
Preliminary results on the application of boosting
to learn weighted fuzzy rules under single-winner

inference
Luciano Sánchez, José Otero, M. del Rosario Suárez.

Universidad de Oviedo. Depto. Informática.
Sedes departamentales, Edificio 1.
Campus de Viesques, 33203 Gijón.

Resumen— In previous works, we have shown that Ad-
aboost and Logitboost can be used to learn fuzzy rules
from examples in classification problems. Boosting-based
algorithms are significantly faster than other genetic fuzzy
systems, and they produce compact rule bases with good
accuracy. Unfortunately, both fuzzy Adaboost and fuzzy
Logitboost exploit certain similarities between generalized
additive models and fuzzy classifiers. As a consequence
of its definition, the knowledge bases they produce are
only compatible with an inference based on the maximum
sum of votes scheme. This procedure is not standard in
fuzzy classifiers, thus rule bases produced by fuzzy boost-
ing have a low degree of interpretability.

In this work we try to avoid this problem and propose a
boosting-like algorithm able to learn weigthed fuzzy rules
that are compatible with a single-winner method.

I. Introduction

The first application of a boosting algorithm to learn
fuzzy classifiers is given in [16]. In this work, it was pro-
posed to combine a search algorithm with a fitness func-
tion taken from Real Adaboost to incrementally learn de-
scriptive fuzzy rules from examples in classification prob-
lems. There are subsequent works in which approximate
rules [12] are also learned. A comprehensive description
of the use of boosting in fuzzy classifiers is given in [4].

In [22][24], following the work of [7], Adaboost is re-
garded as an forward stepwise estimation of the statisti-
cal parameters defining a logit transform of a Generalized
Additive Model, and this property is used to extend this
last estimation to learn fuzzy models in regression prob-
lems. A similar statistical interpretation has been used
later to improve the fuzzy Adaboost algorithm, again in
classification problems. Adaboost was considered as the
application of the same forward stepwise procedure, so
called “Matching Pursuit” in signal theory related works
[18][26], and an instance of the matching pursuit algo-
rithm was successfully used to extend the LogitBoost al-
gorithm to learn descriptive fuzzy rules in classification
problems [20], solving some difficulties the AdaBoost al-
gorithm poses in multiclass problems.

Besides all these methods are fast, and produce ac-
curate classifiers and models, they all share a common
problem: their output has a low degree of interpretability.
This is rooted in their own definition. Fuzzy systems can
only be compared to Generalized Additive models when

the sum of votes scheme [17] is adopted. But the use of
the sum to aggregate rules allows the existence of rules
that have not linguistical meaning by themselves, but
when combined with other, overlapping ones. In other
words, one can not isolate the contribution of a single
rule to the fuzzy classifier; they can be thought of as
weights in a neural network.

The prefered inference method, in terms of linguistic
interpretability, is called “single winner” [14]. This last
mechanism is compatible with the idea of a fuzzy rule
being an imprecise assert, which states that all patterns
in a given fuzzy region belong to the same class. But the
single winner inference does not combines the votes of
the rules with the arithmetic sum, but the maximum op-
erator. Apparently, this leaves out the analogy between
fuzzy classifiers and additive models that originated fuzzy
Adaboost. We will show later in this paper that this is
not always true, and that this problem can be solved
by means of a matching pursuit, with a prefitting stage,
that shares a common structure with that used in fuzzy
Logitboost.

A. Summary

The structure of this paper is as follows: in the next
section, fuzzy classifiers are introduced and it is explained
how Adaboost can be applied to induce them from data.
Then, it is explained how single winner inference can be
casted in terms of additive models and a new algorithm
proposed. The paper finishes with an empirical evalua-
tion of the new algorithm and some preliminary numeri-
cal results.

II. Boosting Fuzzy Classifiers

A. Notation

At this point we introduce the basic notation employed
throughtout the paper. Let X be the feature space, and
let x be a feature vector x = (x1, . . . , xn) ∈ X. Let p be
the number of classes. The training set is a sample of m
classified examples (xi, yi), where xi ∈ X, 1 ≤ yi ≤ p,
1 ≤ i ≤ m.

The antecedents of all fuzzy rules in the classifier form
a fuzzy partition A of the feature space A = {Aj}j=1...N ,
with Aj ⊂ P̃(X), where P̃(X) stands for “fuzzy parts of

X”. In the remaining part of this paper, we will assume
that the training examples will be indexed by the letter
i, the rules by j, the features by f and the classes by k;
the ranges of these variables are 1 ≤ i ≤ m, 1 ≤ j ≤ N ,
1 ≤ f ≤ n and 1 ≤ k ≤ p. For example, if we write “for
all xi” we mean xi, 1 ≤ i ≤ m; from now on, this range
will not be explicitly stated unless its absence leads to
confusion.

B. Linguistic interpretation of fuzzy classifiers

We will define a fuzzy rule based classifier by means
of a fuzzy relationship defined on A× {1, . . . , p}. Values
of this relationship describe the degrees of compatibility
between the fuzzy subsets of the feature space collected in
A, and each one of the classes. In other words, for every
antecedent Aj we may have up to p numbers between 0
and 1 that represent our degree of knowledge about the
assert “All elements in the fuzzy set Aj belong to class
number k”. Values near to 1 mean “high confidence,”
and values near 0 mean “absence of knowledge about the
assert.”

In practical cases, we work with antecedents Aj that
can be decomposed in a Cartesian product of fuzzy sets
defined over each feature, Aj = Aj

1 ×Aj
2 × . . .×Aj

n, thus
the rules are

if x1 is Aj
1 and . . . and xn is Aj

n

then truth(c1) = sj
1 and · · · and truth(cp) = sj

p.

We can restrict the definition further by defining n lin-
guistic variables (one linguistic variable for every feature)
and requiring that all terms sets Aj

f in the antecedents
are associated with one linguistic term in its correspond-
ing linguistic variable. In this case, we obtain a fuzzy rule
based descriptive classifier. If we do not apply the lat-
ter restriction, we obtain an approximate classifier. This
work deals with descriptive classifiers.

C. Fuzzy inference

Fuzzy reasoning methods define how rules are com-
bined and how to infer from a given input to the corre-
sponding output. An instance x is assigned to the class

arg maxk=1,..., p

N∨
j=1

Aj(x) ∧ sj
k (1)

where “∧” and “∨” can be implemented by different op-
erators. “∧” is always a t-norm, usually the minimum
or the product. In this work, we have chosen to use the
product.

Selecting an implementation of the “∨” operator is not
immediate. Fuzzy Adaboost relies on the use of the “max-
imum voting scheme” [15] (because of reasons explained
in [4].) It was mentioned in the introduction that this
scheme may be criticized, because of interpretability rea-
sons. Therefore, in this paper define “∨” to be the max-
imum operator [17] and study the consequences of this
definition when boosting fuzzy rules.

D. Generalized Additive Models, Backfitting and Logit-
boost

According to [7], Adaboost can be assimilated to a
statistical inference problem. The fuzzy Logitboost al-
gorithm [20] exploits this idea and learns fuzzy rules by
fitting a logit transform of a Generalized Additive Linear
Model to data by means of a matching pursuit algorithm.

The original statistical problem being solved is “esti-
mate P (class(x) = ck).” Alternatively, we define p ran-
dom variables

yk(x) =
{

1 if class(x) = ck

0 else
(2)

and reformulate the classification problem as a regression
problem, that of estimating the conditional expectations
E(yk|x) = P (class(x) = ck) which is solved as shown in
the next subsection.

E. Additive models

Additive models were introduced in the 80’s to improve
precision and interpretability of classical nonparametric
regression techniques in problems with a large number
of inputs. These models estimate an additive approx-
imation to the multivariate regression function, where
each of the additive terms is estimated using a univariate
smoother.

More formally, let y be the output random variable
we wish to model, and let x = (x1, . . . , xn) be the input
random vector. The objective of the modeling process
consists in estimating the conditional expectation of y
given x. Linear regression assumes

E(y|x) = f(x1, . . . , xn) = β0 + β1x1 + . . . + βnxn (3)

and obtains β0, . . . , βn by least squares. Additive models
generalize this schema by allowing the use of a sum of
nonlinear univariate regressors

E(y|x) = f(x1, . . . , xn) = r0 + r1(x1)+ . . .+ rn(xn) (4)

where ri are smooth functions that are estimated in a
nonparametric fashion. Generalized additive models ex-
tend additive models by not assuming a Gaussian distri-
bution of the output, but any probability distribution in
the exponential family,

fy(t; θ;φ) = exp
{

tθ − b(θ)
a(φ)

+ c(t, φ)
}

(5)

and making the additive component

f(x1, . . . , xn) = r0 + r1(x1) + . . . + rn(xn) (6)

to depend on the mean of the output by means of a link
function l, so that g(E(y|x)) = f(x1, . . . , xn). The most
commonly used link function in practice is the canonical
link l(E(y|x)) = θ.

Additive models can be generalized furthermore. In ex-
tended additive models, the univariate regressors ri are

replaced by functions of more than one feature. In our
context, these functions usually depend on a set of pa-
rameters γ and a multiplier β,

rj = βjr(x; γj) (7)

thus the additive model becomes

E(y|x) = f(x1, . . . , xn) = r0 +
N∑

j=1

βjr((x1, . . . , xn); γj).

(8)
For example, in radial basis neural networks the func-
tions s(x, γj) = exp{||x− γj ||2} are the “basis functions”;
γj are their centers and βj are the weights that connect
the input layer with the output. In support vector ma-
chines, r(x, γ) is a kernel, and γj are the support vectors.
In our case, we will propose a model where (x, γj) is an
expression that contains the membership Aj of the an-
tecedent of the i-th fuzzy rule, γj identifies the linguistic
terms that participate in the rule and βj is the degree of
truth of the consequent of the rule.

F. Backfitting and the Logitboost Algorithm

Extended additive models can be learned with a gener-
alized backfitting algorithm [7]. Given a cost function d,
that measures the differences between the conditional ex-
pectation and its approximation, this algorithm consists
in finding N pairs of values {βj , γj} minimizing each

E

d

y,
∑

α=1...N
j 6=α

βαr(x; γα) + βr(x; γ)


 (9)

with respect to β, γ [7].
Algorithms that learn a weighted sum of basis func-

tions, by sequentially appending functions to an initially
empty basis, to approximate a target function in the
least-squares sense, are contained in the family of the
matching pursuit algorithms [18]. These algorithms have
been compared to support vector machines [28] and ra-
dial basis neural networks in machine learning problems
[26]. One of the most interesting properties of matching
pursuit algorithms is that they are good in keeping the
sparsity of the solution; this improves the generalization
properties of the method and we will also see in the fol-
lowing sections that the same property guarantees a short
number of rules in the fuzzy case that will be described
later.

The objective of a binary classification problem is to
approximate the value E(y|x) = p(c = 1|x), which we
will denote by p(x). The response variable in a classi-
fication problem follows the binomial distribution, and
the link function is log p(x)

1−p(x) [10]; therefore, the additive
model is

log
p(class(x) = 1)
p(class(x) = 0)

= f(x1, . . . , xn) = r0 + β1r1(x) + . . .

(10)

fi0k = 0
For step number j = 1, . . . , N

For class number k = 1, . . . , p
for i = 1, . . . , n do pijk = efij−1k /(1 + efij−1k)
for i = 1, . . . , n do wijk = pijk(1 − pijk).
Find Aj that minimices

fitness(Aj) =

n∑
i

wijk

(
sj · Aj(xi) −

yik − pijk

wijk

)2

where sj =

∑
i
(yik − pijk)Aj(xi)∑

i
wijk[Aj(xi)]2

for i = 1, . . . , n do fijk = fij−1k + sj · Aj(xi)

if sj > 0 then Emit the Rule “if x is Aj then t(ck)=sj"
else Emit the Rule

“if x is Aj then t(c1)=-sj . . . t(ck)=0 . . .
t(cp)=-sj"

End for
End for

Fig. 1. Outline of the basic version of backfitting applied to a
logistic extended additive model or Logitboost. For two classes
problems it is not needed the second loop, as pj1(x) = 1 −
pj2(x).

and the output of the model, reversing the logistic trans-
form,

p(x) =
ef(x)

1 + ef(x)
(11)

If the greedy version of generalized backfitting, men-
tioned in the preceding subsection, is applied to this
model, it is obtained the Logitboost algorithm [7]. An
outline of the adaptation of this method to learn fuzzy
rules, as described in [20], is shown in Figure 1. This
last algorithm will be extended in this paper, as shown
in the next section, to deal with the max-combination of
models mentioned in the introduction.

III. Proposed algorithm

A. Definition of the weak learners

Let us recall eq. 1. We mentioned that an instance x
is assigned to the class

arg maxk=1,..., p

N∨
j=1

Aj(x) ∧ sj
k (12)

where “∧” and “∨” could be implemented by different
operators. In fuzzy boosting, this last expression became

arg maxk=1,..., p

N∑
j=1

Aj(x) · sj
k (13)

and that allowed to use the fuzzy memberships Aj in
antecedents as weak learners, and obtain the weights of
the rules sj

k by means of a boosting algorithm, as shown
in Figure 1.

To use single-winner inference, we want to obtain the
weights sj

k of the expression that follows:

arg maxk=1,..., p{
N

max
j=1

Aj(x) · sj
k} (14)

which is not a sum of terms and therefore not an additive
model. But, if we define a function

I(x, j) =
{

1 if j = arg maxAj(x) · sj
k

0 elsewhere
(15)

(in words, I(x, j) = 1 if the rule number j is the winner
in the point x, and 0 if not) it is clear that eq. 14 can be
rewritten as

arg maxk=1,..., p

N∑
j=1

I(x, j) ·Aj(x) · sj
k (16)

and the products I(x, j) ·Aj(x) can be regarded as weak
learners. Anyway, this change in the notation does not
completely solve the problem; it is needed to estimate
the function I.

B. Recurrent estimation of the function I

Let us suppose for the time being that we have an
incomplete rule base, to which we want to add a new
fuzzy rule. It is immediate that we can calculate the
values of I(xk, j) for all the rules in the incomplete base,
at the points in the training set.

But it is also evident that some of these values I will
change after the new rule is added: otherwise, that new
rule would not win at any example in the training set.
Since I participates in the definition of the weak learn-
ers, this means that all values sj

k must be recalculated
every time a rule is added. In other words, the prefitting
version of the algorithm is mandatory for this problem,
because the consequents of all the rules in the incomplete
base need to be recalculated after a new rule is added to
the base.

If all the values I(xk, j) are known, the least squares
election of sj

k is an standard problem of linear regression,
that can be solved by means of a pseudoinverse. We
propose to use the recurrent algorithm shown in Figure 2,
which is a prefitting version of the algorithm in Figure 1:
the values of sj

k are obtained first for an initial estimation
of I, and then they are used to build a new definition of
this function, which in turn is used to define a new set of
values of I, and so on. Observe that we have included an
smoothing term α, and that the algorithm finishes when
the difference between succesive values of I and sj

k are
small enough.

C. Outline of the algorithm

An outline of the algorithm is shown in Figure 3. Fit-
ness values computed by the function “AddOneRule” are
optimized by a Genetic Algorithm, which is lauched once
every time a new rule is added to the base. The algo-
rithm is incremental, because antecedents of rules do not
change between iterations, but their weights can be mod-
ified by the mentioned function.

Binary coded genetic algorithms are a natural choice
for this problem, and we have experimentally checked
that the rules that the GA finds are close to the optimal

procedure AddFuzzyRule
Input: A rule base of size N and the antecedent of the fuzzy rule
AN+1

Output: A rule base of size N +1 and a numerical value of fitness
Skj = sj

k
k = 1, . . . , p, j = 1, . . . , N

Initialize Sk,N+1 at random
Repeat

I′ = I
For j = 1, . . . , N + 1, i = 1, . . . , m do

Iij =

{
1 rule j wins in example xi

0 else
End For
Fji = Aj(xi) · Iij j = 1, . . . , N + 1, i = 1, . . . , m
Zki = 4(yk(xi) − 0.5) k = 1, . . . , p, i = 1, . . . , m
S′ = S
S = Z · F t · (F · F t)−1

S = αS + (1 − α)S′

Until ||S − S′|| < ε and ||I − I′|| < ε′

Output S and fitness=||Z − S · F ||

Fig. 2. The procedure AddFuzzyRule takes as inputs a fuzzy
classificator of size N and the antecedent of a fuzzy rule. Its
output consists of a new fuzzy classificator, of size N + 1, and
a numerical fitness value that measures the merit of the new
rule. Adding one rule to the base implies recalculating the
importance of all consequents.

For step number j = 1, . . . , N
Call AddOneRule from a GA and select

the rule base of size j with the minimum fitness
value.
End For
For j = 1, . . . , N

Make all sj
k = 0 but the maximum one

Emit the Rule “if x is Aj then t(ck)=sj
k"

End For

Fig. 3. Outline of the backfitting algorithm applied to a logistic
extended additive model under single-winner inference, or Max-
Fuzzy Logitboost.

ones. But the choose of a genetic algorithm is not manda-
tory for this problem. Many other approaches could be
used, including exhaustive search, as the search space is
finite and rather small for many practical problems.

We will use a coding scheme based in [8]. Let us codify
a linguistic term with a ’1’ bit in a chain of so many bits as
different terms in the linguistic partition. For example,
let {Low, Med, High} be the linguistic labels of all
features in a problem involving three input variables and
two classes. The antecedent of the rule

If x1 is High and x2 is Med and x3 is Low
then class is C1 with seg = S1, C2 with seg = S2

is codified with the chain 001 010 100. We could use this
encoding to represent rules for which not all variables
appear in the antecedent and ’OR’ combinations of terms
in the antecedent. For example, the antecedent of the
rule

If x1 is High and x3 is Low then . . .

is codified with the chain 001 000 100, and

If x1 is(High or Med) and x3 is Low then . . . ,

will be assigned the chain 011 000 100. With this struc-
ture, the GA is also exploited to integrate a rule-wise
feature selection process into the search scheme.

IV. Preliminary benchmark results

The datasets used in this article to test the accuracy of
the proposed algorithm are taken from the UCI Reposi-
tory Of Machine Learning Databases and Domain Theo-
ries [19], from the literature [11] or synthetic [4].

Boosting algorithms were terminated after the gener-
ation of 7 rules for Pima, 4 for Cancer, 5 for Gauss, 10
for Glass and 10 for Gauss5. The number of linguistic
labels discretizing input variables are 3, 2, 5, 3 and 5,
respectively. The genetic algorithm in both descriptive
Adaboost and Max-Logitboost is steady-state, with ten
subpopulations of size 100 each. Every rule is obtained
from the best individual after 2500 crossover operations.

In order to compare the accuracy of two learning algo-
rithms, Dietterich analyzes in [5] five statistical tests and
states that 5x2cv t-test has low type I error and good
power. Later, in [1], a new test called 5x2cv-f, that im-
proves both type I error and power, is proposed. We have
adopted this last test in all our experiments.

5 statistical methods (linear and quadratic discrimi-
nant analysis, neural networks, kernel estimation of den-
sities and k-nearest neigbours) plus 6 fuzzy descriptive
rule based methods (Wang and Mendel’s [27], Ishibuchi’s
[13], Pal and Mandal’s [21], Iterative Genetic Learning
[2], Random Sets Based [23], Fuzzy Descriptive Adaboost
[4]) were compared to Max-Logitboost. The combined
boxplots are shown in figure 4. Special care was taken to
select the minimum number of rules that produce a mean-
ingful classification for all datasets, in order to keep the
rule bases linguistically understandable. Observe that
the numerical values of the error could be further low-
ered if the number of rules was allowed to increase. As a
reference, the reader can compare the results here with
those in [23] and [4] for the same datasets.

Pima, Cancer and Gauss5 behave as expected; the ex-
tra linguistic quality has a cost in accuracy. The dif-
ference is not statistically significant, but it is still visi-
ble in the boxplots. Gauss results are not different be-
tween fuzzy Adaboost and Max-fuzzy Logitboost, and
are rather similar to that of GIL, which uses the same
inference but adjusted membership functions, without
weighting the rules. The behavior of Glass dataset seems
anomalous to us (Max-Logitboost improves Adaboost
with 88% of confidence.) In particular, the joint re-
sults of GIL and Max-Logitboost, confronted to that of
Interpretable-Kernel and Adaboost seem to show simi-
larities between groups of methods in terms of the in-
ference used (max-based or sum-based,) that need to be
researched further.

V. Concluding Remarks

The advantages of boosting methods when learning
fuzzy classifiers are two: as far as we know, the size of

the rule base is much smaller than the obtained with any
other genetic fuzzy classisier, and the learning is very fast
(between seconds and minutes for the problems used in
this paper.) But there are also drawbacks: the inference
is not standard, and the quality of the rule base is low,
because the interaction between rules is very high.

The high interaction between rules in Adaboost and
Logitboost is a consequence of the “sum of votes” infer-
ence scheme. The prefered inference method, in terms of
linguistic interpretability, is the “single winner” one. This
last mechanism is compatible with the idea of a fuzzy rule
being an imprecise assert, which states that all patterns
in a given fuzzy region belong to the same class. But
the single winner inference does not combines the votes
of the rules with the arithmetic sum, but the maximum
operator, and this difficulties the application of boosting
algorithms. We have solved the problem by the intro-
duction of an intermediate function in the definition of
the weak learner, and a recurrent algorithm to estimate
it. The final algorithm produces fuzzy rule bases of high
descriptive quality, while preserving a good accuracy. A
drawback of this new procedure is related to its compu-
tational complexity, which is higher than that of fuzzy
Adaboost and Logitboost.

Acknowledgements

This work was funded by Spanish M. of Science and
Technology and by FEDER funds, under the grant TIC-
04036-C05-05.

Referencias
[1] E. Alpaydin (1999) "Combined 5x2cv F Test for Comparing

Supervised Classification Learning Algorithms," Neural Com-
putation, 11(8), 1885-1982.

[2] Cordón, O., Del Jesus, M. J., Herrera, F. “A proposal on rea-
soning methods in fuzzy rule-based classification systems”. In-
ternational Journal of Approximate Reasoning 20(1), pp. 21-
45, 1999.

[3] Cordón, O., Herrera, F. (2000) “A proposal for improving the
accuracy of linguistic modeling”. IEEE Transactions on Fuzzy
Systems, 8, 3, pp. 335-344.

[4] Del Jesus, M. J., Hoffmann, F., Junco, L., Sánchez, L. Induc-
tion of Fuzzy Rule Based Classifiers with Evolutionary Boost-
ing Algorithms. IEEE Transactions on Fuzzy Sets and Sys-
tems. Admitted for publication.

[5] Dietterich, G. (1998) “Approximate Statistical Tests for Com-
paring Supervised Classification Learning Algorithms”. Neural
Computation, 10, 7, pp 1895-1924.

[6] Freund, Y., Schapire, R. “Experiments with a new boosting al-
gorithm". In Machine Learning, Proc. 13th International Con-
ference, pp. 148-156

[7] Friedman, J., Hastie, T., Tibshirani, R. (1998) “Additive Lo-
gistic Regression: A Statistical View of Boosting”. Machine
Learning.

[8] Gonzalez, A., Perez, R. (1996) “Completeness and consistency
conditions for learning fuzzy rules,” Fuzzy Sets and Systems,
vol 96, pp 37-51.

[9] Hand, D. J. Discrimination and Classification. Wiley. 1981
[10] Hastie, T. J., Tibshirani, R. (1986) “Generalized Additive

Models”. Statistical Science, 1, pp 297-318
[11] Haykin, S. Neural Networks. Prentice Hall, 1999.
[12] Hoffmann, F., Boosting a Genetic Fuzzy Classifier. in Proc.

Joint 9th IFSA World Congress and 20th NAFIPS Interna-
tional Conference, vol. 3, (Vancouver, Canada), pp. 1564–
1569, July 2001

LIN QUA NEU KNN KER WM ISH PM GIL KRE ABD AMM

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

LIN QUA NEU KNN KER WM ISH PM GIL KRE ABD AMM

0.
05

0.
10

0.
15

0.
20

0.
25

LIN QUA NEU KNN KER WM ISH PM GIL KRE ABD AMM

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

LIN QUA NEU KNN KER WM ISH PM GIL KRE ABD AMM

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

LIN QUA NEU KNN KER WM ISH PM GIL KRE ABD AMM

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Fig. 4. Boxplots with a comparison between black-boxes (linear and quadratic discriminant analysis, 3 layer perceptron, k-nearest
neighbours, kernel estimation of densities) and fuzzy rule based classifiers (Wang and Mendel’s, Ishibuchi, Pal and Mandal, Genetic
Iterative Learning, Random Set based, Fuzzy Adaboost and Max-Fuzzy Boosting.) The datasets are Pima, Cancer, Gauss, Glass
and Gauss5.

LIN QUA NEU KNN KER WM ISH PM GIL KRE ABD AMM
pima 0.227 0.251 0.234 0.270 0.313 0.287 0.301 0.464 0.269 0.308 0.255 0.266
cancer 0.044 0.051 0.035 0.048 0.099 0.039 0.096 0.145 0.099 0.221 0.038 0.043
gauss 0.239 0.190 0.194 0.216 0.191 0.329 0.322 0.306 0.205 0.215 0.206 0.204
glass 0.404 - 0.389 0.354 0.621 0.453 0.503 0.647 0.363 0.606 0.522 0.415

gauss5 0.318 0.317 0.321 0.343 0.332 0.410 0.345 0.974 0.338 0.321 0.344 0.373

Fig. 5. Mean values of the experiments shown in the preceding figure

[13] Ishibuchi, H., “Distributed representation of fuzzy rules and its
application to pattern classification”, Fuzzy Sets and Systems
52, pp. 21-32, 1992.

[14] Ishibuchi, H., Nakashima, T., Morisawa, T. “Voting in fuzzy
rule-based systems for pattern classification problems,” Fuzzy
Sets and Systems, vol 103, no 2, pp. 223-239, 1999.

[15] Ishibuchi, H., Nakashima, T. and Morisawa, T., Voting in
fuzzy rule-based systems for pattern classification problems.
Fuzzy Sets and Systems, vol 103, no. 2, pp 223-239, 1999.

[16] Junco, L., Sanchez, L.“Using the Adaboost algorithm to in-
duce fuzzy rules in classification problems”, Proc. ESTYLF
2000, Sevilla, pp 297-301.

[17] Kuncheva, L. I. Fuzzy Classifier Design. Springer-Verlag, NY,
2000.

[18] Mallat, S. Zhang, Z. (1993) “Matching pursuits with time-
frequency dictionaries”. IEEE Trans on Signal Processing 41,
pp 3397-3415.

[19] Merz, C. J., Murphy, P.M. (1998). UCI reposi-

tory of machine learning databases. Available at:
http://www.ics.uci.edu/mlearn/MLRepository.html.

[20] Otero, J., Sánchez, L. Induction of descriptive fuzzy classifiers
with the Logitboost algorithm. Submitted to Soft Computing.

[21] Pal, S. K., Mandal, D. P. “Linguistic recognition system based
in approximate reasoning”. Information Sciences 61, pp. 135-
161. 1992.

[22] Sánchez, L. “A Fast Genetic Method for Inducting Linguis-
tically Understandable Fuzzy Models”. Proc. IFSA NAFIPS,
2001.

[23] L. Sánchez, J. Casillas, O. Cordón, M. J. del Jesus (2002)
“Some relationships between fuzzy and random classifiers and
models”. International Journal of Approximate Reasoning 29,
175-213.

[24] Sánchez, L., Otero, J. A fast genetic method for inducting
descriptive fuzzy models. Fuzzy Sets and Systems. Admitted
for publication.

[25] Schapire, R., Singer, Y. Improved Boosting Algorithms Using

Confidence-rated Predictions. Machine Learning 37(3): 297-
336. 1999

[26] P. Vincent and Y. Bengio, (2002) “Kernel Matching Pursuit”,
Machine Learning Journal, Special Issue on New Methods for
Model Combination and Model Selection.

[27] Wang, L. X., Mendel, J. (1992) “Generating fuzzy rules by
learning from examples”. IEEE Trans. on Systems, Man and
Cybernetics, 25, 2, pp. 353-361.

[28] Zhu, J., Hastie, T. (2001) “Kernel Logistic Regression and
the Import Vector Machine”. Proc. NIPS 2001, Vancouver,
Canada.

