
GA-P BASED MODELING OF NONLINEAR DYNAMIC
SYSTEMS

Lopez, A.M. � Lopez, H.� Sanchez, L.��

�University of Oviedo. Electrical Engineering Department.
C. Universitario de Viesques, Ed. Departamental No 2, 33203, Gijon,

Asturias, Spain.
e-mail: [antonio,hilario]@isa.uniovi.es
��University of Oviedo. Computer Science Department.

C. Universitario de Viesques, Ed. Departamental No 1, 33202, Gijon,
Asturias, Spain.

e-mail: luciano@lsi.uniovi.es

Abstract:
Model construction is usually guided by a trial-error process, where each iteration is divided
into two steps: (i) physical modeling and (ii) identification.
Genetic programming has been applied to automate this process in different ways. One of
the most complete approaches is the described in project SMOG, where a set of model
structures is evolved, being the set of parameters of each model optimized by means of
classical methods. In this paper, a GA-P algorithm (a hybrid between genetic algorithms
and genetic programming) is applied to the task permitting the evolution in parallel of model
structures and parameters. Copyright ©2002 IFAC.
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1. INTRODUCTION

Genetic Programming has been applied to system
modeling in different ways.

One of the initial solutions was that proposed in (Iba
et al., 1993), where a structured Genetic Algorithm,
in a tree based representation, is used to solve iden-
tification problems. Quadratic functions of two input
variables are used as the function set. Other inter-
esting approaches are those described in (Babovicet
al., 1991) , (Sharman and Esparcia-Alcazar, 1993) and
(Dzeroskiet al., 1995).

To our knowledge, the most complete application
is described in project SMOG (Marenbach, 1998;
Marenbachet al., 1996), where the problem is ad-
dressed as a search of a model of a system using a
block diagram representation, being the function set

composed, among others, of continuous time blocks
defined in the domainS.

Nevertheless, this application presents some critical
points. This paper analyzes them and proposes a so-
lution, showing some results that surpass SMOG effi-
ciency.

2. GENETIC ALGORITHMS, GENETIC
PROGRAMMING AND THE GA-P ALGORITHM

Genetic Algorithms (Davis, 1991; Goldberg, 1989;
Holland, 1975) are multi-point iterative stochastic op-
timization methods based on the natural evolution
principle of survival of the fittest. Parameters in the
target function are coded making up the individual.
A set of randomly created individuals is evolved by
means of the application of genetic operators until a
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predefined termination criteria is satisfied. This opera-
tors are applied to individuals selected randomly from
the current population with a bias in the direction of
growing fitness.

Genetic Programming (Koza, 1992) is a derivation
of the former. Individuals are, usually, tree based
representations composed of terminals and functions,
where the terminals (elements to provide information
to the individual) and functions (elements to transform
information into the individual) are specific to the field
of application. Random creation and modification of
individuals are adapted to the new representation. Fit-
ness of each individual is evaluated using test data
describing the desired behaviour of the solution struc-
ture.

Mixing both schemes, theGenetic Algorithm Pro-
grammable, or GA-P (Howard and D’Angelo, 1995),
evolves in parallel a set of structures like the ones
used in GP and a set of parameters of those structures.
Genetic operators for the structural and parametric
componentes are defined to fit the new scheme.

3. SMOG

SMOG (Marenbach, 1998; Marenbachet al., 1996) is
an application of Genetic Programming to dynamical
systems modeling. It evolves a set of diagram block
representations in a tree representation (see figure
1), where the terminal set is composed of the input
variables and the function set is composed, among
others, of linear S-blocks, non-linear blocks, and the
usual arithmetic operators found in block diagram
representations such as+ and�.

Any individual in the population will undergo a pa-
rameter adjustment by means of Hooke-Jeeves algo-
rithm (Hooke and Jeeves, 1961).

Fitness calculation of models (based on sampled data)
is made after its conversion to the discrete time do-
main.

SMOG is an interesting application of GP to system
modeling. It allows to analyze the solution, a great
advantage over other learning methods sometimes re-
jected in the industrial environment due to their black
box nature. Nevertheless, SMOG presents some draw-
backs:

� It uses a tree based representation. This makes
it impossible to model a wide set of systems,
such as those involving nested or non-unitary
feedbacks. The reason is that a block diagram
is not a tree when it includes feedback, but a
directed graph. So, a graph based representation
for models is used.

� Objective function to minimize (residual er-
ror between the model and real system out-
put) presents local minimum (A.M. Lopez and
Sanchez, 2001), making classical optimization
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Fig. 1. Tree based representation of a block diagram

methods applied to the identification of models
involved in the process invalid. As shown in
previous studies (A.M. Lopez and Ojea, 2000),
genetic algorithms provide better results con-
cerning the parsimony of generated models and
preventing the tool from being easily trapped by
local minima. Nevertheless, GAs could be highly
consuming in terms of computational resources
if applied to each individual in the population.
Our application tries to evolve in parallel the
structured model by means of a GP and the vec-
tor of parameters by means of a GA, making up
a GA-P based modeling tool.

4. TOOL DEFINITION

Base class system definitionNonlinear dynamic sys-
tems are defined as such base class. It would make
not much sense to apply a high consuming tool
like GP to linear dynamic modeling, where several
methods of high efficiency have been developed
over the years.

Individual Representation Each model is represented
by a two component structure. One is a graph based
representation of the model structure, and the other
is a vector of real values containing its parameters.
� Structural component. The graph based rep-

resentation proposed (see figure 2), mixes a
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link nodes list with ideas from (Marenbachet
al., 1996) and (Sharman and Esparcia-Alcazar,
1993).

A special feedback node, different from the
one defined in SMOG, is used, hanging from
it the input and the feedback branches. It also
contains a third link to another node in the
graph from which the feedback signal will be
taken. This pointed node will play, together
with its own function, the role of the bifurca-
tion node.

Algebraic loops are forbidden. So, a unit
delay is implicitly included in the feedback
branch. Also, physical systems never respond
instantly to an excitation. So, a unit delay is
implicitly linked to the output of the graph and
dynamic blocks used respond instantly.

� Parameters component. It is composed of a
vector of real values containing the parameters
of the model to be evolved by the GA compo-
nent of the algorithm. It was decided to use a
real value codification based on (Davis, 1991),
where it is said that the best codification you

can use is the most natural for the problem,
adapting the GA to use this codification.

Individual Evaluation Fitness calculation is based
on the residual error between the system and model
outputs. Three samples of the system are used for
the evaluation of the individual, making up three
different fitness measures. The first (training) will
be used to evolve the structural component, the sec-
ond (test) to evolve the parameters component and
the third (validation) will be used as an unbiased
measure of the error in order to determine its gener-
alization capabilities.

Genetic Operators Besides the reproduction opera-
tor, two sets of genetic operators are defined. One
affects the structural component of individuals and
the other affects their parameter component. A gen-
erational approach is used. So, after the application
of genetic operators a new full population is defined
to replace the actual one.
� Structural Genetic Operators. Subtree crossover

(Koza, 1992) and internal crossover (Kinnear,
Jr., 1994) are used. Subtree, node and feedback
mutation operators are also used. This set of
operators only affect the structural component
of the individuals involved, not the parametric
one. Any application of a structural genetic op-
erator could give as a result an invalid individ-
ual. In that case, a reparation strategy is applied
to it.

� Parameter Genetic Operators. Two structurally
identical individuals are selected from the pop-
ulation for each application of this set of oper-
ators. They only affect their parameter compo-
nent, not the structural one. Real based genome
crossover operator is defined for the parame-
ters of the model as a random movement of
a vector in the direction of the other. After
crossover, a mutation, a direct search or both
can be applied to the resulting offsprings de-
pending on predefined probabilities. Mutation
is defined as a crossover with a randomly gen-
erated individual. Direct search is performed
by means of Nelder & Mead algorithm (Mead
and Nelder, 1965) run for a few iterations.

5. AN EXAMPLE OF APPLICATION

A modeling of a synthetic system shown in figure 3 is
done.

5.1 Algorithm Preparation

As the function set used for the modeling a linear
dynamic first order system, an arithmetical operator
of addition, a feedback node, a static gain and a
saturation block will be used. The tool will try to
combine them to form an “optimal” model of the



Fig. 3. System to model

Table 1. Variation ranges for parameters of
functions used in the example of applica-

tion

Minimum Maximum
First order static gain 1.5 2.5

First order pole 0.25 0.75
Static gain 0.1 0.75
Saturation -1.5 1.5

Table 2. GA-P parametrization for the ex-
ample of application

Parameter Value
Generations 50
Individuals 501

Reproduction Fraction 0.1
Parametric Crossover fraction 0.2

Parametric mutation probability 0.05
Direct Search probability 0.5
Iterations of Direct Search 10

Structural Crossover Fraction 0.65
Internal Crossover Fraction 0.05
Structural Mutation Fraction 0.02

Node Mutation Fraction 0.02
Feedback Mutation Fraction 0.01

system, departing from a randomly set of models by
the application of the genetic operators defined.

Also, it is necessary to specify a range of variation
for each parameter of the different components of
the function set. Table 1 shows those used at this
experiment. Parametrization of the algorithm is shown
in table 2.

5.2 Results

Experiment is repeated 10 times. Table 3 contains the
numerical results (training, test and validation fitness
measures for each experiment, together with their
average over the 10 experiments). Errors are low, so
models are quite good.

Regarding the analytical solutions, best model was
obtained at experiment No 10 (see figure 4). Structure
of the model is the same as that of the real system.
Only a deviation is present in the parameters vector, a
problem which could be easily solved applying a more
intensive identification algorithm over this structure.

Table 3. Modeling errors. GA-P algorithm.

Experiment Training Test Validation
1 0.0060 0.0049 0.0038
2 0.0078 0.0084 0.0073
3 0.0065 0.0049 0.0041
4 0.0062 0.0050 0.0035
5 0.0125 0.0118 0.0137
6 0.0062 0.0056 0.0042
7 0.0202 0.0240 0.0102
8 0.0060 0.0052 0.0043
9 0.0381 0.0515 0.0342
10 0.0015 0.0013 0.0015

Average 0.0111 0.0123 0.0087

5.3 Comparison with SMOG

SMOG is applied to model the same system under
similar conditions. In order to make a fair comparison,
the same number of evaluations of the objective func-
tion is allowed. Although it could seem that the time
involved in the modeling (directly proportional to the
number of evaluations of the objective function) is not
very important, it is of great importance because any
application of an evolutive method is usually repeated
several times.

The GA-P application made 48096 evaluations of the
objective function. SMOG is going to be applied al-
lowing to perform 50000 evaluations of it. A popula-
tion size of 51 individuals will be used. The algorithm
runs for 20 generations. Hooke-Jeeves method will be
applied to identify each system for 54 iterations. A
reproduction rate of 0.1, a crossover rate of 0.8 and
a mutation rate of 0.1 will be used. Experiment is also
repeated 10 times.

Table 4 contains the results (training, test and vali-
dation errors for each experiment, together with their
average over the 10 experiments). Errors are low, but
they are higher than those obtained by means of the
application of the GA-P algorithm.

Best model was obtained at experiment number 3 (see
figure 5). Structure is very different from that of real
system, providing little information about it. From this
experiment, it can be concluded that the tool is easily
trapped by local minima.



Fig. 4. GA-P best result

Fig. 5. SMOG best result

Table 4. Modeling errors. SMOG algorithm

Experiment Training Test Validation
1 0.0029 0.0029 0.0015
2 0.0721 0.0695 0.0638
3 0.0025 0.0026 0.0015
4 0.0059 0.0057 0.0053
5 0.0038 0.0030 0.0028
6 0.0040 0.0040 0.0027
7 0.0364 0.0343 0.0372
8 0.0064 0.0045 0.0042
9 0.0049 0.0034 0.0031
10 0.0071 0.0064 0.0052

Average 0.0146 0.0136 0.0127

6. MODELING A REAL PROCESS

As a final validation, a real process was modeled
under the proposed GA-P approach. A simple target
system was selected in order to be able to contrast
the GA-P result with a known model of the system,
thus analyzing the capacity of the algorithm to propose
models with significance. Such system was a direct
current motor.

An open loop direct current motor is usually modeled
as a first order dynamic system. Another pole would
be present in a more precise model, but its effect is
normally ignored. Also, at low voltage values, the
motor usually presents a dead zone.

Three different samples for modeling were taken from
the motor by means of squared, triangular and random
input signals. In order to make the dead zone to have
an appreciable effect in the behaviour of the system,
the motor was fed at low voltage values.

The function set used in this experiment was com-
posed of first and second order dynamic subsystems,

Table 5. Variation ranges for parameters of
functions used in the real process applica-

tion

Minimum Maximum
First order static gain 0.5 1.5

First order pole 0.25 0.75
Second order static gain 0.5 1.5

Second order pole (real component) 0.25 0.75
Second order pole (imaginary component) 0 0.25

Static gain 0.5 1.5
Dead Zone -10 10

Table 6. GA-P parametrization for the real
process application

Parameter Value
Generations 100
Individuals 1001

Reproduction Fraction 0.1
Parametric Crossover fraction 0.6

Parametric mutation probability 0.05
Direct Search probability 0.5
Iterations of Direct Search 10

Structural Crossover Fraction 0.2
Internal Crossover Fraction 0.05
Structural Mutation Fraction 0.03

Node Mutation Fraction 0.02
Feedback Mutation Fraction 0

a static gain and a dead zone block. Variation ranges
for parameters of subsystems are shown in table 5.
Parametrization of the algorithm is shown in table 6.

As a result of the experiment, a model composed of
a cascade association of a first order dynamic system
and a dead zone of a few r.p.m. was found (see figure
6(a)). In figure 6(b) a comparison between the motor
(plotted line) and model (continuous line) responses is
shown. System response is accurately reproduced.
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(b) Comparison of motor (plotted line) and
model (continuous line) responses.

Fig. 6. Modeling a direct current motor

7. CONCLUSIONS

A new scheme is proposed to model physical systems
based on the Genetic Algorithm Programmable. This
new scheme proposes a graph based representation
for the structural component and a real value vector
for the parameters component. Genetic operators are
defined to fit both components representation.

The scheme has been applied to model a synthetic
nonlinear dynamic system, showing the capacity to
provide concise and precise solutions. Also, the struc-
ture of the system was identified, allowing to conclude
a high efficiency to defect local minima.

A comparison with SMOG under similar conditions
has been made. Modeling errors are higher and the
solution is structurally far from the real system, being
this approach easily trapped by local minima.

Also, the proposed approach has been applied to
model a real system. Result is coherent with a known
model for the system and it accurately reproduces the
behaviour of the real system.
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