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Abstract 

In this paper a new robust estimator of the optical flow 
field is shown. Arising from the techniques based on the 
O.EC. (Optical Flow Constrain), we develop an estimation 
that takes several measures around a given pixel and dis- 
cards the erroneous ones, using a voting schema. In this 
way, velocities that have more accumulated votes are taken 
as  the correct ones. A preliminary comparison with other 
well known techniques is shown, and clearly our approach 
performs quite bette6 even in the cases where two o r  more 
movements are present in the analyzed pixels. 

1 Introduction. 

There are basically three ways to perform the calculation 
of the optical flow field: 

0 Gradient based techniques. 

0 Correlation based techniques. 

0 Frequency based techniques. 

flow estimation has the same problem. Later in this paper 
we will analyze this expression in depth. 

Correlation bzsed techniques [l]  [2] try to minimize 
a measure of similiraty (or disimiliraty) between patches 
taken from two consecutive frames centered in a given 
pixel. The displacement that maximizes (or minimizes) the 
selected measure, divided by the interval between the ac- 
quisition of the frames, is the velocity of the pixel. Unfor- 
tunately, this approach is computationally expensive, and 
the complexity grows with the square of the maximum dis- 
placement searched. There are approaches that solve this 
problem using a bidimensional LUT (Look-Up Table) in- 
stead of perform floating point calculations, but the gray 
scale depth must be limited to maintain the LUT in a razon- 
able size [ 1 11. 

Frequency based techniques use a set of tuned spatiotem- 
poral filters to search for the velocity of a pixel [6]. Each 
one of the filters will give a response to the stimuli of the 
data (the sequence of images), the filter with the maximal 
response will be tuned with the velocity that we are looking 
for, so identifying the filter we are identifying the velocity. 
May be this is the most precise approach, but it is very ex- 
pensive in terms of computational cost. 

Gradient based techniques use the well known “optical flow 
constrain” in order to compute the optical flow [7]. This 
equation makes the assumption that intensity changes in a 
sequence of images are due only to the movement of the ob- 
jects in the scene: a single pixel will have constant bright- 
ness in the different positions that it takes during the se- 

2 Overview of gradient based techniques. 

The optical flow constrain 1 can be expanded and written 
in the form shown in  2. 

quence. Mathematically this is expressed as shown in equa- 
tion 1. dI d I d x  d I d y  dI  dI  

dt dx  dt dy  dt dx dy  

Where V ( I )  is the spatial gradient of the image, 

+ -- = -U + -v = V ( I ) .  t ( 2 )  - -- - -- 

is (1) 
dI(X,Y>t)  = 0 

dt 
As it can be seen, the spatiotemporal derivatives must be 

estimated. This estimation is noise sensitive, so the optical 
the velocity of the pixel and 
the sequence in that pixel. 

is the temporal derivative of 
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The previous expression shows how the spatiotemporal 
derivatives are related to the observed velocities. 

Unfortunately, there are two unknowns in this equation, 
so it is not possible to solve it in order to recover the full 
motion vector. This is known in the literature as the ”aper- 
ture problem” [8] meaning that there is no way to recover 
the complete optical flow vector using only local (one pixel) 
information. With local information we can only compute 
the motion in the direction of the gradient (known as ”nor- 
mal flow”). 

Many authors try to solve the aperture problem with the 
incorporation of some kind of global information, involv- 
ing a process of regularization. This is: given a measure of 
some error, the process of regularization consists on apply- 
ing extra restrictions to the sequence of images, searching 
for a minimum in the measure of the error. One of the first 
algorithm found in the literature using this technique is the 
one by Horn and Schunk[7]), in the early 80’. They apply a 
restriction that consists in a measure to maximize (a global 
smoothness criteria) and another one to minimize (the error 
given by the fit to OFC); this restrictions are applied to all 
the image. 

Some researchers use a estimation of the velocities with 
a confidence measurement, so for each measure we now 
how reliable it is [ 11. 

There are authors that use other invariants than pixel in- 
tensity like the zero crossings of the laplacian of the gaus- 
sian [5]. The motivation is that they are closer to the bio- 
logical facts in animals visual systems, 

Finally, there is another alternative that analyzes the 
measures in the space of the velocities, that is, it tries to 
find a robust estimation of the velocity performing an anal- 
isys of the results of many systems of OFC equations, each 
one applied to a pair of pixels (see figure 1) or it tries to 
fit the data to a model in order to estimate the velocity. In 
this way, the analysis is performed directly in the data do- 
main that we want to recover, that is, the U ,  v (the velocity 
components)ispace [lo][ 12][4]. 

3 Robust estimation of Optical Flow 

Usually in real imaginery, there are many independent 
moving objects. In this situation, the problem of occluding 
surfaces arises: places where the velocity changes suddenly 
from one pixel to another. In this case it’s not possible to 
use the approaches like [7] because the global smoothness 
criteria doesn’t holds in those boundaries. Other authors 
like Nagel [9] propose relaxing the smoothness criteria in 
places where the gradient is high, smoothing the flow along 
the contour but not thru the contour. But the problem re- 
mains: through the fact that the OFC has two unknowns, 
it’s necessary to take measurements from at least two pixels. 
If the pixels are chosen from objects with different veloci- 

0 gocdmeassuremenu 

0 badmeasuremMls 
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I U 

Figure 1. 

ties, the solution to the system of equations obtained will 
give an erroneus velocity. It is necessary the analysis of the 
velocity distributions presented in a neighborhood of each 
pixel, in the direction addressed in [ 121 to determine which 
velocities are supposed to be correct and which one is the 
dominant velocity in the neighborhood. In the next section 
our approach in this direction is explained. 

3.1 Vote cumulation for velocity selection 

The first of our approach consists on the following steps: 

For each pixel we consider a neigbourhood of a given 
size. For each possible couple of pixels, we solve the 
system of equations given by the OFC applied to the 
couple of pixels. 

We discard the solutions whose module exceeds a 
given constant as errors. We discard also the solutions 
of systems whose condition number is too high. 

0 After this, we build a data matrix which elements are 
the number of times a velocity lies on a given range, in 
z and y separately. That is, each possible velocity from 
a set is voted if the data lies in its range. For instance, 
the velocities in the range form 3.8 to 3.9 vote for 3.85 
value. 

We have now a sort of image or surface with brightness 
(or height) proportional to the accumulated votes. We 
filter the data with a gaussian kernel and after this we 
search for the maximum in it. We do this to erode the 
local and isolated maxima. 

0 The velocity that corresponds to the maximum is an es- 
timation by itself, but to improve the precision we per- 
form another estimation. For every data that is closer 
to the maximum than a given percent of it, we search 
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for the gravity center of them, that is, we consider that 
the velocities have associated a weight and we calcu- 
late the gravity center of that distribution. This is our 
final estimation. 

In figure 3 the process is summarized in a schema. 

The idea of this process is to avoid that a wrong estima- 
tion like the one in figure 1 could happen. In that figure, 
it can be seen that a few data can corrupt a traditional esti- 
mation like minimum least squares. Our approach perform 
well in this cases because it eliminates that wrong data in 
two stages, first because of the filtering and second when 
we compute the gravity center of the remaining data. 

Figure 4. 

3.2 Mode as an estimator of Optical Flow 

The approach explained in previous section gives good 
results but it is expensive in terms of computational cost. 
The results are also discrete in the sense of being in a finite 
set of values, the grid over the vote accumulation is per- 
formed. If the grid is smaller, the number of possible values 
is greater but the computational cost grows. Because this 
two reasons, we develop another method equivalent to the 
former, based on the use of the mode as an estimator of the 
most reliable velocity, the result of the previous approach is 
an approximation of the mode. 

As in the previous method, we compute the solutions 
of every possible pair of OFC’s (except the systems whose 
condition number is to high) for a given neighborhood. We 
discard the solutions whose module is greater than a thresh- 
old as errors. The solutions to the system of OFC’s solved 
are arranged into an array with three columns. In the first 
column we store the velocity component in x direction, in 
the second column we store the velocity component in y 
direction as shown in 4(the array is rotated in the figure). 

The array is sorted using the following criteria: first the 
components in x direction are compared and then if they 
are equal, the component in y direction is compared. Now 
for each velocity we count how many velocities are closet 
than a threshold to it (d in figure 4). Each velocity close 
to the former increases one unit the third column of the 
row where that velocity is stored, so in that field we store 
the number of neighbors that each velocity has, closer than 
the mentioned threshold. Because the array is sorted as we 
mentioned above, it only must be considered the velocities 
such that the difference between component in 5 direction 
with the velocity being analized is smaller than the thresh- 
old, avoiding the need to compute the SSD for each pair of 
velocities. In each iteration, the velocity with the highest 
number of neighbors is stored, and for each neighboorhod 
centered in the pixel whose velocity is being calculated, that 
velocity with the maximum number of neighbors is taken as 
an estimation of the former. The idea is to find which ve- 
locity is the one who has more velocities closer to it, in a 
given interval, in order to find the biggest cluster of veloc- 
ities for the whole set of solutions calculated. This cluster 
is supposed to be representative of the neighboorhod being 
studied and because this is assumed to be an estimation of 
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Figure 5. 

the velocity of the central pixel of that neighboorhod. The 
ratio between the number of neighbors of the velocity taken 
into account in the estimation and the number of velocities 
computed is a measurement of the reability of the estimation 
itself, the bigger the ratio is more reliable the estimation is. 

-1 5 -1  -05 0 05 

Figure 6. 

4 Results 
Figure 7. 

In this section we will show some preliminary results of 
the algorithm. In figure 5 it can be seen how the solutions of 
OFC pairs are distributed when the whole region being stud- 
ied has the same velocity. There is some dispersion because 
the erroneous calculations of spatiotemporal derivatives but 
the velocities that have more votes are clustered in a defined 
group. 

In figure 6 it is shown what kind of results are obtained 
when in a given region coexist pixels with different veloc- 
ities. For pairs of OFC applied to pixels with different ve- 
locity we obtain a cluster of solutions. For pixels with the 
same velocity we obtain a cluster too, one for each velocity 
in the region being studied. The problem is how to find the 
cluster that correspond to the velocity of most of the pixels 
of the image. Our approach can perform this task easily be- 
cause the voting schema applied. In the discretized space of 
velocity, each possible solution has a number of votes asso- 
ciated. After the filtration step, the most voted velocity is 
find. Then the gravity center of the solutions with a number 
of votes close to the maxima is taken as an estimation of the 
velocity. 

In figure 8 it is shown an optical flow field obtained using 
a least squares estimation over a 9x9 neighborhood from 
the sequence of images in figure 7, where two sinusoidal 
patterns move with velocities (1, -1) (pattern in up and 
left conner) and (-1,l) (pattern in down and right conner). 
Clearly, in the boundaries of the movement, the estimation 
is very bad, because the pro-mediation between different 
velocities give as result an inexistent velocity. There is also 
an effect of undesirated smoothness, the change from one 

velocity to another takes place slowly. This situation can be 
seen with detail in figure 1 1 ,  zoomed between rows 50 70 
and columns 20 40. 

In figure 9 we show our estimation of the optical flow 
field from the same sequence of images shown in figure 7. 
In figure 10 (zoomed between rows 50 70 and columns 20 
40) it  can be seen the same detail than in figure 1 1 .  

It can be seen that the estimation only fails in two cases: 

The central pixel of the neighborhood lies on a surface 
that moves in different way than the most of the other 
pixels in the neighborhood. This happens in the cor- 
ners at 90 degrees, for instance. 

The central pixel of the neighborhood belongs to one 
surface in first frame and to another, occluded by the 
former, in the second frame. 

But apart from these situations, the estimation of the ve- 
locity is much better than the one obtained from LS esti- 
mation, this is because our approach discards the measures 
obtained from couples of pixels that: 

0 Have different velocity. 

0 Their OFC’s are almost parallel, so the solution of the 
system is not reliable. 
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5 Conclusions and future work 

Figure 8. 

Figure 9. 
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Figure 10. 

The work here presented is in a preliminary stage of de- 
velopment, more test with the sequences used in [3] must 
be performed, as well as an analysis based on numerical 
quantities, not only in qualitative properties. But the ap- 
proach here presented seems to be promising because the 
robust estimation is an imperative requisite in real imagin- 
ery, where the presence of noise implies erroneous measure- 
ments. This erroneous measurements are rejected in this ap- 
proach, because the searching of a velocity that is the center 
of a big cluster of similar values has more porbability to be 
an accurate estimation of the velocity than isolated values. 
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