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Abstract

The most effective approaches for evolutionary identifying dynamical processes
depend on iterative trial-error searches in a hierarchical fashion: a new structure is
proposed first; then, its set of parameters is numerically determined, and the process
is repeated until a model accurate enough is found.

Canonical Genetic Programming has been used to automate this search; but its
output can be difficult to interpret. Because of this reason, the use of hierarchical
learning methods, that combine GP search of structures with deterministic opti-
mization algorithms, has been proposed. We will show in this paper that the output
of such methods can be further improved with non hierarchical algorithms. In par-
ticular, we will show that the use of GA-P improves the interpretability of the
models and does a better model search than previous approaches.

Key words: GA-P algorithms, Genetic Programming, System Identification,
Hierarchical models.

1 Introduction

Most of the evolutionary methods for system identification from sampled data
focus in nonlinear state space-based models. For this kind of models, the ob-
jective of the learning process is the production of a set of difference equations
defining the dynamics of the process. Unfortunately, for practical purposes,
a set of equations that relates all state variables between them is hard to
manage in all but small sized problems. Modular representations are usually
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Fig. 1. Block diagram representation of a system (left) and its tree based representa-
tion (right). “SO” stands for “Second Order” and “exp” for “exponential function”

preferred, because they allow to determine groups of variables affected by
specific parameters.

Genetic Programming has been applied to learn such modular models. One of
the first examples was given in [9], where a structured Genetic Algorithm, in a
tree based representation, is used. The set of functions that was proposed con-
tained only two-input quadratic functions, which are not the building blocks
that control engineers expect to find in structured models. Some implemen-
tations nearer to usual practice can be found in [2,4–6,10,19,23] and other,
less common approaches to model the dynamics of a system, are described in
[7,17,24]. Most of these schemes introduce dynamic considerations by means
of extended terminal sets, that include either input and input-output delayed
variables.

One of the most complete methods is described in SMOG [15,16]. The problem
is addressed there as a search of a diagram block based representation of
a model of the process in a tree codification (see Fig. 1). The function set
used includes continuous time blocks defined in the domain S, making the
dynamical considerations intrinsic to the search. Recently, a similar approach
has been used for the induction of process controllers in [11].

Under the considered approach (see Fig. 2), hierarchical evolutionary algo-
rithms are applied: canonical GP is used for the evolution of model structures
and combined with deterministic numerical optimization methods (Hooke and
Jeeves algorithm) for parameter tuning. An iterative search of structure and
parameters is done: each model considered is parametrically tuned by means
of Hooke-Jeeves algorithm as a previous step to fitness evaluation. Genetic
operators defined for evolution affects only the structure of the models.
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(1) Initialize random population of models.

(2) Tune parameters of models (Hooke-Jeeves algorithm).

(3) Calculate fitness.

(4) Selection of models and application of genetic operators.

(5) Go to 2).

Fig. 2. SMOG evolution. Canonical GP is used for structural search

and Hooke-Jeeves method is used for parameter tuning

We will show in this paper that, according to our experimentation, better
results can be obtained if a new representation and a new set of genetic op-
erators are used. The representation that is proposed in this paper is adapted
from an idea first proposed in [8], and shares characteristics with GA and GP
algorithms, being able to search in parallel in both structure and parameter
spaces.

The focus will be put not only at the capabilities of the solutions to reproduce
the sampled data used for training or validation. They will be also structurally
compared with a known model for the target system. This way, they can be
analyzed as explaining methods of the underlying relationships in the data.

2 Structure of the Paper

The outline of this paper is as follows: in Sect. 3, the scope of application
of this method is introduced. In Sect. 4, the parallel search of parameters
and structure done by the GA-P algorithm is described. Then (Sect. 5) an
experimental validation of our proposal is done, modeling both a synthetic and
a real process and comparing the results with those obtained with previous
works. The paper finishes (Sect. 6) with the concluding remarks and future
work.

3 Scope of Application

Our interest is focused over a class of physical systems involving common non-
linear features, to which conventional methods are hardly applicable. Being
a GP based modeling approach used, the definition of the functional set will
define the scope of application of the algorithm. The GP will evolve a set
of diagram block representations of the process. A diagram block is, in turn,
a series, parallel or feedback association of subsystems. Series association is
intrinsic in GP. Parallel association will be allowed by means of arithmetic
operators, such as + and -, and feedback representation will be allowed by
means of an special operator [1] described next.
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Regarding the catalog of subsystems, we used only memoryless version of
the common non-linear features of physical systems, such as dead zones or
saturations [14,20]. All the dynamic behavior is delegated to linear elements:
we include in the function set a reduced group of linear models (first and
second order dumped linear subsystems, unitary delay and static gain) such
that it is possible to get higher order systems by means of series association.

4 Proposed Algorithm

Most of the approaches to learn models of dynamical processes are based on
a hierarchical search. Nevertheless, there is an inherent drawback with the
hierarchical learning of models: the searches of the numerical parameters best
suited for the structures being produced by GP are, themselves, multi modal
problems [1]. Therefore, deterministic methods fall frequently into local mini-
mum points and, as a consequence of this, a good structure can be assigned a
low score in the search process. Despite this problem, hierarchical approaches
are able to find good models because GP can produce several times the same
structure with different initial values for the numerical parameters. Thus, the
deterministic algorithm will eventually find the global minimum. But under
this context the GP is not only being used to search different structures but
also to search different numerical starting points, a problem in which GP is
known not to perform too well.

In previous studies [1], we have tried the replacement of Hooke and Jeeves
method with a real coded genetic algorithm, obtaining good numerical results.
Anyway, such a hierarchical approach is a highly consuming task, because
many resources are wasted in the identification of structurally invalid systems.
An strategy that does not need the GA to converge before examining a new
structure, and that does not discard too soon structures that may be valid, is
needed. The GA-P algorithm was selected for the search.

GA-P [8] is an hybrid between genetic algorithms and genetic programming,
that was first used in symbolic regression problems. Individuals in GA-P have
two parts: a tree based representation and a chain of numerical parameters.
Different from canonical GP, the terminal nodes of the tree never store num-
bers but linguistic identifiers that are pointers to the chain of numbers (see
Fig. 3).

The behavior of the GA-P algorithm is mainly due to its crossover operator.
Later in this section it will be described in detail how we adapted it to the
problem at hand; let us say for the time being that either the tree parts or the
chains of parameters may be selected and crossed, thus the GA search of the
parameters and the GP search of the structures are being done in parallel. This
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Fig. 3. Representation of a generic individual in GA-P algorithms. Individuals have
two parts: a tree based representation and a chain of numerical parameters

way, individuals structurally fitted will have more possibilities to undergo an
intensive parameter optimization, while those structurally unfitted will tend to
disappear. A niche strategy [21] is used in the evolutionary process, preventing
the search to fast fall into local minimum points.

4.1 Representation

Structure and parameters parts of the representation are defined as follows:

• Structural component. Tree based representation makes it impossible to
model a wide set of systems, such as those involving nested or not unitary
feedbacks. The reason is that a block diagram is not a tree when it includes
feedback, but a directed graph. The proposed representation (see Fig. 4),
mixes a link nodes list with ideas from [16] and [22]. A special feedback
node is used. Both input and the feedback branches originate in it. The
terminal nodes of the feedback branch (marked as “**”) are recessive. This
way, standard structural modification operators can be applied at any point
in the individual to evolve structures.

It also contains a third link to another node from which the feedback
signal will be taken, converting the representation in a graph. This pointed
node must be contained in the path between the feedback node and the
output node of the system. Otherwise, feedback node looses its significance.
This consideration must be present in the creation and modification of indi-
viduals as a consequence of structural genetic operators. When an individual
does not accomplish this condition after an structural modification, invalid
feedback nodes are reinitialized.

Algebraic loops are neglected by means of the implicit inclusion of a unit
delay in the feedback branch. To prevent series associations of delays, dy-
namic blocks used respond instantly. But, known the fact that physical sys-
tems never respond instantly to an excitation, a unit delay is also implicitly
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Fig. 4. Block diagram representation of a feedback system (left) and its genetic
representation (right.) “SO” stands for “Second Order” and “Sgm” for “sigmoid
function”. Also, “**” stands for a recessive terminal

linked to the output of the model.
• Parameters component. It contains a vector of values with the parameters

of the model to be evolved by the GA component of the algorithm. It is
used a real value codification based on [3].

4.2 Genetic Operators

Two sets of operators are applied in the evolutionary process:

• Structural Genetic Operators. Subtree crossover [13] and internal crossover
[12] are used. Subtree, node and a special operator for feedback mutation
operators are also used. This set of operators only affect the structural
component of the individuals involved, not the parametric one.

All of the structural operators act over tree based representations. There-
fore, feedback links are inhibited during the process.

• Parameter Genetic Operators. Two structurally identical individuals are
selected from the population for each application of this set of operators.
They only affect their parameter component, not the structural one. Real
based genome crossover operator is defined for the parameters of the model
as a random movement of a vector in the direction of the other. After
crossover, a mutation, a direct search or both can be applied to the resulting
offsprings depending on predefined probabilities. Mutation is defined as a
crossover with a randomly generated individual. Direct search is performed
by means of Nelder & Mead algorithm [18] run for a few iterations.
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Fig. 5. Modelling a synthetic example. Upper part: target model. Central and lower
parts: structures of the learned models. “Satba” stands for “saturation” block with
limits in a, b

5 Numerical Results

To validate our approach, as a first test, an empirical control system of a first
order process with a proportional saturated controller and a sensor without
dynamics (see Fig. 5(a)) was modelled by means of the defined GA-P strat-
egy. It was also compared with a hierarchical process. Both approaches were
stopped after certain number of evaluations of the objective function.

Experiments were repeated 10 times each. Table 1 contains validation errors
for each experiment. Observe that GA-P improves slightly the results, but
the differences are not significant. The gain with GA-P is in the identified
structure (see Figs. 5(b) and 5(c), where the best models obtained by both
approaches are shown). Observe that only little deviations are present in the
parameters values, a problem which could be easily solved by the application
of more intensive optimization procedure over that structure. In this case,
GA-P found exactly the structure of the target model, explaining very well
the data relationships. In contrast, the hierarchical method was trapped in a
local minimum of the structure. It is only capable of fitting the sampled data.
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Table 1
Upper part: GA-P (left) and hierarchical (right) modelling errors for the synthetic
problem. Lower part: modelling errors for the direct current motor

Experiment Error

1 0.00017

2 0.0004

3 0.00005

4 0.00004

5 0.00019

6 0.00005

7 0.00005

8 0.00006

9 0.00029

10 0.00007

Average 0.00014

Experiment Error

1 0.00206

2 0.00301

3 0.00129

4 0.00184

5 0.00287

6 0.00112

7 0.00111

8 0.00107

9 0.00147

10 0.00263

Average 0.00185

Experiment Error

1 0.9196

2 0.7755

3 0.7354

4 0.8433

5 0.9223

6 0.9259

7 1.1809

8 1.0134

9 1.0976

10 0.6933

As a final test, a real system was modelled by means of the proposed scheme.
A DC motor was selected, in order to have information enough to contrast the
GA-P solution with a known model for the process (usually a first or second
order dumped linear subsystem with a non-linear dead zone component).

Experimental conditions were the same as in the preceding section. Table 1
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Fig. 6. Modelling of a direct current motor. Left: best model found (“DZ b
a” stands

for “dead zone” block with limits in a, b). Right: Comparison of model (continuous
line) and system (plotted line) responses

contains the numerical validation errors for each experiment. From it, it can
be concluded that the best result was found at experiment 10, shown in Fig.
6. Solution is close to a known model for the system: the search scheme is
capable of capturing the most significant relationships in the data. This figure
also includes a comparison between the motor and the model responses using
a squared input signal. Observe that the behavior is correctly reproduced and
the noise is smoothed as expected.

6 Concluding Remarks and Future Work

The identification of nonlinear systems from sampled data is a multimodal
problem either in structure and parameter spaces. We have shown that “state
of the art” hierarchical learning algorithms can be trapped in these minimum
points and be unable to find the right structure in certain cases. We have solved
this problem by introducing a parallel evolutive search of parameters and
structure that does not waste time optimizing parameters for invalid structures
neither discards structures too early.

While being able to process more complex problems than its predecessors, this
learning algorithm is not complete. In practical situations we need to be able
to incorporate expert knowledge to the system, either in the form of structural
restrictions or by means of closed submodels with known expression around
which a joint model should be evolved. In a near future, we plan to incorporate
a measure of structural quality to the fitness function and use multicriteria
evolutionary algorithms to obtain a family of solutions with balanced precision
and complexity from which the control engineer can choose.
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