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Abstract 

Fuzzy rule bases can be regarded as mixtures of experts, 
and hoosting techniques can be applied to learn them 
from data. In particular, provided that adequate reason- 
in: methods are used, fuzzy models are extended ad- 
ditivc models. thus backfitting can be applied to them. 
We propose to use an implementation of backfitting that 
uses a genetic algorithm for fitting submodels to resid- 
uals and we also show that it is both more accurate and 
faster than other fuzzy rule learning methods. 

1 Introduction 

1.1 Fuzzy models and extended additive 
models 

Under certain common fuzzy reasoning methods, fuzzy 
models are extended additive models. Consider a fuzzy 
rule based model comprising AT rules 

( 1 )  

where S and l -  are the feature and the output vectors, 
respectively, and A,,, Bm are conjunctions of linguistic 
labels, with in turn are associated to fuzzy sets. Let B' 
he the result of the inference process for the preceding 
rulc; given an input 20, 

If S is -Al,, then Y is B,,, 

P B ' ( Y )  = I ( P A , , , ( z O ) , P B , , ( Y ) )  (2) 
whew 1 is a fuzzy inference operator. Let these sets be 
aggregated after defuzzified [3]. The output F(z0 )  of 
the I'uzzy model is then computed as 

(3) 

where D is a defuzzification operator, and G is an oper- 
ator that combines all values D ( ~ B : ,  (2, y)) to produce 
the tinal output. Let us define I to be the product, D the 
centroid and G the sum. Then 

A I  
W O )  = G,=,(wm:,(Y))) 

A I  

F ( l O )  = P A m  ($0 )  ' D b B m  (Y)) (4) 
,11=1 

and D(p~, (y) )  is a constant, thus the output of the 
fuzzy model has the form 

A t  

~ ( z )  = f m ( z )  ( 5 )  
m=l  

where each fm(z) is a mapping fm(z) : X + R. This 
is what we know as an extended additive model [2]. 

1.2 Backfitting algorithm 

Formulating the regression problem for a model like 
this (i.e., modeling the mean E(Y1z) from training data 
(zI,yl), . . . , (SN,YN), with zi a vector valued feature 
and yi scalar) can be quite simple if a back-fitting algo- 
rithm is used. Let the functions fm(z) be characterized 
by a set of parameters y and a multiplier D,, 

f m b )  = P m w w m ) .  (6)  

If least-squares is used as a fitting criterion, back-fitting 
consists in finding {p,,,, -yTtn} minimizing 

r 

with respect to 4, y [2]. A greedy approach is frequently 
used to solve the problem: 

(8) 

where {Bk, 7 k ) Y - l  are fixed at their corresponding so- 
lution values at earlier iterations [ l]. 

In this paper we propose to define b(z, y m )  := PA,,, (z) 
and Pm := D(p~g ,  (y)) and lo apply generalized back- 
fitting to induce a fuzzy model. The following section 
explains how to adapt, with the help of a genetic al- 
gorithm, the greedy backfitting algorithm to fuzzy rule 
learning. Both learning time and numerical accuracy of 
the method will be experimentally contrasted to other 
fuzzy rule learning procedures in section 3. 

{iBm,ym} 
arg minp,, E[Y - %-I (z) - Pb(z; r)I2 
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2 Proposed methodology 

Generalized back-fitting requires an algorithm that fit 
one single submodel to the set of data. This means that 
we just need to devise an efficient method lor fitting otie 

fuzzy rule to a dataset. Then, the set of data will re- 
placed by the residuals of the whole model. 

y t g - f k ( 2 )  (9) 
k f r n  

which is this case reduces to 

and the process is repeated. A fuzzy rule will be ob- 
tained in every iteration, and the process finishes when 
the best is zero 11r the accuracy of the model is high 
enough. whichever come first. An outline of this pro- 
cess is shown in  Figure I .  

2.1 Fitting one rule 

Fitting a submodel consists here in selecting one rule 
from the sei of combined memberships of antecedent 
and consequent (i.e. the set of fuzzy memberships that 
can be used for a set --Il,, x B , ,  given the linguistic 
partitions of the features) and determining the value of 
,3,,, (the truth ofthe rule) that best fits i t  to the residuals. 

We propose to find B,,, analytically. Differentiating the 
square error and equating to 0, we obtain that the opti- 
mum value of d,,, for a rule A, -+ B,, is 

where [-41n -+ B,,](z) is the defuzzified output of the 
rule and the union symbol means “add one rule to the 
basc”. Since this value is not restricted to [0,1], val- 
ues of 3,,, greater than I are replaced by repetitions of 
the same rule and negative importances have their sign 
changed and their linguistic label swapped with other 
one, centered in a negative point. 

?, B,,,] is assigned the square error obtained when 
the optimal value of on,, given by eq. 11. It only re- 
mains to find the combination of linguistic values that 
give that rule the best overall error for the current resid- 
uals. A simple binary coded genetic algorithm can do 
this discrete optimization part, as we will show in the 
next subsection. 

2.2 GA search of linguistic terms 

The CA structure can be exploited to integrate the fea- 
ture selection process into the search scheme. We will 

residual[l. .NI = Y [ 1 .  .NI 
rule base = emptyset 
repeat 

R = fit-one-rule(X,residual) 
do i=l. .N 
residual [ i I = 
residual[i] - inference(R,X[il) 

end do 
rule base = rule base + R 

until rule base contains enough rules 

Figure 1. Backfitting is a greedy method that 
is based on a n  algorithm that fits one rule to 
the residual of the incomplete rule base. A 
discrete coded genetic algorithm will be used to 
find the best fuzzy rule, whose degree of truth 
can be analytically determined. 

use a coding scheme based in [SI. Let us codify a lin- 
guistic term with a ’1 ’  bit in a chain of so many bits 
as different terms in the linguistic partition. For exam- 
ple, let {LOW, MED, HIGH} be the linguistic labels of 
all features in a problem involving three input variables. 
The rule 

If21 i s H i g h a n d x 2  i sMedandx3 isLou 
t h e n  I-’ is  Med, 

is codified with the chain 001 010 100 010. We extend 
this encoding to represent rules for which not all vari- 
ables appear in the antecedent and ’OR’ combinations 
of terms in the antecedent. For example, the rule 

If21 i s H i g h a n d x 3  isLow t h e n Y i s M e d ,  

is codified with the chain 001 000 100 010, and the rule 

If z1 i s (  High o r  Med) 
and 2 3  is  Low 
then 1‘ is Med, 

will be assigned the chain 01 1 000 100 010. 

Observe that, under the fuzzy reasoning method used 
here, chains “001 11 1 100 010” and “001 OOO 100 010” 
are equivalent. “ O R  combinations of rules increase the 
complexity of the knowledge base and we desire to min- 
imize their number in the final result. Therefore, to pro- 
mote simpler individuals, it was decided that in case of 
tie when evaluating the squared error of two different 
individuals, the one with a lower number of bits is pre- 
ferred. This way, the search is guided toward rule banks 
that might not use all features. 
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Figure 2. Learning time i n  seconds (left) and train error (right) of linear regression, neural networks, 
Wany and Mendel and Backfitting algorithms on the problem discussed in section 3.1. Neuronal and 
h i e a r  truin error curves are the same. 

3 Numerical results 

3.1 Learning time 

To assess the learning time of this method a synthetic 
problem was designed. It consists in generating 100 
points (zl ! . . . ,z,) uniformly distributed in the inter- 
val [U! with n varying from 1 to 15. Then, a linear 
model, a neural network, Wang and Mendel’s method 
and Backfitting were applied to approximate the func- 
tions 

n 

S I 1 ( Z 1 , .  . . ,zn) = c.2. (12) 
i = l  

Results are shown in Figure 2. The left part shows 
that Wang-Mendel’s method complexity is exponential 
in the number of features, while backfitting is approx- 
imately linear, provided that the genetic algorithm is 
stopped after a specified number of iterations (1000, for 
this experiment). The right part shows the final error of 
all models; noise was not added, therefore it should be 
0 in all cases. In practice, since the number of samples 
is constant, the density of examples decreases with the 
number of features and conversely the error of non lin- 
ear niodels is expected to increase. This effect is shown 
in the right part of the same figure. 

3.2 Numerical accuracy 

Wanp and Mendel with importance degrees ’maximum’ 
(WM 1). ‘mean’ (WM2) and ’product maximum-mean’ 
(WM3) [6] ,  the same three versions of Cordbn and Her- 
rera’s method (CHI, CH2, CH3) [4], NIT [8], Lin- 
ear (LIN) and Quadratic regression (QUA) , Neural 
Networks (NN) and TSK rules induced with Weighted 

Least Squares (WLS) are compared to this method 
(BFT) over 8 synthetic problems and two real world , 

problems. “fl” is z = z2 + y2 and “f2” is l O ( 2  - 
zy)/(z - 22y + y) (both were taken from [4]). “fx-y” 
is the function fx with y% of gaussian noise. “Build- 
ing” was taken from [9]  and “Cable” from [71. 5 x 2 ~ ~  
experimental framework [IO] was used: 50% of points 
were used to train the model, that was tested against the 
remaining 50%; roles of training and test sets were in- 
terchanged and the process repeated, and tpis was repli- 
cated 5 times for different permutations of the dataset, 
which gives 10 repetitions of the learning algorithm for 
every dataset. The mean of the test errors is shown in 
Table 1 and the boxplot of the results are shown in figure 
3. p-values assessing significance of the statistical con- 
trasts as indicated in 5 x 2 ~ ~  method are not included, but 
they can be deduced from the graphs: non overlapping 
boxes indicate that there exist a statistically significant 
difference between the algorithms involved. Observe 
that backfitting was more accurate in both synthetic and 
real problems. 

4 Concluding Remarks 

Not all fuzzy reasoning methods are suitable for back- 
fitting: the t-norm must be the product, rules must be 
defuzzified before aggregated and the aggregation op- 
erator must be the sum. This limits the application of 
this method as a general approach to fuzzy rules learn- 
ing. But, when this limitations are accepted, backfitting 
is very precise and faster than other genetic fuzzy sys- 
tems; it is remarkable than this genetic fuzzy system can 
also be faster than many “ad-hoc’’ methods while being 
comparable in precision and time to neural networks. 
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I1 
fl-10 
f 1-20 
f l  -so 
f? 

E-IO 
t2-20 
E-50 

cable 
building .IO2 

I - 

WMI WM2 WM3 CHI CH2 CH3 NIT LIN CUA NEU WLS BFT 
S.65 5.73 5.57 5.82 8.90 6.93 5.63 130.5 0.00 0.17 0.09 0.55 
6.89 7.19 6.54 6.84 10.15 8.20 7.16 133.91 1.40 1.78 1.62 2.17 
11.07 10.99 11.06 11.33 13.45 12.42 10.63 135.6 5.29 6.42 5.90 6.47 
51.78 46.40 47.80 53.48 48.94 48.16 39.65 166.64 33.53 41.18 36.76 38.94 
0.41 0.48 0.45 0.40 0.59 0.4.5 0.43 1.54 1.61 1.48 0.15 0.26 
0.64 0.68 0.68 0.59 0.68 0.60 0.58 1.71 1.75 1.81 0.29 0.42 
1.27 1.16 1.17 1.29 1.15 1.17 0.97 2.04 2.09 0.90 0.76 0.91 
4.34 3.98 3.94 4.47 3.90 3.97 3.59 4.67 4.78 3.76 3.62 3.62 
778 720 723 673 663 655 548 418 393 522 486 441 

1 . 1  13 1.051 1.023 0.983 1.753 1.465 0.432 0.477 -- 0.276 0.246 0.299 

- 

. -  :1 ---e 

- . .  
3 -  

l a .  

Figure 3. Comparative results between additive regression + backfitting and other approaches. Size 3 
partitions were used in all cases. B F T  method was limited to  25 fuzzy  rules. Upper part: f l ,  11-20 and 
f l -50  datasets. Center: f2, f2-20 and f2-SO. Lower part: cable and building datasets. 
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