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Abstract. Recently, Adaboost has been regarded as a particular case of a previ-
ous statistical method: greedy backfitting of extended additive models in logis-
tic regression problems, or “Logitboost”. The application of Logitboost to learn
fuzzy classifiers from data should improve the performance of the fuzzy classifier
in multiclass problems, and reduce the size of the fuzzy rule base. In this work,
we propose a GA-based version of Logitboost and discuss some preliminary nu-
merical results of this method.

1 Introduction

Boosting consists in combining low quality classifiers with a voting scheme to produce
a classifier better than any of its components. The most common version of Boosting
is called AdaBoost [5]. Recently, a close relationship between this method and Gener-
alized Additive Models has been shown. Following [6], Adaboost is a specialization of
the backfitting algorithm –used since the 80’s to induce generalized additive models–
whose greedy version is also known as “matching pursuit” [12] [17]. This relationship
explains the mechanisms of Adaboost in terms of iterative approximations to maximum
likelihood estimation over a family of additive models.
As a consequence of the new theoretical justification, some corrections were introduced
to Adaboost and a new boosting method, called LogitBoost, was proposed in [6]. Log-
itboost should pose less numerical problems than Adaboost, and it was experimentally
shown to improve the former method, being specially efficient in multiclass problems,
to which Adaboost was difficult to extend.
Matching pursuit methods have been used to induce fuzzy classifiers and models in
different ways. In fact, Iterative Rule Learning of models [4] and classifiers [2] are
closely related to matching pursuit algorithms and can be regarded as the precursors of
these algorithms, and Adaboost itself was directly applied to induce descriptive [10] and
approximate [9] fuzzy classifiers. Backfitting has also been regarded as the counterpart
of Adaboost in model estimation and also used to induce fuzzy models in previous
works [14].

1.1 Summary

The structure of this paper is as follows: in the next section, fuzzy classifiers are intro-
duced and it is explained how Adaboost can be applied to induce them from data. Then,



the Logitboost algorithm is explained, compared to Adaboost and adapted to learn fuzzy
classifiers. The paper finishes with an empirical evaluation of the new algorithm.

2 Boosting Fuzzy Classifiers

2.1 Notation

At this point we introduce the basic notation employed throughout the paper.
�

is the
feature space, and a feature ���	��
 ���������� 
������ �

is an element of this space. ��������� � � �"!#!#! $ , with
�%�'&	() � � � is a fuzzy partition of

�
. * is the number of classes. A

sample is a set of + pairs �,�.- � / -0� , where 132 / -%24* . The set of training examples is
indexed by the letter 5 , the set of rules by 6 , the features by 7 and the classes by 8 . The
ranges of these variables are 192:5;2<+ , 192=6>24? , 192@7A2<B and 19248C2D* .

2.2 Descriptive fuzzy classifiers

A fuzzy rule based classifier is a fuzzy relationship defined on �FE � 1 �������G� * �
. Values

of this relationship describe the degree of compatibility between the feature vector � -
and the class / - . High values indicate high compatibility, whereas low values do not
necessarily imply low compatibility; but rather codify the absence of knowledge about
the actual degree of compatibility.
There are different standards when translating the former fuzzy relationship into lin-
guistic statements. We combine * instances of the fuzzy relationship,

compatibility � � � � /�H �I�KJ H 8>�L1 ������� * �
into a single sentence, as follows:

if 
 � is
� � � and ����� and 
 � is

��� �
then truth � / � �;��J � and M�M�M and truth � /ON �;��J N

where
�%� � � � � E ����� E ��� � . The overall classifier comprises as many sentences (fuzzy

rules,) as elements in the fuzzy partition � . It is immediate that not every arbitrary
fuzzy set can be expressed as a Cartesian product of fuzzy sets defined over projections
of the feature space. This restriction limits the choice of the fuzzy partition � . We can
restrict the search space even further by requiring the fuzzy sets

� � P
, 7Q�R1 ��������� B

to form B linguistic variables, in which case we obtain a fuzzy rule based descriptive
classifier; otherwise we obtain approximate fuzzy rules. Descriptive fuzzy classifiers
allow a linguistic interpretation of rules because the fuzzy sets

� � P
refer to linguistic

values that are common to all the rules in the classifier. All terms
� � P

are associated to a
linguistic value. Therefore, B linguistic variables S P

, spanning one feature each, must
be defined. Each linguistic variable comprises B P

terms, and every term is related to a
fuzzy set TVUP . In other words, S P � � T;UP � U � �O!#!#! �XW and

� � P �CS P
.

Observe that in a descriptive fuzzy classifier the set of possible rules is finite due to
the discrete number of possible linguistic labels associated to each rule. In other words,
each fuzzy set has a label associated and the consequents and antecedents in the rule are



taken from that set of labels. Because of this, descriptive classifiers are expected to be
more interpretable than approximate ones, since in the latter the meaning of the rules
are related with the definition of the fuzzy sets, that change from one rule to another.
Fuzzy reasoning methods define how rules are combined and how to infer from a given
input to the corresponding output. Frequently, an instance � is assigned to the classYZ\[^]_Y` H � �Oa#!#!#!#a N $b� � � � � ���.�dceJ H (1)

where the “ c ” and “ f ” can be implemented by different operators; for example, “ f ”
can be the maximum operator [11] or the arithmetic sum, so called “maximum voting
scheme” [11]. “ c ” is always a t-norm.

2.3 The Adaboost Algorithm

Boosting is a technique that combine several individual classifiers into a “committee”
that performs better than any of the single classifier. The first boosting algorithms use a
voting scheme to combine the classifiers [15]. Let us define a set g of very simple, but
possibly unreliable classifiers h � �Cg . Boosting consists in combining these low quality
classifiers (so called “weak hypotheses” in boosting literature) with a voting scheme to
produce an overall classifier that performs better than any of its individual constituents
alone. In our case, weak hypotheses correspond to fuzzy rules. Weak hypotheses in
confidence rated Adaboost [16] take feature values as input and produce both a class
number as well as a degree of confidence in the given classification. In two classes
problems, these two outputs can be encoded with a single real number, h � �,�.�i�kj ,
whose sign is interpreted as the label of � and whose absolute value is interpreted as the
confidence in the classification, the higher the better. AdaBoost is intended to produce
a linear threshold of all hypothesesl �,�.�;� sign

mn $o� � �qp � h � ���.�srt (2)

minimizing an upper bound of the number of training errors; as in all machine learning
techniques, reducing the training error is of secondary importance, as the primary ob-
jective of the classifier is to minimize the generalization error over previously unseen
instances.
Adaboost can operate with any learning algorithm that generates a confidence rated
classifier given a weighted data set. We will use this property to learn fuzzy rule based
classifiers: boosting fuzzy rules is based on an algorithm able to fit one single fuzzy
rule to a set of weighted examples. This algorithm will be repeated so many times as
rules in the base, and the Adaboost algorithm produces the number of votes each rule
is assigned and recalculates the weight of every example when the rule is added to the
base.
Figure 1 shows the outline of the Adaboost algorithm adapted to learn fuzzy rules, as
proposed in [10].



Given: uwv �OxzyX� { xO|O|\|Ox uwv�} x~y } { x v��q�_��� xqy�� �����%� x�� �G�
Initialize � � uw� {�� �"��� , �~� � ��� , �~� � ���
Select the number of rules �
For � � � x"|O|O|\x � :

– Find the fuzzy membership � � ��� that minimizes� �=�9� �X¡£¢�¤i¥s¦ }�¨§©� � � uw� {«ª\¬® uz� y�� �¯uwv �,{s{ x°¦ }�±§©� � � uw� {®ª\¬® u y�� �²uwv �,{s{s³
– Find numerically the value ´ � that minimizes

� � uw´ {d�<¦ }�±§£� � � uw� {®ª\¬® uz�I´ y�� � � uwv �µ{s{
– If ´ �¯¶ � then � � � � ´ � else � � � � ´ � .
– Update the weights: � �\· � uw� {d� � � uw� {®ª\¬® uz�I´ � y � � � uwv � {s{¸

where
¸

is another normalization factor, so that � �\· � is a distribution.

End For� � � � � � � � ��¹�¬Xº�» � u�� � º { x � � � � � � � � ��¹G¬Xº�» � u�� � º { ¼~½^� � x ¾¼ � � � x"|O|\|Ox �
Generate the rules

if ¿ � is � � � and |O|\| ¿ � is � � � then tr uwÀ � {d� � � � and tr uwÀ �"{d� � � �
Fig. 1. Adaboost algorithm applied to the induction of a descriptive, fuzzy rule based classifica-
tion system. Two classes version.

3 Backfitting additive logistic classifiers: The Logitboost algorithm

The Adaboost algorithm was based on two a priori definitions: the concept of classi-
fier (a linear threshold of a set of weak hypothesis,) and certain exponential bound of
the number of errors. By the contrary, the Logitboost algorithm is an statistical estima-
tion procedure that relies on an stochastic definition of a classification problem. The
bound that Logitboost tries to minimize is the likelihood of a classifier, which is turn is
restricted to a parametric family of density functions (a logit transform of an additive
model.)

3.1 Generalized and Extended Additive Models

Additive models were introduced in the 80’s to improve precision and interpretability
of classical nonparametric regression techniques in problems with a large number of
inputs. These models estimate an additive approximation to the multivariate regression
function, where each of the additive terms is estimated using a univariate smoother.
Individual terms explain the dependence of the output variable with respect to their cor-
responding input variables, thus there exists a certain degree of interpretability in the
model. While this kind of estimation avoids the curse of dimensionality, it is not able to
approximate universally. Hastie and Tibshirani addressed this issue and proposed gen-
eralized additive models [6]. With these last models it is assumed that the mean of the
output depends on a sum of terms through a nonlinear link function, and it is permitted
that the response probability distribution is any distribution in the exponential family.



Many statistical models belong to this class, including additive models for Gaussian
data and nonparametric logistic models for binary data like the one we are interested in.
More formally, let Á be the output random variable we wish to model, and let 
Â��,
 ���������� 
���� be the input random vector. The objective of the modeling process consists
in estimating the conditional expectation of Á given 
 . Linear regression assumesÃ �,ÁdÄ 
q�Å�Æ7Ç�,
 � ��������� 
 � �I�ÉÈ�Ê;Ë�È � 
 � Ë ����� Ë�È � 
 � (3)

and obtains È Ê ��������� È�� by least squares. Additive models generalize this schema by
allowing the use of a sum of nonlinear univariate regressorsÃ ��ÁdÄ 
©�Å��7Ç��
 ��������G� 
q�Ì�I�ÆJ Ê Ë:J � ��
 � �.Ë ����� Ë:J��£�,
q�Ì� (4)

where J - are smooth functions that are estimated in a nonparametric fashion. General-
ized additive models extend additive models by not assuming a Gaussian distribution
of the output, but any probability distribution in the exponential family,7«Í°��Î"Ï�Ð�ÏOÑq�;�4Ò `°Ó_Ô ÎsÐ9Õ=Ö«��ÐX�× �µÑ©� Ë / �,Î � Ñ©��Ø (5)

and making the additive component7Ç�,
 ����������� 
����;��J Ê Ë<J � �,
 � �.Ë ����� Ë<J��£��
��Ì� (6)

to depend on the mean of the output by means of a link function h , so that h£� Ã �,ÁdÄ 
©���Å�7Ç�,
 � �������G� 
 � � . The most commonly used link function in practice is the canonical linkh©� Ã �,ÁdÄ 
q���;�ÉÐ .
Additive models can be generalized furthermore. In extended additive models, the uni-
variate regressors J�- are replaced by functions of more than one feature. In our context,
these functions usually depend on a set of parameters Ù and a multiplier È ,J - �ÉÈ - JÚ�,
�Ï~Ù - � (7)

thus the additive model becomesÃ ��Á£Ä 
q�;��7Ç�,
 � �������G� 
 � �I�KJ�Ê;Ë �o - � � È - JX� �,
 � ��������� 
 � �"Ï~Ù - � � (8)

For example, in radial basis neural networks the functions JÚ�,
 � Ù - �;�KÒ `°Ó � Ä±Ä 
3ÕDÙ - Ä¨Ä � �
are the “basis functions”; Ù - are their centers and È - are the weights that connect the
input layer with the output. In support vector machines, JÚ�,
 � Ùd� is a kernel, and Ù - are
the support vectors. We will show later that a fuzzy rule base can be casted in the same
schema under certain mechanisms of approximate reasoning.

3.2 Backfitting and the Logitboost Algorithm

Extended additive models can be learned with a generalized backfitting algorithm [6].
Given a cost function Û , that measures the differences between the conditional expecta-
tion and its approximation, this algorithm consists in finding B pairs of values

� ÈdÜ � Ù°Ü �



minimizing each ÃÞÝßà Û mán Á � oâ�ãåäzæ æ æ çâ�èãXé È H JÚ��
.Ï~Ù H �.Ë�È�JÚ�,
�Ï~Ùd� r�êt�ëíìî (9)

with respect to È � Ù [6]. A greedy approach, where the expectation of the output is
incrementally approximated, produces good results in practice. Let 7®ÊÚ�,
©� � 7 � ��
q� ������� be
successive approximations to

Ã ��ÁdÄ 
©� ; then, let us define� È Ü � Ù Ü �^ïYZ\[I]_ð±ñ�ò a ó Ã3ô Û¯�µÁ � 7 Ü²õ � �,
q��Ë�È�JÚ��
.Ï~Ùd���~ö (10)

where
� È H � Ù H � Ü²õ �� are fixed at their corresponding solution values at earlier iterations.

Algorithms that learn a weighted sum of basis functions, by sequentially appending
functions to an initially empty basis, to approximate a target function in the least-
squares sense, are contained in the family of the matching pursuit algorithms [12].
These algorithms have been compared to support vector machines and radial basis neu-
ral networks in machine learning problems [17]. One of the most interesting properties
of matching pursuit algorithms is that they are good in keeping the sparsity of the solu-
tion; this improves the generalization properties of the method and we will also see in
the following sections that the same property guarantees a short number of rules in the
fuzzy case that will be described later.
We have mentioned that the objective of a binary classification problem is to approx-
imate the value

Ã ��Á£Ä 
q�_�Q*�� / �÷1ÚÄ 
q� , which we will denote by *ø�,
q� . The response
variable in a classification problem follows the binomial distribution, and the link func-
tion is h©�í*��,
©���Å��ù¨ú [ N«û±ü�ý� õ N«û±ü�ý [6]; therefore, the additive model isù¨ú [ *ø� class �,
©�Å�þ1��*ø� class �,
©�Å�KÿX� �K7Ç�,
 � �������G� 
 � �I�ÆJ�ÊVË�È � J � �,
q��Ë ����� (11)

and the output of the model, reversing the logistic transform,*���
q�Å� �
P û±ü�ý1;Ë �

P û±ü�ý (12)

If the greedy version of generalized backfitting, mentioned in the preceding section, is
applied to this model, it is obtained an algorithm very similar to Adaboost, so called
”Logitboost” algorithm [6]. An outline of this algorithm, for binary problems, is shown
in Figure 2.
The “smooth” operation [6], consists in estimating the values Èd- and Ù°- on which the5 -th additive term depends, by means of a suitable statistical or machine learning proce-
dure. Every step can be understood as fitting a new term to a weighted set of residuals
of the previous submodel. This residual is � � Í�õ N���� ä û±ü�ýN ��� ä û±ü�ýzû � õ N ��� ä û±ü�ý�ý , and the weight of
the residual at the element 
 in the sample is * - õ � ��
q���~1'Õ=* - õ � ��
q��� . The multiclass
extension of these operations is inmmediate, but it is not given here because of space
considerations.



a. Set
��� uw¿ {d��� , � � uw¿ {£� �G� ¾ .

b. For step number � � � x"|O|O|Ox �
(a) Compute 	 � � � uw¿ {£� smooth 
 ���� ��� ä������� ��� ä�������� � ��� ��� ä����������with weights � � � � uw¿ { uz� ��� � � � uw¿ {s{ .(b) Update

� � uw¿ {.� � � � � uw¿ {�� 	 � � � uw¿ {
(c) Compute � � uw¿ {£� � W ���! #"� · � W ���� $"c. Output class uw¿ {.��¹�%�&ø��¹�¬ u��('%uw¿ { x �I���('%uw¿ {s{

Fig. 2. Pseudocode of backfitting applied to a logistic extended additive model or Logitboost.
After solving the step (b.a) as discussed in the text, the algorithm is similar to Adaboost.

4 Proposed methodology

4.1 Backfitting fuzzy classifiers

The procedure shown in Figure 2 can be directly applied to learn the fuzzy classifiers
defined in section 2.2. The only step in the process that is still undefined is the smooth
operation that fits one term (one fuzzy rule) to the residual. Then, this rule is added
to the base, the residual recalculated and the process repeated until the final number of
rules is obtained. A detailed pseudocode of this algorithm is shown in Figure 3. Observe
that we have replaced the word smooth by fit one rule.

rule base = emptyset
repeat
do i=1..N

votes[i]=inference(rule base,X[i])
do k=1..p

p[i][k]=1/suma_{k’=1..p}(exp(votes[i][k]-votes[i][k’]))
weight[i][k]=p[i][k]*(1-p[i][k])
residual[i][k]=(y[i][k]-p[i][k])/(p[i][k]*(1-p[i][k]))

end do
end do
R = fit_one_rule(X,residual,weight)
rule base = rule base + R

until rule base contains enough rules

Fig. 3. Backfitting a fuzzy classifier is a greedy method that is based on a standard regression
algorithm, “fit one rule”. This last procedure finds the descriptive type-3 rule that best fits
a weighted sample of residuals.

Observe the similarities between this process and the selection stage in Genetic Iterative
Learning [4]. In GIL, the rule which best explains the data is selected and added to the
rule base, then the examples covered by the rule are deleted from the training sample.
Here, the weight of an example is the residual of the intermediate bank in it, and every



new rule will focus in the points with high error. Since covered points are not deleted
but downweighted, GIL’s multiselection stage is not needed here and the whole process
is very fast.
The smoothing process is itself a standard regression problem: we must search for the
fuzzy rule that best approximates the residual, in the least squares sense. Since we are
using “type 3” rules, consequents comprise * real values. These values can be analiti-
cally determined once we know the antecedent. Therefore, the procedure “find one
rule” is a search in a finite space (the space of valid linguistic antecedents;) this

search is guided by a fitness value that measures the squared error of the rule being
added over the weighted sample.

4.2 Search of antecedents

Since the space of antecedents is finite, an exhaustive search can be done in many
practical problems. For those situations in which the number of features prevents this
option, a suboptimal search must be applied.
Binary coded genetic algorithms are the natural choice for this problem, and we have
experimentally checked that the rules that the GA finds are close to the optimal ones.
We will use a coding scheme based in [7]. Let us codify a linguistic term with a ’1’ bit
in a chain of so many bits as different terms in the linguistic partition. For example, let�

LOW, MED, HIGH
�

be the linguistic labels of all features in a problem involving three
input variables and two classes. The antecedent of the rule

)+* 
 �-,�.0/1,32547698(: 
 �;,�.0<(=5:;698(: 
?> ,5.0@BA9CD 4E=98GF9H56E.I.;,5.KJMLNC1, D 4G.O=�2 �QP L®�RJBSKCM, D 4�.9=�2 �TP S

is codified with the chain 001 010 100. We extend this encoding to represent rules for
which not all variables appear in the antecedent. ’OR’ combinations of terms in the
antecedent are also allowed. For example, the antecedent of the rule

)+* 
 �K,�.0/1,32547698(: 
?> ,�.K@BA9C D 4E=98<�����
is codified with the chain 001 000 100, and

)+* 
 �0,5. � /1,3254UA9V;<(=5: � 698B: 
W> ,5.K@BAOC D 4E=98<�������
will be assigned the chain 011 000 100. With this structure, the GA is also exploited to
integrate a rule-wise feature selection process into the search scheme.
Observe that, under the fuzzy reasoning method used here, chains “001 111 100” and
“001 000 100” are equivalent. “OR” combinations of rules increase the complexity of
the knowledge base and we desire to minimize their number in the final result. There-
fore, to promote simpler individuals, it was decided that in case of tie when evaluating
the squared error of two different individuals, the one with a lower number of bits is
preferred. This way, the search is guided toward rule banks that might not use all fea-
tures.



Table 1. Mean test errors (10 repetitions of the experiment)

LIN QUA NEU 1NN WM HL PM GIL ABD LBD
pima 0.227 0.252 0.255 0.289 0.287 0.301 0.464 0.269 0.241 0.239

cancer 0.044 0.051 0.047 0.048 0.129 0.058 0.087 0.099 0.040 0.037
gauss 0.239 0.190 0.200 0.267 0.477 0.304 0.457 0.205 0.213 0.203
glass 0.403 - 0.439 0.354 0.453 0.503 0.647 0.363 0.359 0.354
image 0.084 - 0.090 0.049 0.329 0.833 0.755 0.130 0.136 0.105
gauss5 0.317 0.317 0.323 0.413 0.539 0.344 0.931 0.338 0.327 0.325

5 Preliminary numerical results

We have selected six benchmarks. Four of them are widely used in the machine learn-
ing literature and are based on real problems: Iris (multiclass, low noise), Pima (two
classes, moderate noise), Cancer (two clases, low noise), Glass (multiclass, high noise),
and two synthethic sets of gaussian data: Gauss dataset [8] (two overlapping Gaussian
distributions) and Gauss5 ( our own generalization of Gauss, comprising five overlap-
ping Gaussian clouds.) We applied an extension of the WM method modeling method
to classification [1, 4], HL and PM methods [13]. Statistical classification methods were
linear and quadratical discriminant analysis, neural networks and nearest neigbour.
In Table 1 the mean error rates over the test set are given. Besides this set of experi-
ments is preliminar, it seems that Logitboost uniformly improves Adaboost for these
five problems.

6 Concluding Remarks

GA-based Logitboost is not as general as other genetic methods that learn fuzzy classi-
fiers. Not all fuzzy reasoning methods are suitable for it: the t-norm must be the product,
and the votes of the rules must be added instead of being combined with a s-norm. But,
when these limitations are accepted, greedy backfitting with Logitboost is very precise,
and faster than other genetic fuzzy systems; it is remarkable than it can also be faster
than many “ad-hoc” methods while being comparable in precision and learning time to
neural networks.
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