
Tuning fuzzy partitions or assigning weights to
fuzzy rules: which is better?

Luciano Sánchez1 and José Otero2

Departamento de Informática, Universidad de Oviedo
Sedes Departamentales, Edificio 1. Campus de Viesques
33204 Gijón, Asturias, Spain

Summary. The accuracy of linguistic classifiers can be improved with several tech-
niques, but they all compromise the interpretability of the rule base up to a certain
degree. Assigning weights to fuzzy rules and tuning the memberships associated to
linguistic variables are two of the most common methods. In this work we study
whether tuning the membership functions in a linguistic classifier is better or not
than adjusting rule weights, in terms of the interpretability of the rule base and the
complexity of the output.

To make this analysis independent of the learning method, we will use statistical
techniques of estimation over a random sets based linguistic classifier (introduced in
previous works) that produces a rule base with weighted rules. The loss of precision
produced when weights are restricted to binary values will be evaluated by compar-
ing the output of the former method with an integer programming extension of it
which is proposed in this chapter. The relative performances of classifiers with tuned
membership and binary rules will be compared to those of uniform partition-based
weighted rules, and the statistical relevance of these differences measured.

1 Introduction

It is commonly assumed that some precision must be sacrificed to achieve
interpretability. Fuzzy classifiers in which memberships are tuned, or rules
are weighted, are expected to be more precise than those in which there are
not degrees of confidence in the consequents, and also more precise than
those in which the semantic values of the linguistic terms (the fuzzy mem-
bership functions) are not modified by the learning algorithm. Nevertheless,
a comparative study of the gain of performance obtained when memberships
are tuned, or rules are weighted, is not immediate [12][9][10]. Neither ad-
hoc fuzzy learning methods like [17][8][13][1], nor modern genetic methods
[2] produce the optimum classifier; therefore it is difficult to separate that
gain of performance which is inherent to the extra representative power in
adjustable classifiers from the gain that is due to the specific properties of the
learning algorithm. A method that is not based in heuristics neither stochas-
tic techniques, and that is valid to induce both weighted and not weighted
fuzzy classifiers, is needed.

In [15] a random sets based model, numerically identical to a weighted
fuzzy rule based classifier, was proposed. All parameters in this last model

2 L. Sánchez, J. Otero

have statistical sense, thus they can be estimated with conventional proce-
dures: in particular, maximum likelihood can be used to estimate all of them.
The numerical algorithm that originates here involves finding the solution of
a constrained optimization problem, that can be transformed into an un-
constrained one with the help of Lagrange multipliers, and then solved by
nonlinear programming (projected gradient method.) We propose now to ex-
tend the statistical procedures used in the former work to obtain solutions in
which weights are 1 or 0, by means of nonlinear integer programming tech-
niques, so that the difference of performance between fuzzy classifiers with
and without degrees of confidence in their consequents can be studied with-
out dependence of the learning algorithm used to induce them from data.
It will also be decided whether the loss of linguistic interpretability that is
introduced when memberships are tuned is significant.

This chapter is organized as follows: first, we define the concept of random
set based, linguistically understandable classifiers, and propose one method
for estimating these classifiers’ parameters from samples. Then we insert
this algorithm into a branch and bound process that produces the best non
weighted classifier from that data, and study the statistical significance of
the difference between real and integer solutions, corresponding to weighted
and not weighted classifiers, in synthetic and real world problems. Finally,
we study the effect of tuning the antecedents of the real solution before cal-
culating the integer solution, and decide whether the gain of quality worths
the loss of interpretability.

2 Random set based classifiers

2.1 Linguistically understandable classifiers

Let us introduce the notation we will use in this chapter. Suppose we have a
set Ω that contains objects ω, each one of them belonging to a class ci, i =
1 . . . C, and we perform the set of measurements X(ω) = (X1(ω), . . . , XM (ω))
over every object. Let us also assume that the mapping X fulfills all necessary
conditions to be a random variable. We will say that a classification system
is a decision rule that maps every element of X(Ω) to a class ci, whose main
objective is to produce a low number of errors [6].

Sometimes it is needed to obtain a linguistically understandable classi-
fier. This means we need to setup a decision rule that can be codified in a
language that allows it to be linguistically communicated. Fuzzy logic based
classifiers have this property [19]. The semantic of a fuzzy classifier depends
on the equivalence between linguistic values of attributes and certain fuzzy
sets defined over the range of every feature [18], and on a fuzzy inference
procedure. For example, the sentence

if x is Ã then class = (c1 with conf p1, . . . , cC with conf pC)

Tuning fuzzy partitions or assigning weights to fuzzy rules 3

means
truth(Ã → c1) = p1, . . . , truth(Ã → cC) = pC .

where the concept “Ã” is linked to a fuzzy subset of the feature space.
The same sentence can be given a probabilistic meaning [16]: if A is a

crisp subset of X(Ω), then the sentence means

P (c1|A) = p1, . . . P (cC |A) = pC ,

with
∑C

i=1 pi = 1. The probabilistic logic-based view has some advantages.
It can be used to give a statistical meaning to the learning of a rule-based
classifier from examples, as we will show below. But it is not immediate
to compare it to fuzzy logic based rules, in which “Ã” is a fuzzy set. On
the contrary, we will show that fuzzy classifiers can be compared to certain
random set-based classifiers, which in turn are defined as the expectation of
the probabilistic logic-based ones for a given sample distribution.

2.2 Fuzzy and Random set based classifiers

Suppose we have a machine learning procedure to estimate a crisp partition
{Aj}j=1,...,S of the feature space, Aj ∩ Ak = φ for j �= k, plus the values
P (ci|x ∈ Aj) = pij that define a probabilistic logic-based classifier. The ma-
chine learning task takes as input a random sample X of classified examples
and produces a partition {AX

1 , AX
2 , . . .} and the values P (ci|x ∈ AX

j) = pX
ij .

In turn, for an input value x, the classifier that was learned from the sample
X outputs the probabilities of all classes according to the formula

P (ci|x,X) =
∑

j

pX
ijA

X
j (x) (1)

where AX
j (x) is 1 if x ∈ AX

j and 0 else.
It is well known that the expected error of this classifier (we will use the

notation 〈〉X to denote expectation with respect to the sample distribution
of X) is the sum of two positive terms, bias plus variance [5], where the bias
is the error of the average classifier

P (ci|x) =
〈∑

j

pX
ijA

X
j (x)

〉
X

. (2)

Since the variance term is positive, the error of this average classifier is lower
that the mean error of the individual classifiers. We can reorder the terms in
(2):

P (ci|x) =
∑

j

〈
pX

ijA
X
j (x)

〉
X

(3)

4 L. Sánchez, J. Otero

and, if the random variables pX
ij and AX

j (x) (both defined with respect to X)
were independent,

P (ci|x) =
∑

j

〈
pX

ij

〉
X

〈
AX

j (x)
〉
X
=

∑
j

〈
pX

ij

〉
X

Φj(x) (4)

where Φj(x) is the one-point coverage function of the random set AX
j . Observe

that
∑

j AX
j (x) = 1 for all x, so

〈∑
j AX

j (x)
〉

X
= 1 and then

∑
j Φj = 1 for

all values of x (in words, the sum of the memberships is always equal to 1).
Expression (4) is very similar to the fuzzy inference formula applied to a

fuzzy classifier defined by the rules “truth(Ãj → ci) = tij”, j = 1, . . . , S:

truth(ci) =
∨
j

truth(Ãj → ci) ∧ Ãj(x) =
∨
j

tij ∧ Ãj(x). (5)

The truth value tij is the counterpart of the value
〈
pX

ij

〉
X
, and the one-point

coverage function Φj(x) is the counterpart of the membership function Ãj(x);
the t-norm ∧ is restricted to the product, and the t-conorm ∨ is replaced by
the sum.

The value
〈
pX

ij

〉
X

is the expected probability of class i given the set ÂX
j ,

this is the mean value of P (ci|AX
j) for all probabilistic logic-based classifiers

with respect to the sample distribution. It can be regarded as the degree of
truth of the assertion “All elements in Aj belong to class i”. The function
Φj(x) is the probability of x being covered by the random set AX

j , and thus
can be associated to the truth of the assertion “x belongs to Aj”. It is possi-
ble to assign linguistic labels to the random sets AX

i and draw their coverage
functions in a form that closely resemble a Ruspini fuzzy partition (see Fig-
ure 1). In Figure 2 the three types of classifiers that have been discussed
(probabilistic, random sets based and fuzzy sets based) are represented along
with their inference procedures.

2.3 Approximate and descriptive rules

C rules of the form truth(Ãj → ci)=pij can be combined into the assert

if x is Ãj then
class = (c1 with conf p1j , . . . , cC with conf pCj).

(6)

Unless the concept Ãj can be expressed as the conjunction of independent
properties defined over every feature, it is difficult to understand the meaning
of this last assert; it is easier to use expressions like

if x1 is Ãj1 and . . . and xM is ÃjM then
class = (c1 with conf p1j, ... ,cC with conf pCj)

(7)

where all fuzzy sets Ãjf , j = 1, . . . , S, belong to a given fuzzy partition of
the feature f . This is a typical rule structure in the field of fuzzy classifiers.

Tuning fuzzy partitions or assigning weights to fuzzy rules 5

We will call linguistic or descriptive to classifiers based on expression 7, and
approximate fuzzy classifiers to those based on expression 6, following the
nomenclature in this book.

Not all approximate fuzzy classifiers can be expressed with linguistic clas-
sification rules. The conditions they must fulfill are immediate in fuzzy logic:

Ãj(x) = Ãj1(x1) ∧ . . . ∧ ÃjM (xM)

and exactly the same in probabilistic logic-based rules,

if x1 is Aj1 and . . . and xM is AjM then
class = (c1 with conf p1j, ... ,cC with conf pCj)

(8)

where the antecedents Aj must be hypercubes in the feature space. If Aj(x) =
1 for all x ∈ A and 0 else,

Aj(x) = Aj1(x1) ∧ . . . ∧ AjM (xM)

and all intervals Ajk must be elements of the same crisp partition of the
feature k.

Recalling equation (1), a probabilistic rule based classifier obtained from
the sample X outputs the probabilities of all classes according to the formula

P (ci|x,X) =
∑

j

pX
ij

M∏
k=1

AX
jk(xk) (9)

where
∏M

k=1 AX
jk(xk) is 1 or 0. We obtain that

P (ci|x) =
∑

j

〈
pX

ij

〉
X

〈
M∏

k=1

AX
jk(xk)

〉
X

. (10)

The condition we need to obtain a descriptive random set-based classifier is

Φj(x) =
M∏

k=1

Φjk(xk) =

〈
M∏

k=1

AX
jk(xk)

〉
X

(11)

which is fulfilled when random variables P (xk ∈ AX
jk) are independent. In

this last case,

Φjk(xk) =
〈
AX

jk(xk)
〉
X

(12)

and the descriptive classifier can then be expressed as a set of rules of the
form

if x1 is Φj1 and . . . and xM is ΦjM then
class = (c1 with conf 〈pX

1j〉X, . . . , cC with conf 〈pX
Cj〉X)

Selecting a parametric family of coverage functions Φjk is equivalent to de-
fine a family of sample distributions overX. It is immediate that all functions
Φjk can be interpreted as elements of a Ruspini’s fuzzy partition of feature k.
We will use triangular coverage functions in all numerical examples, as shown
in Figure 1.

6 L. Sánchez, J. Otero

P (x ∈ AX
1)=truth(x is low) P (x ∈ AX

2) P (x ∈ AX
3)

Low Medium High

Fig. 1. Graph of the degrees of truth of a numeric value being compatible with
the properties “low”, “medium” and “high”. These labels are associated to random
sets AX

1 ,AX
2 ,AX

3 , respectively, and the degree of truth of the assertion “x is label” is
the probability of x being covered by the corresponding random set. For example:
truth(“80 is low”)= P (80 ∈ AX

1).

3 Inducting weighted rule based classifiers

Let us suppose we know the antecedents of the rules (the functions “truth(Aj

is x)” or Φj , j = 1, . . . , S) and we wish to estimate their consequents (the
values “truth(Aj → ci)” or 〈pX

ij〉X.) For simplicity in the notation, let θij =
〈pX

ij〉X and Θ be the parameter vector of all unknown parameters,

Θ =
(〈pX

11〉X, . . . , 〈pX
1S〉X, . . . , 〈pX

CS〉X
)
= (θ11, . . . , θ1S , . . . , θCS) . (13)

The likelihood function VΘ is defined as follows:

Vθ =
∏
x∈X

S∑
j=1

θclass(x),jΦj(x) (14)

and its maximum, restricted to the conditions
∑C

i=1 θij = 1 for j = 1, . . . , S
and θij ≥ 0, is a good estimation of the unknowns.

It is easier to work with the logarithm of this function:

L(Θ) = log(Vθ) =
∑
x∈X

log
S∑

j=1

θclass(x),jΦj(x). (15)

Using Lagrange multipliers to cope with the restrictions, we have to min-
imize

L1(Θ, λ1, . . . , λS) =
∑
x∈X

log
S∑

j=1

θclass(x),jΦj(x)+
S∑

j=1

λj(1−
C∑

i=1

θij)(16)

Tuning fuzzy partitions or assigning weights to fuzzy rules 7

Probabilistic classifier

Random set classifier

Fuzzy classifier

A1 A2

A3

A4

cj with confidence pj1

cj with confidence pj2

cj with confidence pj3

cj with confidence pj4

conf.(x ∈ cj) =
∑4

i=1
Ai(x) · pji

φ1

φ2

φ3 φ4

cj with confidence pj1

cj with confidence pj2

cj with confidence pj3

cj with confidence pj4

conf.(x ∈ cj) =
∑4

i=1
φi(x) · pji

Ã1

Ã2

Ã3

Ã4

cj with confidence tj1

cj with confidence tj2

cj with confidence tj3

cj with confidence tj4

conf.(x ∈ cj) =
∨4

i=1
Ãi(x) ∧ tji

Ai(x) is either 0 or 1

φi(x) is between 0 and 1

Ãi(x) is between 0 and 1

Fig. 2. Three types of classifiers are used in this chapter: Probabilistic classifiers
output degrees of confidence depending on a crisp partition. The output of random
set classifiers is the expectation of probabilistic classifiers’ and confidences are added
after multiplying them by the coverage functions. Fuzzy sets use t-norms and t-
conorms instead of products and sums. We will compare random set classifiers with
fuzzy classifiers in experiments for which fuzzy memberships and coverage functions
are numerically identical.

8 L. Sánchez, J. Otero

Taking derivatives with respect to θij and λj , we obtain the following
conditions that are true in the minimum:∑

x∈X
class(x)=i

Φj(x)∑S
j=1 θijΦj(x)

=
∑
x∈X

class(x)=k

Φj(x)∑S
j=1 θkjΦj(x)

(17)

C∑
i=1

θij = 1, for j = 1, . . . , S; i, k = 1, . . . , C. (18)

The first set of equalities (equation 17) produces C − 1 equations and
the second one (equation 18) leads to S, thus the search of the parameters
consists in numerically solving a system of C · S nonlinear equations.

3.1 Incomplete rule bases

Whilst fuzzy rule banks can be incomplete, probabilistic ones can not. But all
consequents can be initialized to the value 1/C to express the initial absence
of knowledge. If the learning algorithm finishes and there are still rules like
these, they can be skipped when doing an inference (eq. 4) without affecting
the output of the classifier. We can define an “equivalent number of rules”
to compare the complexity of a complete probabilistic rule bank to that of
an incomplete fuzzy rule bank as the number of rules for which the degree of
confidence in any of their consequent parts is different from 1/C.

Determining which set of N ′
r < S rules produces the best classifier has

practical relevance. When the number of features is high, the number of
parameters grows above all practical linguistic interpretability, and then it
is useful to decide whether an approximate solution in which most of the
parameters are 1/C (thus they can be ignored) is precise enough. Moreover,
many fuzzy rule learning algorithms produce incomplete rule banks and it is
reasonable to compare them to random set-based classifiers with the same
structure, but also with the same “equivalent number of rules”.

As far as we know, finding the best set of N ′
r rules in polynomial time

is an open problem. An heuristic method to obtain banks with a reduced
number of rules is shown in Figure 3. This algorithm does not guarantee that
there is not a different set of rules with higher likelihood, but has good prop-
erties in practical problems. It just selects rules containing the parameters
for which the partial derivatives of eq. 16 are higher in the initial point of the
minimization (θij = 1/C).

3.2 Adjusting the membership functions

For a fuzzy classifier to be linguistically understandable, all fuzzy member-
ships have to be related to linguistic values of variables, so that a human
intuitively can relate a concept with an imprecise range of values. If some

Tuning fuzzy partitions or assigning weights to fuzzy rules 9

G, D ∈ RC×S,α ∈ R, i ∈ 1 . . . C, j ∈ 1 . . . S

function learn-with-weights(θ ∈ RC×S,S′ ⊂ 1 . . . S) returns (θ′ ∈ RC×S)

θ′ = learn-V(θ,calculate-V(S′))
end of learn-with-weights

function calculate-V(S′ ∈ N) returns (V ⊂ 1 . . . S)
θij = 1/C

Gij = C
∑

x∈X,class(x)=i
Φj(x)/

∑S

j=1
Φj(x)

Dij = Gij − (S · C)−1
∑C

i=1

∑S

j=1
Gij

importance(j) =
∑

i=1...C
Dij >0

Dij

V = set of values j of the S′ rules with higher importance

end of calculate-V

function learn-V(θ ∈ RC×S, V ⊂ 1 . . . S) returns (θ′ ∈ RC×S)

repeat

Gij =
∑

x∈X,class(x)=i
Φj(x)/

∑S

j=1
θijΦj(x)

Dij = Gij − (S · C)−1
∑C

i=1

∑S

j=1
Gij

if j �∈ V then Dij = 0
search α that minimizes L(normalize(θ + α · D))
θ = normalize(θ + α · D)

until α||D|| < ε
θ′ = θ

end of learn-V

function normalize(X ∈ RC×S) returns (X′ ∈ RC×S)

if (Xij < 0) Xij = 0

Xij = Xij/
∑C

i=1
Xij

X′ = X
end of normalize

Fig. 3. Pseudo code of the numerical algorithm used to approximately solve the
set of equations (18), producing at most S′ rules. The linear search (determination
of the value of α) was implemented with Brent’s method. All points examined
fulfill eq. (18) because of the function normalize, and the algorithm stops when
the conditions (17) are approximately true.

10 L. Sánchez, J. Otero

changes are allowed to these ranges, this last association is less clear, but the
precision of the classifier is increased.

The same relationship between random sets and fuzzy sets that has been
used up to now, can be extended to estimate parameters defining the se-
mantic values of the linguistic terms as well. Therefore, antecedents can be
induced from data along with the consequent parts of the rules. There are
some numerical difficulties with this adjust, arising from the fact of functions
15 and 16 being not differentiable with respect to these parameters: φ(·) is
piecewise linear with respect to them and thus gradient based optimization
algorithms are not applicable.

We propose to combine the process shown in Figure 3 with a robust de-
terministic evolutionary algorithm, Nelder and Mead’s simplex [11]. We can
setup an objective function for the simplex that depends only on the pa-
rameters defining the linguistic partitions. This function calls a full gradient
descent algorithm to obtain the consequents that fit the partition being eval-
uated, and eq. 15 is applied to them to get the return value. This way, the
evolutionary search selects changes in the membership function and the right
consequents for them are estimated with gradient descent.

4 Inducting rules with binary weights

4.1 Random set based rules with binary weights

Extending the usual nomenclature in fuzzy modelling, three type of fuzzy
rules in classification problems can be considered. Let us name “Type 1”
fuzzy rules to those that have the form

if x is Ã then class = ck.

“Type 2” have one consequent, weighted by a degree of confidence

if x is Ã then class = ck with conf. pk

and rules not in these two classes (more than one consequent, with or without
weights) are “type 3” rules. The interpretability of “type 1” fuzzy rules is
higher than those of weighted or “type 3” rules, because they do not carry
numerical information in their linguistic expression. Random set based rules
are, by definition, equivalent to “Type 3” rules, which are uncommon in
fuzzy sets literature. In this section we discuss how to adapt the maximum
likelihood estimation discussed before to obtain “Type 1” (we will also call
them “not weighted”, or “binary”) rules.

Two considerations must be taken before:

1. Under the maximum vote scheme (which is the fuzzy inference method
equivalent to that of random sets based descriptive classifiers, as we have
mentioned) all confidences in the whole rule base can be multiplied by a

Tuning fuzzy partitions or assigning weights to fuzzy rules 11

constant, and this does not change the description surfaces of the clas-
sifier. As a consequence of this, any base comprising “type 3” rules can
be written in terms of “type 1” rules. This will be made clear with an
example: observe the following three “type 1” fuzzy rules:

if x is Ã then class = 1

if x is Ã then class = 1

if x is Ã then class = 2.

This set of rules is equivalent to this single one:

if x is Ã then class = (1 with conf 2s, 2 with conf s)

where the value of the constant “s” depends on the remaining rules in
the rule base. It is not difficult to prove that one can always convert a
rule base comprising “type 3” rules with rational weights into a “type 1”
rule base by splitting each rule and making an adequate number of copies
of it. Therefore, the linguistic interpretability of a rule bank in which the
antecedents can be repeated is exactly the same as the interpretability of
a rule containing “type 3” rules.

2. The addition of a constant to all confidences in one isolated rule does not
modify the bank. This means that the rule

if x is Ã then class = (1 with conf s, 2 with conf s)

can be replaced by

if x is Ã then class = (1 with conf 0, 2 with conf 0)

and removed from the rule base.

Because of these considerations, we decided that random set based rules
equivalent to “type 1” fuzzy rules can belong to two categories:

1. if x is φj then class = ck

2. if x is φj then class = (1 with conf 1/C, . . ., C with conf 1/C)

where the second type of rules do not appear in the linguistic expression of
the rule base. It is remarked again that we will not admit that two different
rules in the base have the same antecedent; it is clear for us that, if this
restriction is not enforced, all experiments would conclude that there is not
a loss of classification power when weights are binary with respect to that of
real valued weights.

12 L. Sánchez, J. Otero

4.2 Learning algorithm

Learning the non-weighted rule base is a nonlinear integer programming prob-
lem. Standard branch and bound techniques can be applied, as shown in the
pseudo code in figure 4, to obtain the best set of “type 1” rules that approx-
imate a base of “type 3” rules.

The crux of the algorithm consists in deciding whether each weighted rule
will be replaced by either the rule

if x is φj then class = ck

or

if x is φj then class = (1 with conf 1/C, . . ., C with conf 1/C),

i.e., removed from the base. Let us suppose we replace the first rule of a
weighted classifier comprising S′ rules by a “type 1” rule; there are C + 1
different replacements (C binary rules and removing the rule from the base).
We can think that each one of these substitutions originates a new weighted
subproblem, where the first rule is fixed and the remaining S′−1 rules should
be modified to find a new maximum likelihood estimation. Let us solve all
these C + 1 weighted problems, write down the final values of the likelihood
in each case, and recursively repeat the process for every one of them (the
second rule is replaced by a binary one or removed, and so on), finishing
when all S′ rules have been replaced or removed. If we arrange the result of
all experiments in a tree, the leaves are solutions to the integer problem and
the internal nodes are solutions to the weighted subproblems.

Obviously, we only need to search a part of this tree, because the likeli-
hoods of intermediate weighted classifiers (the internal nodes of the tree) are
lower bounds of the likelihood of the binary weighted classifiers (the leaves of
the subtree originated in the internal node). Therefore, as soon as we know
the likelihood of any binary solution, we can skip all recursive calls for which
the real solution is higher than the likelihood of the binary solution, and
prune the search tree as it is shown in the pseudo code in figure 4.

There are three further improvements to the speed of convergence of this
algorithm:

1. If we know that the likelihood of the binary solution is in a certain range
of the real solution (for example, we usually can expect that the binary
classifier log-likelihood is not worse than the real classifier’s one +10%)
we can skip the recursive calls for which the lower bound is higher than
this value, even if a better binary solution has not been reached yet.

2. The order in which the intermediate problems are solved is important:
if the problems with a lower bound are solved first, many paths will be
removed from the search.

3. If we admit that any binary solution within a certain range of the real
solution is precise enough, we can stop the search as soon as this value is
reached.

Tuning fuzzy partitions or assigning weights to fuzzy rules 13

best-L ∈ R, best-θ ∈ RC×S, low-bound ∈ RC+1

function learn-bin-weights(θ ∈ RC×S,S′ ∈ N) returns (θ′ ∈ RC×S)

branch-and-bound(θ,calculate-V(S′))
θ′ = best-θ

end of learn-bin-weights

procedure branch-and-bound(θ ∈ RC×S, V ⊂ 1 . . . S)
if (V = ∅) then

if (L(θ) < best-L) then

best-L=L(θ)
best-θ = θ

end if

else

r = first element of V
for k ∈ 0 . . . C

if (k = 0) θir = 1/C else θir = δir

low-boundk = learn-V(θ,V − {r})
if (low-boundk < best-L) branch-and-bound(θ,V − {j})

end for

end if

end of branch-and-bound

Fig. 4. Simplified pseudo code of the numerical algorithm used to approximately
solve the set of equations (18), producing at most S′ rules with binary weights.
Heuristics used to shorten the search (described in section 4.2) are not shown.

5 Numerical examples

5.1 Pure linguistic classification problem

The behavior of the algorithm will be illustrated first with a synthetic ex-
ample, by means of a data set generated so that the Bayes solution can be
described without error by means of a descriptive classifier comprising the
following set of type 3 rules:

If x1 is R̃1 and x2 is R̃1 then class1=0.90 and class2=0.10
If x1 is R̃1 and x2 is R̃2 then class1=0.85 and class2=0.15
If x1 is R̃1 and x2 is R̃3 then class1=0.60 and class2=0.40
If x1 is R̃2 and x2 is R̃1 then class1=0.40 and class2=0.60
If x1 is R̃2 and x2 is R̃2 then class1=0.80 and class2=0.20
If x1 is R̃2 and x2 is R̃3 then class1=0.40 and class2=0.60
If x1 is R̃3 and x2 is R̃1 then class1=0.20 and class2=0.80
If x1 is R̃3 and x2 is R̃2 then class1=0.10 and class2=0.90
If x1 is R̃3 and x2 is R̃3 then class1=0.00 and class2=1.00

14 L. Sánchez, J. Otero

where the memberships R̃1, R̃2, R̃3 are shown in Figure 5. An algorithm that
can generate examples for this problem is shown in Figure 6. Let us generate
1000 examples and apply the algorithms in Figures 3 and 4 to infer the values
of the coefficients, with both weighted and not weighted versions.

R̃1 R̃2 R̃3

1/6 1/2 5/6

Fig. 5. Membership functions of the example in Section 5.1

x1=random(0,1); x2=random(0,1)

p1 = 0.90R̃1(x1) · R̃1(x2) + 0.85R̃1(x1) · R̃2(x2) + 0.60R̃1(x1) · R̃3(x2)+

0.40R̃2(x1) · R̃1(x2)+0.80R̃2(x1) · R̃2(x2)+0.40R̃2(x1) · R̃3(x2)+

0.20R̃3(x1) · R̃1(x2) + 0.15R̃3(x1) · R̃2(x2) + 0.00R̃3(x1) · R̃3(x2)
if (random(0,1)< p1) output (x1, x2, c1) else output (x1, x2, c2)

Fig. 6. Algorithm used to output a point of the learning sample in the problem
discussed in Section 5.1.

0.90 0.40 0.20
0.10 0.60 0.80

0.85 0.80 0.10
0.15 0.20 0.90

0.60 0.40 0
0.40 0.60 1

0.887 0.345 0.198
0.112 0.654 0.801

0.756 0.744 0.100
0.243 0.255 0.899

0.664 0.354 0
0.335 0.645 1

0.5 0.5 0.5
0.5 0.5 0.5

1 0.5 0.5
0 0.5 0.5

0.5 0.5 0
0.5 0.5 1

Fig. 7. True (left), estimated weighted rules (center) and estimated binary rules
(right) values for the example explained in Section 5.1.

The inferred rule banks are summarized in Figure 7. The weighted version
recovers the original base, while the not weighted one, which is the most

Tuning fuzzy partitions or assigning weights to fuzzy rules 15

precise “type 1” base, (in fact, since it includes rules with consequents ”0.5-
0.5” it can be argued that this is not strictly a type 1 classifier; see comments
in section 4.1) is clearly suboptimal and comprises only two rules (i.e, only
two rules with different values in their consequent part; recall the comments
in section 3.1:)

If x1 is R̃2 and x2 is R̃1 then class1

If x1 is R̃3 and x2 is R̃3 then class2.

This classifier has an estimated error rate of 0.41, while the real solution has
an error of 0.26. This example shows us that it is not immediate to pass from
the real solution to the best binary solution. In particular, one can not apply
an heuristic method to obtain “type 1” rules from “type 3” rules, one by one:
such a conversion would depend not only on the single rule being considered,
but on rules surrounding it.

5.2 Graphical analysis: Haykin’s two Gaussian problem

With this second example we intend to study the differences in the decision
surface between “type 1” and “type 3” rule bases. To be able to do a graphi-
cal representation, we are going to analyze the data set proposed in [7]: 4000
points taken from two overlapping Gaussian distributions with different vari-
ances. The optimal decision surface is a circle, and the Bayesian test error
is 0.185. The error of the linear classifier is 0.24, which is near enough the
optimal solution to confuse many rule learning algorithms. The shape of the
decision surface in areas with low density of examples (i.e., the left side of
the circle) does not contribute too much to the classification error.

In Figure 8, descriptive classifiers are compared when the number of lin-
guistic terms in every partition ranges from 3 to 5. Uniform, unadjusted fuzzy
partitions were used. In that Figure we observe that the decision surface of
the “type 1” descriptive random set-based classifier is nearer to the “type 3”
surface than we could intuitively think. In the worst case (the leftmost one)
the difference between “type 1” and “type 3” banks produces less than a 2%
increase in the classification error, even while the “type 1” base has two rules
less and they all are less complex.

5.3 Significance of the loss of classification power

In third place, to judge whether the loss of power produced when “type 3”
bases are downgraded to “type 1” bases, we will study 5 cases: the problem
introduced in the preceding section, a multi class synthetic problem similar
to “Gauss” but involving five classes (it will be named “Gauss-5”), and three
more real-world problems from UCI [14]: Pima, Cancer and Glass.

The experimental framework is as follows: 5x2cv Dietterich’s test [4] will
be applied to assess the statistical relevance of the differences between the

16 L. Sánchez, J. Otero

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

Fig. 8. Effect of the number of terms in the fuzzy partition in the weight removal
process. Upper part, from left to right: decision surfaces induced by RSB for clas-
sifiers with 3, 4, and 5 terms/feature (9, 16 and 25 “type 3” rules) in the “Gauss”
problem. Lower part: the same rule bases, downgraded to “type 1”. The dashed
line is the optimal decision surface.

two types of rule bases being considered. Data sets are randomly permuted
first; the first half of samples is used to train the method, and the second half
to test it. Training and test sets are swapped and the learning and test phase
repeated. This is repeated for 5 different random permutations. Training
errors are discarded, so that box plots only show the dispersion of the error
in test sets.

Other statistical (linear, quadratical, nearest neighbor) and artificial in-
telligence based (neural networks, Wang and Mendel’s [3,1], Hong and Lee’s
[8], Pal and Mandal’s [13] and Cordón, Del Jesus’ et al. [2] fuzzy classifiers)
are included so that the reader can judge the magnitude of the differences be-
tween the two methods being considered here. Results of the genetic method
in [2] are among the state of the art results in fuzzy classification, and involve

Tuning fuzzy partitions or assigning weights to fuzzy rules 17

tuning of the linguistic partitions in the antecedent; all other fuzzy classifica-
tion algorithms are based on heuristics and are included as a reference only;
besides some of them achieve good results in some data sets, their results are
not as consistent as the former genetic method.

LIN QUA NEU 1NN WM HL PM GIL KRE KBI

pima 0.227 0.252 0.255 0.289 0.287 0.301 0.464 0.269 0.238 0.237
cancer 0.044 0.051 0.047 0.048 0.129 0.058 0.087 0.099 0.043 0.043
gauss 0.239 0.190 0.200 0.267 0.477 0.304 0.457 0.205 0.217 0.220
glass 0.403 - 0.439 0.354 0.453 0.503 0.647 0.363 0.392 0.384
gauss5 0.317 0.317 0.321 0.413 0.539 0.344 0.759 0.338 0.328 0.388

Fig. 9. Mean test values of problems in section 5.3

The mean values of test errors are included in Figure 9. Random set based
classifiers comprise 200 rules in Pima, Cancer and Glass, and 9 in Gauss and
Gauss-5. All features have three linguistic terms but in Cancer data set, where
only two values were needed.

The only statistically significant difference between “type 3” and “type
1” data sets is in Gauss-5 (the p-value of the contrast is 0.08, thus we reject
the hypotheses of binary and weighted bases producing similar results, with a
92% level). The difference in Gauss has a p-value of 50%. Cancer produced the
same results in 9 of the 10 repetitions, thus box plots are roughly the same.
Binary results with Pima and Glass seem to be better than the weighted, but
the difference is well under the expected deviation of the results.

5.4 Importance of the membership tuning process

Finally, we will study whether an adjust in the memberships recovers the
information lost, in the cases in which downgrading to “type 1” rules made a
difference; for Gauss, Cancer, Pima and Glass there are not relevant dissim-
ilarities between either the real or the binary solution and the black boxes,
thus a membership tuning makes no sense for them.

Let us focus on the problem for which there are significant differences,
Gauss-5. This data set comprises 5 classes and there is a maximum of 16 rules
in it, thus the weight removal process remove a lot of information and the
“type 1” classifier does not perform properly. One may question whether there
exists a definition of the membership functions for which the behavior of the
“type 1” rule base is comparable to that of black boxes and “type 3” rules. To
check this, we have tuned the membership functions, as explained in section
3.2, before launching the weight removal process, and compared the results
of weighted rules with unadjusted (uniform partitions) memberships in the
antecedents with that of not weighted rules with tuned memberships. Results
are plotted in Figure 11. While tuning the membership always improves the

18 L. Sánchez, J. Otero

LIN QUA NEU 1NN WM HL PM GIL KRE KBI

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

LIN QUA NEU 1NN WM HL PM GIL KRE KBI

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

LIN QUA NEU 1NN WM HL PM GIL KRE KBI

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

LIN QUA NEU 1NN WM HL PM GIL KRE KBI

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

LIN QUA NEU 1NN WM HL PM GIL KRE KBI

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Fig. 10. From left to right and from upper to lower: Box plots of the differences
between weighted and not weighted classifiers in gauss, pima, cancer, glass and
gauss-5 problems. The columns are: linear, quadratic, neuronal, nearest neighbor,
Wang and Mendel’s, Hong and Lee’s, Pal and Mandal’s, Genetic Iterative Learn-
ing, Random sets based with “type 3” and “type 1” rules. The bars represent the
dispersion of the test results in the 10 repetitions of the experiment.

final results, the gain of classification power does not compensate the loss
produced in the weight removal.

6 Concluding remarks and future work

Experimental results have shown that, most of times, there exists very little
difference between black boxes and weighted probabilistic rules. These dif-
ferences decrease with the number of rules, and are statistically significant
only when the rule base is rather small. Taking into account that random set
based classifiers did not modify the fuzzy memberships in the antecedents,
we doubted that the effect of tuning the antecedents was important against
the right selection of weights in the rule consequents.

Tuning fuzzy partitions or assigning weights to fuzzy rules 19

WEI−3 BIN−3 WEI−4 BIN−4 WEI−5 BIN−5

0.
30

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

Fig. 11. Comparison between unadjusted memberships + weighted rule bases and
adjusted memberships + not weighted rule bases in Gauss-5. From left to right:
box plots of weighted and binary solutions of Gauss 5, with 3, 4 and 5 ele-
ments/partition. In this case, tuning the memberships does not recover the classifi-
cation power lost in the weight removal process. The bars represent the dispersion
of the test results in the 10 repetitions of the experiment.

Against our initial thought, the results of this study show that the use of
weighted or “type 3” does not uniformly produce results significantly better
than those obtained by simpler (and easier to interpret) rules without weights.
It is remarkable that neither weights in the rules nor multi consequent rules
achieved significant improvements in the representation power in real world
data sets (where the rule base comprised more than one hundred rules.) In
the set of experiments that we performed, the tradeoff between precision
and interpretability was best achieved when memberships were uniform and
confidences were not used in rule bases with size from moderate to large;
by the contrary, both weighted rules and adjusted memberships improved
the results of type 1 rules in small bases. In this last case, using weights on
uniform partitions produces a gain of precision similar to that achieved when
both the definition of the linguistic terms are adjusted, and type 1 rules used.

Acknowledgments

The authors wish to thank the anonymous reviewers for their effort revising
this chapter and their valuable suggestions for future works.

References

1. Cordón, O., Del Jesus, M. J., Herrera, F. “A proposal on reasoning methods in
fuzzy rule-based classification systems”. International Journal of Approximate

20 L. Sánchez, J. Otero

Reasoning 20(1), pp. 21-45, 1999.
2. Cordón O., del Jesus M. J., Herrera F. y Lozano M. (1999) Mogul: A methodol-

ogy to obtain genetic fuzzy rule-based systems under the iterative rule learning
approach. International Journal of Intelligent Systems 14(9).

3. Chi, Z., Yan, H., Pham, T. Fuzzy Algorithms: With Applications to Image Pro-
cessing and Pattern Recognition. World Scientific. 1996.

4. Dietterich, G. “Approximate Statistical Tests for Comparing Supervised Classi-
fication Learning Algorithms”. Neural Computation, 10(7), pp 1895-1924. 1998

5. Geman, S., Bienenstock, E., Doursat, R. “Neural networks and the
bias/variance dilemma”. Neural Computation, 4, pp. 1-58. 1992.

6. Hand, D. J. Discrimination and Classification. Wiley. 1981
7. Haykin, S. Neural Networks. Prentice Hall, 1999.
8. Hong, T. P., Lee, C. Y. Induction of fuzzy rules and membership functions from

training examples. Fuzzy Sets and Systems 84. pp 33-47. 1996.
9. Ishibuchi, H. and Nakashima, T. “Effect of rule weights in fuzzy rule-based

classification systems,” Proc. of 9th International Conference on Fuzzy Systems,
pp 59-64 (San Antonio, May 7-10, 2000).

10. Ishibuchi, H., Nakashima, T.: Effect of Rule Weights in Fuzzy Rule-Based Clas-
sification Systems, IEEE Trans. on Fuzzy Systems, vol. 9, no. 4, pp. 506-515,
August 2001.

11. Nelder, J.A. and Mead, R., A simplex method for function minimization, Com-
puter J., 7 (1965), 308-313.

12. Nauck, D. and Kruse, R. “How the learning of rule weights affects the inter-
pretability of fuzzy systems”. Proc. of the 7th IEEE International Conference
on Fuzzy Systems, pp. 1235-1240 (Anchorage, May 4-9, 1998).

13. Pal, S. K., Mandal, D. P. “Linguistic recognition system based in approximate
reasoning”. Information Sciences 61, pp. 135-161. 1992.

14. Prechelt, L. “PROBEN1 – A set of benchmarks and benchmarking rules for
neural network training algorithms”. Tech. Rep. 21/94, Fakultät für Informatik,
Universität Karlsruhe, 1994.

15. Sánchez, L., Casillas, J., Cordón, O., Del Jesus, M. J. “Some relationships be-
tween fuzzy and random set-based classifiers and models”. Accepted for publi-
cation in IJAR, 2001.

16. Trillas, E., Alsina, C., Terricabras, J. Introducción a la lógica borrosa. Ariel
Matemática. 1995.

17. Wang, L. X., Mendel, J. “Generating fuzzy rules by learning from examples”.
IEEE Trans. on Systems, Man and Cybernetics, 25(2), pp. 353-361, 1992.

18. Zadeh, L.A. “The concept of a linguistic variable and its application to approx-
imate reasoning”. Information Science, Part I: vol. 8, pp. 199-249, 1975; Part
II: vol. 8, pp. 301-357, 1975; Part III: vol. 9, pp. 43-80, 1975.

19. Zadeh, L.A. “Fuzzy Languages and Their Relation to Human and Machine
Intelligence”, in Fuzzy Sets, Fuzzy Logic and Fuzzy Systems, Klir, Yuan, eds.
pp 148-179. World Scientific, 1996.

