
Simulated annealing-based fuzzy classifier induction

Luciano Sánchez Inés Couso J.A. Corrales
Dep. Informática Dep. Estad́ıstica Dep. Informática

Univ. Oviedo Univ. Oviedo Univ. Oviedo
luciano@lsi.uniovi.es couso@pinon.ccu.uniovi.es ja@lsi.uniovi.es

Abstract

The use of genetic algorithms, genetic
programming and hybrid methods of
both to induce fuzzy classifiers is quite
common. In this work we propose to use
some elements of genetic programming
to implement a version of the simulated
annealing algorithm that can be used
to search for the minimum of a func-
tion defined over the chains of a context-
free grammar, and we apply this method
to derive a fuzzy rule-based, descriptive
classification system with good numeri-
cal properties. Simulated annealing and
genetic programming are compared over
some datasets and the results are dis-
cussed.

1 Introduction

Let us suppose we wish to describe a classification
system by means of a descriptive fuzzy rule base
and let us admit by now that (1) we know the
equivalence between every linguistic term and its
corresponding fuzzy set and (2) we have chosen a
suitable fuzzy reasoning method. With these two
hypotheses, a rule-based fuzzy classifier is equiva-
lent to a fuzzy relation R defined over the Carte-
sian product of the linguistic terms set and the
class marks set, as in the following example:

Example 1.1 Let us suppose that we need to de-
cide whether a piece of fruit is a banana or a pear
by examining its weight and color. Color can be
yellow or green, weight high or low, and the rules
that describe the decision process are:

if weight is high and colour is yellow
then truth(class is banana) = 0.8

if weight is high and colour is yellow
then truth(class is pear) = 0.1

[etc.]

which, alternatively, can be encoded in the fuzzy
relation

R(high, yellow, banana) = 0.8
R(high, yellow, pear) = 0.1

· · ·
so called “surface structure” of the rule bank [8].

Given a definition for the fuzzy partitions of the
variables in the universe of discourse (also called
“deep structure”, after Zadeh) and a formula to
perform the fuzzy reasoning, every fuzzy relation
R defines a crisp partition of the characteristics
space. It is possible that different rule banks de-
fine the same fuzzy relation, and it is also known
that different fuzzy relations can define the same
crisp partition. For instance:

Example 1.2 We have a set of objects belonging
to classes C0 or C1, and we perform two different
measurements over every object. Measurements
can take real values ranking from 0 to 1, and
we define for every measurement the labels “low”,
with low(x) = 1−x and “high”, with high(x) = x.
Let us define now the following rule bank:

X is low and Y is low ⇒ (C0,C1)=(0,1)
X is low and Y is high ⇒ (C0,C1)=(α1,α2)
X is high and Y is low ⇒ (C0,C1)=(α1,α2)
X is high and Y is high ⇒ (C0,C1)=(1,0)

with α1, α2 ∈ [0, 1]. Observe that, when using the
standard fuzzy reasoning method (see figure 1), for
every α1 all banks for which α2 ≤ α1 will produce
the same partition, and vice versa.

(x1, x2) ∈




C0 if max
X,Y ∈{low, high}

min(R(X,Y,C0),X(x1), Y (x2)) ≥
max

X,Y ∈{low, high}
min(R(X,Y,C1),X(x1), Y (x2))

C1 otherwise

Figure 1: Given a fuzzy partition of the universe of discourse and a fuzzy reasoning method, different fuzzy
relations can produce the same classification system. In this figure we show the decision surfaces arising
from the relation R(low, low, C0) = 0, R(low, low, C1) = 1, R(low, high, C0) = α1, R(low, high, C1) = α2,
R(high, low, C0) = α1, R(high, low, C1) = α2, R(high, high, C0) = 1, R(high, high, C1) = 0; the reasoning method
shown above, and the values α1 = 0.3, α2 ∈ [0, 0.3], (left) α1 = 0, α2 = 0 (center) and α1 = 0.5, α2 ∈ [0, 0.5]
(right) for the rules defined in example 1.2

This last example is to recall that it is not only
possible to define different rule banks that share
the same surface structure, but it is also possi-
ble to obtain the same solution to a classification
problem with different surface structures. The
practical relevance of this fact (the rule-based rep-
resentation of a fuzzy classifier being non unique)
has to see with the concept of linguistic interpre-
tation: we usually need to search for the short-
est linguistic description, so just finding any rule
bank that solves the numerical problem is not
enough. For instance, in the last example, if
α1 = 0 and α2 = 0 then rules 2 and 3 are re-
dundant.

Because of this property, most of modern fuzzy
rule induction methods (see [3] and cites con-
tained therein) consist in two phases: in the first
stage, the values of the fuzzy relation are deter-
mined (and the fuzzy partitions are tuned) to
build an initial bank in which a fuzzy rule is tied
to every not null term in the relation. In a sec-
ond stage, the initial bank is simplified to obtain
an easier classifier than can be described with a
relation equal or very similar to the former one.

We follow a different approach (see [7]) and
search simultaneously for both fuzzy partitions
and the most simple linguistic expression by
means of an optimization of a function defined

over the chains of a language. We first define
a fuzzy classifier as a valid chain in certain con-
text free language, with an associated semantic
that relates every rule bank with a fuzzy relation.
The grammar we use permits defining classifiers
in which not all input variables are present in ev-
ery rule, thus combining the classification induc-
tion and feature selection phases in one (see ap-
pendix). Our work follows the line started in [4],
where fuzzy rule induction is presented as a ge-
netic search over the chains of a language that we
have extended to allow tuning the fuzzy partitions
of the input variables.

2 Genetic programming and
simulated annealing

Up to our knowledge, the only optimization
method that has been applied to optimice a func-
tion defined over the chains of a language is ge-
netic programming based. We intend to show that
the same results can be reproduced with simu-
lated annealing, which is a much simpler and less
memory consuming algorithm. In this section we
will extend the Metropolis algorithm, defined as
follows:

algorithm sa

Parmeter Meaning Value
Cooling rate Temperature decrease / iteration 0.9999

T0 Initial temperature 5
Iterations Maximum number of iterations 50000

K1 Inverse of maximum (percentual) jump in constant part 5
K2 Inverse of maximum jump in expressional part 0
p Probability of GA part being modified 0.5

Figure 2: Execution parameters of SA. Expressional part jumps are not limited, K2 = 0, constant part jumps
are limited to a 20%, K1 = 5.

needs: cooling factor, Tinitial, Tfinal, p
produces: Cbest

T=Tinitial
C=Cbest=initial, random chain
while T>Tfinal do

C1=adjacent(C,p,T,K_1,K_2)
delta=error(C1)-error(C)
v=random value U(0,1)
if delta<0 or v<exp(-delta/T) then

C=C1
if C<Cbest then Cbest=C end if

end if
T=T*cooling factor

end while

where output the function “adjacent” is selected
from the offspring of a GA-P subtree crossover
of the chain C and other, randomly generated,
chain of the language. The parameter p stands
for the balance between GA and GP crossover
probability and the temperature T will be related
to the maximum edition distance allowed between
the output of the function and the chain C:

algorithm adjacent
needs: C, p, T, K_1, K_2
produces: C1

if U(0,1)<p then
A=random real vector
param(C)=
param(C)*(T/K_1)+(1-(T/K_1))*A

else
repeat
E=expr(C)
select a subtree of E
replace it by a randomly

generated subtree
until edition_distance

(E,expr(C))<T/K_2
expr(C)=E

end if

param(C) and expr(C) stand for “chain of pa-
rameters” and “expressional part” of the chain C
(see appendix). Parameters K1 and K2 adjust the
amplitude of the jumps in the chain of parameters
and expressional part, respectively.

3 Numerical results

The values of SA algorithm execution parameters
are displayed in table 2. Every experiment has
been repeated 10 times starting from different,
random candidates. SA was rather more sensible
to initial temperature and cooling pattern than
GA-P is to its own execution parameters.

Genetic programming experiments used 10 sub-
populations of 100 individuals, 10 niches in each
one, one per cent migration. Steady state, se-
lection with 3-size tournament and tournament
losers were replaced by offspring. One per cent
of the offspring is mutated. GA crossover is ap-
plied when both parents belong to the same niche
and GP crossover otherwise. The number of
inter-niche and intra-niche crossover is balanced
(50% intra-niche crossover). Experiments were re-
peated 10 times from random populations. Evo-
lution finishes after 50000 fitness evaluations in
both SA and GA-P algorithms.

In table 3 we can see that SA is not different
from genetic programming in all datasets. In ta-
ble 4 the results of applying K-NN, linear clas-
sifiers and multilayer perceptrons to the same

Dataset GA-P Rules Variables SA Rules Variables
Mean Dev Uses/Tot Uses/Tot

Cancer-1 2.58 0.78 5 5.1/9 2.93 1.07 4.9 4.9/9
Cancer-2 5.91 1.20 5.1 4.7/9 5.74 1.28 5.4 5.2/9
Cancer-3 5.34 1.33 5.4 4.3/9 5.28 0.56 5 5.3/9

Mean 4.62 4.7/9 4.65 5.1/9
Thyroid-1 5.18 0.67 5.3 4.8/21 4.51 1.08 5.5 5/21
Thyroid-2 4.51 0.80 5.9 3.9/21 4.16 1.34 5.2 5.2/21
Thyroid-3 4.90 0.70 5.6 4.3/21 4.38 1.66 4.8 5.1/21

Mean 4.87 4.3/21 4.35
Pima-1 25.57 1.12 4.7 4.5/8 25.41 1.86 3.9 4.1/8
Pima-2 28.07 2.10 4.7 4.2/8 27.29 1.66 3.7 4.1/8
Pima-3 24.06 1.66 4.7 4/8 22.86 0.94 3.4 4.2/8
Mean 25.90 4.2/8 25.19 4.1/8

Glass-1 43.96 7.91 9.1 6.2/9 41.88 4.97 7.8 5.5/9
Glass-2 41.13 2.03 8.7 5.9/9 42.07 5.34 9.1 6.6/9
Glass-3 44.52 7.55 10.2 7.2/9 42.45 7.41 8.6 5.8/9
Mean 43.20 6.4/9 42.13 6/9

Figure 3: Comparison of results between genetic programming and simulated annealing when inducting fuzzy
rule banks in classification problems. In this table, means and standard deviation of the test results obtained
after repeating 10 times every experiment are shown. The equivalent “only and” number of rules and the mean
number of variables used are also displayed.

Problem K-NN Linear MLP
Mean Dev Mean Dev

Cancer-1 1.7 2.93 0.18 1.38 0.49
Cancer-2 4.0 5.00 0.61 2.38 0.35
Cancer-3 4.5 5.17 0.00 3.70 0.52
Media 3.4 4.36 3.28

Thyroid-1 5.95 6.56 0.00 2.38 0.35
Thyroid-2 6.00 6.56 0.00 1.91 0.24
Thyroid-3 6.50 7.23 0.02 2.27 0.32

Media 6.15 6.78 2.18
Pima-1 25.5 25.83 0.56 24.10 1.91
Pima-2 27.6 24.69 0.61 26.42 2.26
Pima-3 23.5 22.92 0.35 22.59 2.23
Media 25.5 24.48 24.37
Glass-1 35.8 46.04 2.21 32.70 5.34
Glass-2 33.9 55.28 1.27 55.57 3.70
Glass-3 35.0 60.57 3.82 58.40 7.82
Media 34.9 53.96 48.89

Figure 4: Results obtained with K-NN, linear and multilayer perceptron classifiers over the same datasets used
in the fuzzy rule induction problem. MLP and linear classifier results are taken from [6].

K2 Pima-1 Pima-2 Pima-3 Pima-1 Pima-2 Pima-3 µ TRA µ TST

5 39.28 11.68 39.06 12.54 41.61 14.43 40.63 10.17 41.15 8.69 41.03 14.46 36.65 40.93
1 21.65 0.59 21.15 0.35 22.38 0.44 25.88 1.42 28.22 1.41 22.60 1.53 21.72 25.55

0.5 21.14 0.46 20.83 0.47 22.25 0.38 25.15 1.51 28.95 1.45 23.54 1.37 21.40 25.86
0.2 21.28 0.41 20.87 0.44 21.86 0.46 25.78 2.00 27.66 1.87 23.39 1.39 21.34 25.61
0 21.18 0.41 20.63 0.43 21.89 0.42 25.42 1.81 27.29 1.66 22.86 0.94 21.23 25.19

Figure 5: Comparative results: SA with expressional part mutation limited to different degrees. Surprisingly,
best results are obtain when limits are not applied.

Variables (IM) Variables (GAP) Variables (SA)
Cancer 0 1 2 5 6 0 1 2 5 7 0 1 2 5 7
Pima 0 1 5 7 1 5 6 7 1 5 6 7
Glass 1 2 3 4 5 6 2 3 4 5 6 7 1 2 3 5 6 7

Thyroid 2 16 17 18 20 0 2 16 19 20 2 16 17 18 19

Figure 6: There exists a relation between the order of the variables as determined by their mutual
information and the order defined by their relative frequency of use when SA or GP induction is
repeated a number of times from random starting values.

datasets are included. “Not different” means that
differences are not statistically significant if 5x2cv
test is applied (95%).

In figure 5 the results of applying SA to PIMA
dataset are tabulated for train and test partitions
for different limits in the jumps in the expressional
part. Best results are obtained when no restric-
tions are imposed over these jumps.

By last, in table 6 the most relevant characteris-
tics, as found with an statistical method (a greedy
algorithm that selects characteristics by querying
mutual information between the class and every
variable) and the most used variables in GP and
SA are displayed.

4 Concluding remarks

In this work we have shown that genetic program-
ming was not better than older and simpler SA
method when applied to the search of the mini-
mum of a function defined over the chains of a lan-
guage in fuzzy classification problems. It remains
to study whether this technique is also useful for
inducting rules in other problems. Preliminary
results in fuzzy modeling go in this direction.

Since the most simple version of SA was used,
perhaps more elaborate cooling programs or par-
allel SA can improve the results.

References

[1] D́ıaz, A. et al. Optimización Heuŕıstica y Re-
des Neuronales. Paraninfo, 1996.

[2] Banzhaf, W. y otros Genetic Programming:
An Introduction. On the automatic evolution
of computer programs and its applications.
Morgan Kaufmann, 1998.

[3] Cordón O., del Jesus M. J., Herrera F. y
Lozano M. (1999) Mogul: A methodology
to obtain genetic fuzzy rule-based systems
under the iterative rule learning approach.
Intenational Journal of Intelligent Systems
14(9).

[4] Geyer-Schulz, A. Fuzzy Rule-Based Expert
Systems and Genetic Machine Learning. Sec-
ond edition. Physica-Verlag, 1997.

[5] Howard, L., D’ Angelo, D. “The GA-P: a
genetic algorithm and genetic programming
hybrid”. IEEE Expert, pp 11-15. 1995.

[6] Prechelt, Lutz. “PROBEN1 – A set of bench-
marks and benchmarking rules for neural
network training algorithms”. Tech. Rep.
21/94, Fakultät für Informatik, Universität
Karlsruhe, 1994.

[7] Sánchez, L., Garćıa Carbajal, S. “Fuzzy
classifier induction with GA-P algorithms”.

ESTYLF-EUSFLAT joint conference, Palma
de Mallorca, 1999.

[8] Zadeh, L. “Fuzzy Logic, Neural Networks
and Soft Computing”. Communications of
the ACM, 37(3), pp. 77-84. 1994.

A Grammar of a fuzzy rule

based classifier and its asso-
ciated semantic

A.1 Meaning of a fuzzy rule

The rule

“if xi if l̃ij then class is ck with conf. α”

defines the relation Rijk that follows:

Rijk(x1, . . . , xm, c) =
{

α if xi = l̃ij and c = ck

0 otherwise

and the rule

“if α then class is ck”

defines the relation

Rαk(x1, . . . , xm, c) =
{

α if c = ck

0 otherwise

A.1.1 Antecedents with logical expres-
sions

If the rules

“if A then class is ck”

“if B then class is ck”

define the relations RA and RB , then the rules

if A ∧ B then class is ck

if A ∨ B then class is ck

define the relations

RA∧B(x) = min(RA(x), RB(x))

RA∨B(x) = max(RA(x), RB(x))

respectively. As a consequence of this, the rule

“if A ∧ α then class is ck”

describes the same relation as the rule

“if A then class is ck with confidence α”.

an that means that by introducing logical constants in
the antecedent all relations can be described by rules
with confidence 1.

A.1.2 Rule concatenating

The concatenation of N rules defined by rela-
tions R1, R2, . . . , RN define the relation R(x) =
max{R1(x), . . . , RN (x)}. Two rules with the same
consequent can be combined in one. The construction

if A then class is ck

if B then class is ck

is identical to

if A ∨ B then class is ck

A.1.3 Grammar of a fuzzy rule-based
classifier

We will define a fuzzy rule based classifier as a chain
of the following language:

CLASSIFIER → if CONDITION then class is c1

if CONDITION then class is c2

. . .
if CONDITION then class is cNc

LOGICAL-CONS
PARTITION-CONS

CONDITION → ASSERT1 | ASSERT2 | . . . | ASSERTm

| (CONDITION ∨ CONDITION)
| (CONDITION ∧ CONDITION)
| (CONDITION ∧ logical–cons)

ASSERT1 → left-trapezium(x1,K11,K12) |
triangle(x1,K11,K12,K13) |
. . .
right-trapezium(x1,K1n1−1,K1n1)

· · ·
ASSERTm → left-trapezium(xm,Km1,Km2) |

triangle(xm,Km1,Km2,Km3) |
. . .

right-trapezium(xm,Kmnm−1,Kmnm)
PARTITION-CONS → K11 . . . K1n1 . . . Km1 . . . Kmnm

LOGICAL-CONS → K1 | K2 | . . . | KNc

where left-trapezium, triangle and
right-trapezium are the fuzzy memberships
usually used in triangular fuzzy partitions [7]. There
are two semantic restrictions over the values of the
constants:

1. Constants K1 K2 . . . KNc take values between 0
and 1.

2. The lists [K11 . . . K1n1] . . . [Km1 . . . Kmnm], are
ordered and their values must be inside the range
defined for every one of the variables.

The “GA part” of a chain comprises the
terminal simbols under LOGICAL-CONS and
PARTITION-CONS. “GP part” comprises all other
symbols.

