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Abstract. The most e�ective approaches for evolutionary identifying
dynamical processes depend on iterative trial-error searches in a hierar-
chical fashion: a new structure is proposed �rst; then, its set of parame-
ters is numerically determined, and the process is repeated until a model
accurate enough is found.
Canonical Genetic Programming has been used to automate this search;
but its output can be diÆcult to interpret. Because of this reason, the
use of hierarchical learning methods, that combine GP search of struc-
tures with deterministic optimization algorithms, has been proposed. We
will show in this paper that the output of such methods can be further
improved with non hierarchical algorithms. In particular, we will show
that the use of GA-P improves the interpretability of the models and
does a better model search than previous approaches.

Keywords: GA-P algorithms, Genetic Programming, System Identi�cation,
Hierarchical models

1 Introduction

Most of the evolutionary methods for system identi�cation from sampled data
focus in nonlinear state space-based models. For this kind of models, the ob-
jective of the learning process is the production of a set of di�erence equations
de�ning the dynamics of the process. Unfortunately, for practical purposes, a set
of equations that relate all state variables between them is hard to manage in all
but small sized problems. Modular representations are usually preferred, because
they allow to determine groups of variables a�ected by speci�c parameters.
Genetic Programming has been applied to learn such modular models. One of the
�rst examples was given in [9], where a structured Genetic Algorithm, in a tree
based representation, is used. The set of functions that was proposed contained
only two-inputs quadratic functions, which are not the building blocks that con-
trol engineers expect to �nd in structured models. Some implementations nearer
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Fig. 1. Block diagram representation of a system (left) and its tree based representation
(right.) \SO" stands for \Second Order" and \exp" for \exponential function".

to usual practice can be found in [2, 4{6, 10, 19, 23] and other, less common ap-
proaches to model the dynamics of a system, are described in [7, 17, 24]. Most of
these schemes introduce dynamic considerations by means of extended terminal
sets, that include either input and input-output delayed variables.

One of the most complete methods is described in SMOG [15, 16]. The problem
is addressed there as a search of a diagram block based representation of a
model of the process in a tree codi�cation (see �gure 1). The function set used
includes continuous time blocks de�ned in the domain S, making the dynamical
considerations intrinsic to the search. Recently, a similar approach has been used
for the induction of process controllers in [11].

Under the considered approach (see Figure 2), hierarchical evolutionary algo-
rithms are applied: canonical GP is used for the evolution of model structures
and combined with deterministic numerical optimization methods (Hooke and
Jeeves algorithm) for parameter tuning. An iterative search of structure and
parameters is done: each model considered is parametrically tuned by means of
Hooke-Jeeves algorithm as a previous step to �tness evaluation. Genetic opera-
tors de�ned for evolution a�ects only the structure of the models.

We will show in this paper that, according to our experimentation, better results
can be obtained if a new representation and a new set of genetic operators are
used. The representation that is proposed in this paper is adapted from an idea
�rst proposed in [8], and shares characteristics with GA and GP algorithms,
being able to search in parallel in both structure and parameter spaces.

The focus will be put not only at the capabilities of the solutions to reproduce
the sampled data used for training or validation. They will be also structurally



a. Initialize random population of models.

b. Tune parameters of models in the population (Hooke-Jeeves algorithm).

c. Calculate fitness.

d. Selection of models and application of genetic operators.

e. Go to b).

Fig. 2. SMOG evolution. Canonical GP is used for structural search and

Hooke-Jeeves method is used for parameter tuning.

compared with a known model for the target system. This way, they can be
analyzed as explaining methods of the underlying relationships in the data.

1.1 Structure of the paper

The outline of this paper is as follows: in section 2, the scope of application
of this method is introduced. In section 3, the parallel search of parameters
and structure done by the GA-P algorithm is described. Then (section 4) an
experimental validation of our proposal is done, modeling both a synthetic and
a real process and comparing the results with those obtained with previous
works. The paper �nishes with the concluding remarks and future work.

2 Scope of application

Our interest is focused over a class of physical systems involving common non-
linear features, to which conventional methods are hardly applicable. Being a GP
based modeling approach used, the de�nition of the functional set will de�ne the
scope of application of the algorithm. The GP will evolve a set of diagram block
representations of the process. A diagram block is, in turn, a series, parallel or
feedback association of subsystems. Series association is intrinsic in GP. Parallel
association will be allowed by means of arithmetic operators, such as + and -,
and feedback representation will be allowed by means of an special operator [1]
described next.
Regarding the catalog of subsystems, we used only memoryless version of the
common non-linear features of physical systems, such as dead zones or satu-
rations [14, 20]. All the dynamic behavior is delegated to linear elements: we
include in the function set a reduced group of linear models (�rst and second
dumped order linear subsystems, unitary delay and static gain) such that it is
possible to get higher order systems by means of series association.

3 Proposed algorithm

3.1 Drawbacks of the hierarchical learning process

There is an inherent drawback with the hierarchical learning: the searches of the
numerical parameters best suited for the structures being produced by GP are,
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Fig. 3. Representation of a generic individual in GA-P algorithms. Individuals in GA-P
have two parts: a tree based representation and a chain of numerical parameters.

themselves, multi modal problems [1]. Therefore, deterministic methods fall fre-
quently into local minimum points and, as a consequence of this, a good structure
can be assigned a low score in the search process. Despite this problem, hierar-
chical approaches are able to �nd good models because GP can produce several
times the same structure with di�erent initial values for the numerical parame-
ters. Thus, the deterministic algorithm will eventually �nd the global minimum.
But under this context the GP is not only being used to search di�erent struc-
tures but also to search di�erent numerical starting points, a problem in which
GP is known not to perform too well.
In previous studies [1], we have tried the replacement of Hooke and Jeeves
method with a real coded genetic algorithm, obtaining good numerical results.
Anyway, such a hierarchical approach is a highly consuming task, because many
resources are wasted in the identi�cation of structurally invalid systems. An
strategy that does not need the GA to converge before examining a new struc-
ture, and that does not discard too soon structures that may be valid, is needed.

3.2 GA-P algorithms

GA-P [8] is an hybrid between genetic algorithms and genetic programming,
that was �rst used in symbolic regression problems. Individuals in GA-P have
two parts: a tree based representation and a chain of numerical parameters.
Di�erent from canonical GP, the terminal nodes of the tree never store numbers
but linguistic identi�ers that are pointers to the chain of numbers (see Figure
3).
The behavior of the GA-P algorithm is mainly due to its crossover operator.
Later in this section it will be described in detail how we adapted it to the
problem at hand; let us say for the time being that either the tree parts or the
chains of parameters may be selected and crossed, thus the GA search of the
parameters and the GP search of the structures are being done in parallel. This



way, individuals structurally �tted will have more possibilities to undergo an
intensive parameter optimization, while those structurally un�tted will tend to
disappear. A niche strategy [21] is used in the evolutionary process, preventing
the search to fast fall into local minimum points.

Representation Tree based representation makes it impossible to model a
wide set of systems, such as those involving nested or not unitary feedbacks.
The reason is that a block diagram is not a tree when it includes feedback, but a
directed graph. Structure and parameters parts of the representation are de�ned
as follows:

{ Structural component. The proposed representation (see �gure 4), mixes a
link nodes list with ideas from [16] and [22]. A special feedback node is used.
Both input and the feedback branches originate in it. The terminal nodes
of the feedback branch (marked as \**") are recessive. This way, standard
structural modi�cation operators can be applied at any point in the individ-
ual to evolve structures.
It also contains a third link to another node in the graph from which the feed-
back signal will be taken. This pointed node must be contained in the path
between the feedback node and the output node of the system. Otherwise,
feedback node looses its signi�cance. This consideration must be present in
the creation and modi�cation of individuals as a consequence of structural
genetic operators. When an individual does not accomplish this condition
after an structural modi�cation, invalid feedback nodes are reinitialized.
Algebraic loops are neglected by means of the implicit inclusion of a unit de-
lay in the feedback branch. To prevent series associations of delays, dynamic
blocks used respond instantly. But, known the fact that physical systems
never respond instantly to an excitation, a unit delay is also implicitly linked
to the output of the model.

{ Parameters component. It contains a vector of values with the parameters of
the model to be evolved by the GA component of the algorithm. It is used
a real value codi�cation based on [3].

Genetic Operators Two sets of operators are applied in the evolutionary
process:

{ Structural Genetic Operators. Subtree crossover [13] and internal crossover
[12] are used. Subtree, node and a special operator for feedback mutation
operators are also used. This set of operators only a�ect the structural com-
ponent of the individuals involved, not the parametric one.
All of the structural operators act over tree based representations. Therefore,
feedback links are inhibited during the process.

{ Parameter Genetic Operators. Two structurally identical individuals are se-
lected from the population for each application of this set of operators. They
only a�ect their parameter component, not the structural one. Real based
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Fig. 4. Block diagram representation of a feedback system (left) and its genetic repre-
sentation (right.) \SO" stands for \Second Order" and \Sgm" for \sigmoid function".
Also, \**" stands for a recessive terminal.
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Fig. 5. Target model. \Satba" stands for \saturation" block with limits in a, b.

genome crossover operator is de�ned for the parameters of the model as a
random movement of a vector in the direction of the other. After crossover,
a mutation, a direct search or both can be applied to the resulting o�springs
depending on prede�ned probabilities. Mutation is de�ned as a crossover
with a randomly generated individual. Direct search is performed by means
of Nelder & Mead algorithm [18] run for a few iterations.

4 Numerical results

4.1 Modeling an empirical system

To validate our approach, an empirical control system of a �rst order process with
a proportional saturated controller and a sensor without dynamics (see �gure
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Fig. 6. Di�erences in the structures of the learned models. \Satba" stands for \satura-
tion" block with limits in a, b.

5) was modeled by means of the de�ned GA-P strategy. It was also compared
with a hierarchical process. Both approaches were stopped after certain number
of evaluations of the objective function.
Experiments were repeated 10 times each. Figure 7 contains validation errors for
each experiment. Observe that GA-P improves slightly the results, but the di�er-
ences are not signi�cant. The gain with GA-P is in the identi�ed structure (see
Figure 6, where the best models obtained by both approaches are shown.) Ob-
serve that only little deviations are present in the parameters values, a problem
which could be easily solved by the application of more intensive optimization
procedure over that structure. In this case, GA-P found exactly the structure
of the target model, explaining very well the data relationships. In contrast, the
hierarchical method was trapped in a local minimum of the structure. It is only
capable of �tting the sampled data.

4.2 Modeling a real process

As a �nal test, a real process was modeled by means of the proposed scheme.
A DC motor was selected, in order to have information enough to contrast the
GA-P solution with a known model for the process (usually a �rst or second
order dumped linear subsystem with a non-linear dead zone component).
Experimental conditions were the same as in the preceding section. Table 7(c)
contains the numerical validation errors for each experiment. From it, it can be
concluded that the best result was found at experiment 10, shown in �gure 8(a).
Solution is close to a known model for the system. It is capable of capturing the



Experiment Error

1 0.00017
2 0.0004
3 0.00005
4 0.00004
5 0.00019
6 0.00005
7 0.00005
8 0.00006
9 0.00029
10 0.00007

Average 0.00014

(a) GA-P
modeling errors,

synthetic
problem

Experiment Error

1 0.00206
2 0.00301
3 0.00129
4 0.00184
5 0.00287
6 0.00112
7 0.00111
8 0.00107
9 0.00147
10 0.00263

Average 0.00185

(b) Hierarchical
approach

modeling errors,
synthetic
problem

Experiment Error

1 0.9196
2 0.7755
3 0.7354
4 0.8433
5 0.9223
6 0.9259
7 1.1809
8 1.0134
9 1.0976
10 0.6933

(c) Numerical
modeling errors
for the direct
current motor

Fig. 7. Numerical modeling errors.

most signi�cant relationships in the data. Finally, in Figure 8(b), a comparison
between the motor and the model responses is shown. Observe that the behavior
is correctly reproduced and the noise is smoothed as expected.

5 Concluding remarks and future work

The identi�cation of nonlinear systems from sampled data is a multimodal prob-
lem either in structure and parameter spaces. We have shown that \state of the
art" hierarchical learning algorithms can be trapped in these minimum points
and be unable to �nd the right structure in certain cases. We have solved this
problem by introducing a parallel evolutive search of parameters and structure
that does not waste time optimizing parameters for invalid structures neither
discards structures too early.

While being able to process more complex problems than its predecessors, this
learning algorithm is not complete. In practical situations we need to be able
to incorporate expert knowledge to the system, either in the form of structural
restrictions or by means of closed submodels with known expression around
which a joint model should be evolved. In a near future, we plan to incorporate
a measure of structural quality to the �tness function and use multicriteria
evolutionary algorithms to obtain a family of solutions with balanced precision
and complexity from which the control engineer can choose.
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