For dynamic languages, most of the RDF libraries are
binders to some underlying imperative implementation.

banana-RDF12 is an RDF library implementation in Scala.
Although the library emphasizes type safety and immutabil-
ity, the underlying implementations are Jena and Sesame.

There are some fuctional implementations of RDF li-
braries. Most of these employ mutable data structures. For
example, scaRDF13 started as a facade of Jena and evolved
to implement the whole RDF graph machinery in Scala, em-
ploying mutable adjacency maps.

There have been several attempts to define RDF libraries
in Haskell. RDF4h14 is a complete RDF library implemented
using adjacency maps, and Swish15 provides an RDF toolkit
with support for RDF inference using a Horn-style rule sys-
tem. It implements some common tasks like graph merging,
isomorphism and partitioning representing an RDf graph as a
set of arcs.

Martin Erwig introduced the definition of inductive
graphs [9]. He gives two possible implementations [8], one
using version trees of functional arrays, and the other using
balanced binary search trees. Both are implemented in SML.
Later, Erwig implemented the second approach in Haskell
which has become the FGL library.

Jeffrey and Patel-Schneider employ Agda16 to check in-
tegrity constraints of RDF [14], and propose a programming
language for the semantic web [15].

6http://jena.apache.org/
7http://www.openrdf.org/
8http://www.dotnetrdf.org/
9http://librdf.org/

10http://www.rdflib.net/
11http://rdf.rubyforge.org/
12https://github.com/w3c/banana-rdf
13https://code.google.com/p/scardf/
14http://protempore.net/rdf4h/
15https://bitbucket.org/doug_burke/swish
16https://github.com/agda/agda-web-semantic

Mallea et al [16] describe the existential nature of blank
nodes in RDF. Our use of existential variables was inspired by
Seres and Spivey [19] and Claessen [3]. The representation
is known in logic programming as ‘the completion process of
predicates’, first described and used by Clark in 1978 [4] to
deal with the semantics of negation in definite programs.

Our representation of existential variables in RDFGraphs
uses a datatype with an embedded function. Fegaras and
Sheard [11] describe different approaches to implement folds
(also known as catamorphisms) over these kind of datatypes.
Their paper contains several examples and one of them is a
representation of graphs using a recursive datatype with em-
bedded functions.

The representation of RDF graphs using hypergraphs, and
transformations between hypergraphs and bipartite graphs,
have been studied by Hayes and Gutiérrez [12].

Recently, Oliveira et al. [18] define structured graphs in
which sharing and cycles are represented using recursive
binders, and an encoding inspired by parametric higher-order
abstract syntax [2]. They apply their work to grammar anal-
ysis and transformation. It is future work to check if their
approach can also be applied to represent RDF graphs.

7 Conclusions
In this paper, we have presented a simplified representation
for inductive graphs that we called Inductive Triple Graphs
and that can be applied to represent RDF graphs using exis-
tential variables. This representation can be implemented us-
ing immutable data structures in purely functional program-
ming languages. A functional programming implementation
makes it easier to develop basic recursion operators such as
folds and maps for graphs, to obtain programs that run on
multiple cores, and to prove properties about functions. We
developed two different implementations: one in Haskell and
another in Scala. The implementations use only standard li-
braries as a proof-of-concept without taking possible opti-
mizations into account. In the future, we would like to of-
fer a complete RDF library and to check its availability and
scalability in real-time scenarios.
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