work, we will study the propertieg
nalization and conditioning.

lence intervals. Journal of the Amer.
6, 1083.

vnstruct possibility measures from g

1tion Processing and Management of
IPMU’98, 757-762, 1996.

ral, Probability intervals: A tool

urnal of Uncertainty, Fuzziness and
M.

fembership functions i: Comparing
Journal of Approzimate Reasoning,

f possibility-probability consistence,
7.
“atistical daia. European Journg! of

ind necessity measures: towards a
#22y Sels and Systems, 10(1}:15-20,

sry. An approach to computerized
8.
ibility/probability transformations.
Fs$A'91) Congress, volume Mathe-
. 1991,

listic graphical models. In Proceed-
i# Techniques and Soft Computing,

analysis of information-preserving
rossibilistic formulations of uncer-
‘ems, 20(2):143~-176, 1992.

ta confidence intervals for the bino-
‘atistical Association, 74(368):894-

iograms from interval data. Int

7.
¥ transformations: A comparison.

:291-310, 1992,

mce. Princeton University Press,
sformations. Puzzy Sets and Sys-
iions and their adquisition. Fuzey

iy of possibility. Fuzsy Sets and

e

Fuzzy random variables-based modeling with
GA-P algorithms

Luciano Sanchez Inés Couso
Departamento de Informdtica Dpto. Estadistica e 1.O. y D.M.
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Abstract: GA-P algoritluns combine genetic programming and genetic algo-
rithms to solve symbolic regression problems. In this work a fuzzy arithmetic-
based GA-P procedure will be applied to the search of an analytic expression
that relates input and output variables.

The algorithm has been tested in some practical problems, most of them
related to electrical engineering. We will derive here an expression that relates
climatic conditions with domestic electrical energy consumption in the north
of Spain.

1 Introduction

Regression techniques (also named modeling techniques in machine learning
literature) can be used to find an adequate expression for a function g so that
given a variable ¥ that depends on the valite of a variable X, g(X) is a good
approximation to Y. It is often assumed that the expression of g is known and
that it depends on a set of parameters.

When the expression of g is not known previously and the structure of g
and the values of the parameters on which it depends are to be determined, the
technique is known as symbolic regression. There are many interval and fuzzy
approaches to classical regression[9] but, as far as we know, symbolic regression
methods find only punctrall6] and interval[14] estimates. These works will be
extended here so that fuzzy arithmetic-based expressions can be obtained.

2 Interval predictions

When we need to model a physical process, we often want to know the value
of a variable Y, using the information provided by a tuple of variables X =
(X1,...,X4). We search for a function g such that the difference ¥ — g(X) is
small for every value of X; in other words a function g so that g(X) is a good
estimate of Y.
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(X, Y)

X X

Figure 1: Punctual and interval regression. Interval models produce a range
of values which contain the true outcome of the experiment with a high prob-
ability.

From & stochastic point of view we can assume that there exists a random
experiment governed by a probability measure P with results in a set € such
that ¥ : § — R is a random variable and X : @ — R? is a random
vector. The function g that minimizes the mean square error i that case is
gle) = E[Y | X =z] (10].

2.1 Multi-valued predictions

In some practical problems it is also interesting to obtain the margins in which
we expect the variable V" is when the variablie X (which can be mulcidimen-
sional) is known. When we need to solve the punctual problem, we search for
a function g such that g(X) estimates E[Y | X]. Now we need an interval of
values I's that covers the value ¥ with probability higher than a confidence
degree 8 and this interval must depend on the value of the variable X, so ['s
is a function of X. Since X is also a function of w, this mapping between the
result w of a random experiment and an interval I's(X (w)) is a random set.

Formally, we will look for a multi-valued mapping Iz : Im(X) — I{R),
where I(R) is the set formed by all closed intervals in R, such that the random
set Tgo X : 1 =— I(R) verifies

Pluel|Y(w)eTgo X (W)} 24

for a given degree of confidence g (the symbol “¢” means composition: g o
X(w) :=Tp{X(w)) and F is the probability that Y is in the interval I'g(X).)

We can assess an interval prediction in some different ways. For example,
we can say that given a value for 3, the shorter I'g is, the better it is. Let us
define two functions g7 and g~ so that g~ (X) is the minimum value of the
confidence interval I's{X) and g~ (X) is the maximum,

TgoX =[g” o X,g7 0 X]

and let us impose that g7 and g~ are continuous (see Figure 1). Then, the
margin of validity will be better when the mean difference between g* and g~

E(gT(X) - g7 (X))
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is low. Since it must be true that
Ploe | g (X(w) < ¥i{w) < g {(X(w)} 28

we can define the objective of the interval prediction as “find two functions g*
and g~ such that the distance between g*(X) and g~ (X) is minimum and ¥
is between g+(X) and g~ (X) with a probability 3”.

In other words, given a region

Rigtg-y = {{z,9) € R | g7 (2) <y < g*(2)}

we need to minimize
E(g*(X) -9 (X))
constrained to
Plwe Q| (X,Y)w) € Ryt g1} 2 B.

If we are solving an interval modeling problem we need to find two functions
g* and g~ instead of the single function g that we needed to find in punctual
modeling. Let us suppose now that we define g* and g~ by means of a function
of X that depends on some interval parameters, using interval arithmetic [1].
This concept is similar to that introduced in [8] and many other works related to
fuzzy regression [9). Formally, let g* and g~ depend on a function hy : R™ —
R so that [g=(z),g7(x)] = {t € R |t = he(z),0 € [67,67] % ... x {,0%]}
where the expression of hy is known except for the value of 2m parameters 6,
E=1,...2m and hg is continuous with respect to # and z (and then g% and
g~ will aiso be continuous functions, as we had proposed). Given a function A,
a random sample of size N obtained from the random vector (X,Y),

(X1, ¥1),. - (XN, YN))

(where (X;,Y;) are independent and identically distributed) and a confidence
degree 1 — € we can estimate 8] (€) and 67 (¢) with the 2m values that minimize

1 N
§ 20X - g7 (X))

constrained by
l—c< %#{; € {1...N} | (X;,Y}) € Rigs+ 4y}

that is, the number of elements in the sample that belong to R+ 4-3.
For a given value of € we can estimate the value of 8 by means of a second

sample
(X1, ),- - (X, Yag))s

independent from the first one, by means of

~

By = %#{2 € {1 M} | (X:,Y,’) € R(9+1g—)}.

The random variable M -3, follows a binomial distribution with paramctcrs M
and S and, by the strong law of the large numbers, it converges almost surely
to the value S when M — oo. The procedure proposed should take three steps:




Figure 2: Punctual and interval estimation from imprecise data. Interval mod-
els are better suited for using interval data, since the error criterion for interval
models can be appiied directly to interval data.

1. Choose h and a (low) value for ¢
2. Estimate the interval parameters [; , 6] from the first sample (training
set)

3. Estimate the confidence degree 8 from the second sample (test set)

2.2 Imprecisely measured data

Let us suppose that the values of the random variable ¥ and the random vector
X cannut be precisely observed but we only know that for a given output w of

the random experiment
(X,Y)(w) € Alw)

where A = A; x Ag, with A; : § — I(R?) and Az : @ — I(R) are random
sets, and T(R?) is the set of all the rectangles in R® (see Figure 2.) For example,
imagine that we have a sensor that indicates “between 100 and 110" when
X{w,) = 100 and also when X (wg) = 105; we model this behavior by means of
a random set A; such that Ay(w;) = [100,110] and A;(we) = {100,110], and it
is true that X{wl) € A;(Wl) and X(ug) =4 A]_(UJz).

In these conditions, there is not an extension of the classical modeling
that is universally accepted as the best one. But the previous model can
deal with this imprecision. Let us define the two functions g%, ¢~ so that
Plwe|g(XWw) <YW < g (X(w)) V(X,Y) € C(A)} 2 5 and let
C(A) = {U random variable | U(w) € A{w) as. (P)} be the set of all random
variables contained in A (see [3]). Then, the model we defined in the last sec-
tion is valid for imprecise data. The set C(A) includes all possible mappings
{random variables) that can relate a result w of the random experiment with
values X (w) and Y{w) that are compatible with the imprecise observations A,
and As.

We wish that the mean margin between g+ and g~ is the narrowest possible
one for a given 8, but now it is posed an additional difficulty, because we do not
know (X,Y) but a random set A which contains it. Taking a pessimistic crite-
rion, we search for a region Riy+ o-) = {(z,¥) € R | g (2) <y < gt (x)} for
which all points in the set Py (R,+.,-)) = {Px.vi(Ra+.o-)) [ (X,Y) € C(A)}
={te[0,1]|t=PlweR|g e X(w) <Y(w) <gteX(Ww)},(X,Y)€ C(A)}

we .
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Ties(®) F )

P

Af(m)

Figure 3: Calculations of the value of I' o Ay. When the input value is an
interval, the output is the projection of the intersection between the interval
graph of the model and the cylindrical extension of the input.

are higher than the confidence 4. For every pair of variables (X,Y) contained
in A we obtain a value for the probability that (X,Y) is in Ryg+ 4-1: the set
Py(Rg+ 4-)) is the set of all these values and it is bounded by the numbers
B~ and g* (3] where

B~ =Plw e | A(w) C Rig+ 4}

A% = P{w e Q| (A(w) N B+ p-y) # 0}
Making
A<
so that

inf Plwellg oeX{Ww)<Y(w)<gToX >
o { lg7 e XWw) <Y (w) <gT o X(w)} 24
we obtain a model that fulfills that the probability that Y is in the interval
prediction is higher that # in the worst case.

When data were precisely observed, we tried to minimize the expected

length of the random interval [§~(X), g (X)] constrained by Plw € 2 | g7 (X (w)) <

Y{w) < g*(X(w))] > B. This time we want to find the minimum expected
length of the random interval T'(y+ ,-) {see Figure 3)

TgromyW)={yeR|y€lg(2),97@)] A z € Ay(w)}

g +
= ax z
[ min 97 (z), max g*(z)
{(where the last assertion is true because g~ and g* are continuous functions
and we know ['(,+ ,-) is strongly measurable by the same reason) restricted to

< min  PlweQ|g(XW) <YW <g (X}

(X.Y)eC(A)
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To solve the problem, we propose the following estimation: let

(AL, AM) = (Al x AL ..., AY x AD)

be a size N random sample drawn {rom the random set A = A; x A;. For a
given sample, we choose a value € > 0 as before and also a function hy known
except for the values of m parameters, and we search for 2m constants 9, , 67
so that [¢~(z), g"'(:c)] ={teR|t=he(x),0 €8] ,0]] x...x[6;,,6]} and
the value Iy = ¥ Z‘_l flI‘(g+ 4|l is minimum, where I‘(g+ - =lyeR]ye
[g7(x), 9% (z)] A z € Al} and restricting the search to the set of functions g*,
g~ that fulfilf 1 — ¢ < %# {i € {1...N}| A" C Riy+ ,-)} that is, the number
of intervals in the sample that are contained in Rg+ 4-)-

Once gt and g~ have been found, we cannot estimate g but a range of
values for 3 if we have a second independent sample

(A % A, A )
for which the value
A1 . i
b= gyt {i € (1 MYLA C R}

is an estimator of the belief measure [15] of the event “the imprecisely abserved
pair (X,Y)isin R”, and

B = %# {z’ €{1...M} A N Ryt o) # @},
is an estimation of the plausibility [15) of the same event. In other words,
B 25 Pl € 0 AW) € Bigegm)] =
(x,lfi)lgcm) Pixyy (B gt ,o-))
BR} M%m Plw e Q[ (AW) N Bgr ) # 0=
sup  Prx.v)(Rig+.o-))-

(X.Y)EC(A)

Finally, note that the case analyzed in the previous section is a particular
case of this one (where A; = X and Ay =Y).

3 Fuzzy predictions

In this section we will extend the technique so that it can be used to generate

fuzzy models and process fuzzy data.
Let (A1 AN )} be a tuple of realizations of a fuzzy random variable A :

0 — ’P(Rd"'l) that verifies that (A)g : @ — I{R**!) is a random interval

for all @, so we can say that ((A'),,...,(AN)a) is & random sample obtained
from thls random set. If we select a conﬁdence degree 8 and apply the process
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Figure 4: a-cuts of fuzzy models are interval models. The output of an interval
model, when the input is a fuzzy set, is also the projection of the intersection
between the interval graph of the model and the cylindrical extension of the
input. This projection is a fuzzy set. The output of a fuzzy model is defined
by the union of the outputs produced by every one of its a-cuts when the same
input is applicd to all of them.

shown before to an arbitrary a-cut «p of the sample ((K‘)ao, o (AM) g, ) we
will obtain two functions g§ and g7 that fulfill min{P{w € Q| g5 o X(w) <
Y(w) < gj o X(w)} | (X,Y) € C(A)ao)} 2 .

Let us suppose that the fuzzy observation X is a Cartesian product of fuzzy
nuimbers

~—

f——:}?lx...xXn

where the membership function of Xis X’(xi, cery B} = X () A... AX,(Zn)

m~

5o the a-cuts of the fuzzy measurements are also intervals In RY, X, ¢ I(R%)
for all & € [0,1). The multi-valued prediction of the interval model for an a-cut

of X is
Tfe g-y{8) — [min g5 (x), max g (x)]
TEX o z€X,

and it can be seen that
oy <oy =Ty ) (8) ST - (8)
and, since g+ and g~ are continuous, the family of intervals {I‘E’;_,_’ P (B)}aeio,
define a fuzzy sct f( g+ .9-{#) whose membership function is
Figt,o-)(B2) = supla | = € Tfpu -y (B)).

A praphic example of this partial resull can be seen in figure 4.
If we repeat the process for a certain rank of values of  we obtain a family
of regions {R(y+ 4-)(8)}aepo,1y- Under certain conditions this family can be

used to construct a fuzzy set R(r,y) =sup{a | (z,y) € R+, (B(c))}.
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In particular, for continuous random variables it makes sense to define every
set R(g+ g-) by means of cuts of the density function of the random vector
(X,Y) with horizontal planes. If the density function of {X,Y) is continuous
and the density function of ¥’ conditioned to X is unimodal, these sets have
the minimum area, are nested and they form a fuzzy set (we do nat. include the
demonstration here, because of limitations of space).

The mentioned process of calculating the output of a fuzzy model can also
be written as follows:

Py =\ (Bl A X@)

zcRe

where A and V mean “minimum” and “maximum” and R : R**! — [0,1) is
the fuzzy graph of the model. Notice the similarities between this expression
and the inference in an approximative Mamdani rule-based model.

4 Numerical optimization method. GA-P Al-
gorithms

GA-P algorithms are an evolutionary computation method, hybrid between
genetic algorithms and genetic programming, optimized to perform symbolic
regressions. A complete description of the GA-P method can be found in
(5]. Briefly, we will remark that each element of the population comprises a
chain of parameters and a tree that describes a fanction, which depends on
thesc parameters. The two operations hy means of which new members of the
population are generated are crossover and mutation. In a GA-P algorithm
both operations are independently performed over the tree and the chain of
parameters; i.e., We can cross or mutate only the chain, only the tree, both or
none of them. The object of the method is to concurrently evolve the tree and
the chain of parameters.

4.1 Modifications to GA-P

We will implement. the fuzzy model proposed in the last section by means of
a function hg that depends on m fuzzy parameters 6;. The terminal nodes of
the tree that codifies hg must be fuzzy sets and fuzzy arithmetic operators are
used to evaluate the tree; apart from this, modifications to Interval GA-P[14]
are straightforward.

As in interval GA-P, the fitness does not depend on the evaluations of the
tree part in the set of examples but on the separation between gg' and g for
all 8. We measure that separation with the non-specificity of the fuzzy graph
R. Since every a-cut of R is a confidence interval and we must maximize the
confidence degree of all of them simultaneously, the following fitness function
is used:

where V(X
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h=K TN [DF)-DF (X)) #Pc<l-a
=1 TN UY (X)) if P >1-¢€

else

-{ea+P.— flmey =P,
f3 - Fr-{eat :zt{: { 1 )

where V' (X;) is the fuzzy output of the model for an input X,

YX)w) = V (Blzy) A Xi(2))
zeR4

P, Is a measure of the degree of the covering of the sample hy the fiuzzy madel,
| ] &
Pe = (i € {1... N} | supp(¥;) € supp(¥ (X))

K is a real value high enough so that K - & Ef‘;l[D(Y") -D(Y(X i))] is always
higher than & Zf’;l U¥ (X)), U is a measure of non-specificity and D is a
defuzzification operator.

The explanation of this function follows: when in the initial stages of the
evolution, every imprecise measurement is replaced by one point (the measures
are “defuzzified”) and the least squares solution is tracked. As soon as a fraction
1 — € of the sample is covered, we begin to promote those individuals that get
a narrower band of prediction values. We define the fitness function so that
it guarantees that a model that covers a fraction higher or equal than 1 — ¢;
of the examples is always hetter than a model that covers less than 1 — 1, so
population evolves gradually towards models with adequate covering that will
be selected on the basis of their non-specificity.

We penalize the solutions that do not cover a fraction 1 — €2 by multiplying
their fitness by a value K that is determined empirically. We think that it is
not necessary to resort to multi-criteria optimization (see [4]) because the value
of K is not difficult to obtain. When the fraction of errors €¢; < €2 is reached,
the fitness is the non-specificity. In intermediate situations (covering between
1 —€; and 1 — ¢;) the fitness ranges between the values of the non-specificity
and the scaled square error.

5 Practical application

Fuzzy GA-P was recently applied in practice for determining the dependence
between the demand of electrical energy and some climate conditions in the
north of Spain. The company “Hidroeléctrica del Cantdbrico, S.A.” asked us
to build one model that relates mean temperature in Asturias and the number
of hours with sun light with the total consumption of electrical energy by the
domestic customers. This model has a double purpose; first, they will use it
for making predictions of the domestic demand and then planning the optimal
use of the resources of the company and second, it will allow to gain insight
into the behavior of the electrical market, which is going to be liberalized in
the next months.
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Method Train (70%) | Test (30%) Complexity
Linear 586733 1021640 4 parmas., 3 variables
2th order poly. 566460 964543 10 parms., 3 variables
GA-P 587317 928633 3 parms., 1 variable
Fuzzy GA-P 500436 924122 2 fuzzy parms., 1 variable
{95% of points)
MLP 3-10-1 531952 807688 55 parms.
Fuzzy Rule Based 5BGT3d 1021640 1 TSK rule

Table 1: Cross-comparison of results. The dataset is very noisy and there is not
a definite gain when using non linear models. GA-P and Fuzzy GA-P models
depend only on one of the three variables, the minimum temperature. The
Fuzzy Rule-based model degenerated to a a linear model. Fuzzy GA-P error
was estimated over a subset of 95% of the points defined by one of its a-cuts.

The set of data consists of 1096 points, comprising 12 measurements each.
Three attributes are symbolic (day of week, bank holiday or not, name of
month) and all the remaining ones (minimum and maximum temperatures
along one day in three points of the area, and the number of minutes of sun in
these threc points) are numerical. We will not include the symbolic attributes
as inputs to our models but we will use them to segment the dataset.

We will only show here the simplest of these models, that which globally
relates temperatures and the amount of sun light with the global demand. The
input variables are reduced to three: mean lowest temperature, mean highest
temperature and mean number of light hours. First, a linear model was cal-
culated. After that, a non linear least squares polynomial model was adjusted
with Levenberg-Marquardt method. Third order polynomials were not studied
because of the excessive number of parameters. Later, GA-P and fuzzy GA-P
were launched. A fuzzy rule-based model and a multi-layer perceptron were
also tried, for comparison purposes.

When running the genetic procedures, steady state approach, with tourna-
ment selection and elitism were used. The probability of crossover is 0.9, both
in GP and GA parts. We did not perform mutation in the tree part and we
applied this operator with probability 0.01 in GA part, which is encoded in
floating point. We used local optimization (Nelder and Mead’s simplex) and
over selection (1000 individuals}. The population had 10 niches with 100 in-
dividuals each. In Fuzzy GA-P we used a triangular parameterization of all
fuzzy sets, and defined the defuzzification operator to be the point of maximum
membership.

This dataset is very nocisy, and there are a high number of outliers. Fuzzy
GA-P probed to be rather insensitive to the effect of outliers. It is remarkable
that both genetic procedures discarded two of the three variables and coincide
in making the demand to depend only on the minimum temperature in the day.
This dependence is non linear, and it was nor detected when the correlations
between the output and every input were calculated.
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6 Conclusions

GA-P methods can discover an empirical law from a set of samples. The method
is easy and very flexible, because it allows us to select the maximum complexity
of the expression, the maximum number of parameters and an arbitrary set of
operations, Therefore, GA-P’s are very convenient when compared to other
methods able to make this kind of study: trial and error, neural networks or
classical regression.

In this work we have adapted the GA-P algorithm to produce a fuzzy
arithmetic-based model. Qur method produces fuzzy estimations for outputs
and parameters, and it would allow to use symbolic information if that infor-
mation is codified by mean of fuzzy sets.
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