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Abstract - Ambieizt Intelligence is nowadays an active re- 
search Jield. As a key motfer of this concept, several ap- 
proaches have been proposed for  the development of learn- 
ing architectures for  the control of the devices in an intelli- 
gent building. In this paper, a n  evolutionary algorithm is an- 
alyzed as  a candidate for  the initial phases of the design of 
such architectures: fuzz)' controllers for  the devices are off- 
line induced from data sampled from the environment. We 
will show results obtained using real data gathered from the 
Essex intelligent dormitov.  The proposed algorithm seems 
to be suited for  the task, both due IO its accuracy and for  the 
easy and mearzingfirl linguistic interpretation of the solutions 
i t  produces. 

Keywords: Ambient Intelligence, Intelligent Buildings, 
Fuzzy Control, Evolutionruy Algorithms, Data Driven Gen- 
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1 Introduction 
Ambient Intelligence (Am0 is nowadays an active re- 

search field. AmI deals with the development of a new 
paradigm where people are immersed in a digital environ- 
ment that is aware of their presence and context, and which 
is sensitive, adaptive and reactive to their desires, habits and 
emotions. 

Am1 builds on three key concepts: Ubiquitous Comput- 
ing (integration of computers in daily objects), Ubiquitous 
Communication (communications among them) and, Intelli- 
gent user interfaces (voice, gestures). A great deal of work is 
based on technological developments. Nevertheless, to give 
a device (e.g. a lamp) processing and communication capa- 
bilities does not make it intelligent. A key concept to answer 
in Am1 is how the system can learn about the user behaviors, 
and be constantly adapted to them. Autonomous adaptive 
learning systems must be developed to respond to user pref- 
erences and desires. 
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Nevertheless, the design of generic architectures is quite 
complex. Different Am1 scenarios (e.g. industry, workplace, 
home, machine to machine interaction, etc.) present spe- 
cial characteristics that could make necessary a specific de- 
sign. In particular, leaning systems for intelligent buildings 
present a unique and specific set of characteristics and our 
aim is to contribute to the development of these intelligent 
mechanisms to address those characteristics. 

The goal in intelligent buildings is to control the environ- 
mental via a set of devices using an intelligent agent which 
should work in a non-intrusive manner to satisfy the prefer- 
ences of the user. The agent should observe the user's in- 
teraction with the building and learn how to pre-empt them 
automatically from the information provided by a set of en- 
vironmental sensors (temperature, humidity, etc ) and by the 
states of the actuators (buttons, heaters, etc ). 

The main motivation for the work described in this paper 
is to design a method for the off-line data driven automatic 
generation of controllers for heterogeneous devices in an in- 
telligent building. Fuzzy controllers have been selected for 
the internal structure of the agent for mainly two reasons. 
First, we intend to get interpretable controllers, which could 
allow one to test if the controller is working properly, per- 
forming operations that really reflect the user behavior. Sec- 
ond, imprecision is inherent in the sensor measurements and 
the user's management of the actuators in the environment. 
This way, fuzzy controllers seem to be a good alternative be- 
cause imprecision handling is inherent to the technique and 
their operation is quite close to the human reasoning process. 

These fuzzy controllers, implemented in the agent, could 
be used later by adaptive leaming architectures proposed in 
the state of the art (e.g. [ 5 ] )  to control the building, and con- 
tribute in improving the man-machine interaction of the user 
with his environment and to the implementation of adaptive 
interfaces between the user and the devices of the building. 

Among several alternatives analyzed and discussed in a 
later section, we will choose an evolutionary algorithm based 
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on CA-P [8] for the data based generation of the fuzzy con- 
trollers. Let us say for the time being that this technique 
allows an easy linguistic interpretation of the solutions, a 
premise of our work. 

To validate the technique, several experiments have been 
performed using real data gathered from the Essex Intelligent 
Dormitory (iDorm) described in a later section. Results are 
analyzed in terms of their accuracy at fitting the input-output 
data and their linguistic interpretability. A preliminar com- 
parison with results obtained from the well known ANF'IS 
system [9] is also described, in order to settle the validity of 
the CA-P. 

The rest of this paper is organized as follows: In section 
2 we give an introduction and a brief discussion about the 
state of the art related to the development of architectures for 
the intelligent control of devices in intelligent buildings and 
to the data driven generation of fuzzy controllers. In sec- 
tion 3 the proposed CA-P algorithm is described. Section 4 
describes the performed experiments and an analysis of the 
results. The analysis pays special attention to the linguistic 
interpretation of solutions and to the numerical accuracy of 
the technique. Comparative results with ANFIS are shown 
later. Section 5 provides some conclusions and future direc- 
tions of work. 

2 State of the Art and Discussion 
Different approaches for the intelligent control of devices 

in an intelligent building have been proposed in the state of 
the art. In [3], they proposed a multi-agent system for the 
control of buildings, hut their approach did not pay much 
attention to automatic learning. In [14], they used artifi- 
cial neural networks for the intelligent control of lighting 
in a building. In [2], they used evolutionary algorithms to 
develop HVAC (Heating, Ventilation and Air Conditioned) 
models with control purposes. In (131 the design of multi- 
agent systems for the real time control of a building based on 
machine learning was proposed. 

As said in the introduction, from our point of view the lin- 
guistic interpretability of the controller structure is of high 
relevance. So we think that neural network or any other black 
box based approach are not very suited for the task due to the 
difficulty of analyzing their internal structure. In conclusion, 
we have focused in a previous work [ 5 ] ,  where the Intelli- 
gent Inhabited Environments Group of the University OIEG) 
of Essex has developed an adaptive system based on the use 
of fuzzy controllers for the real time control of a room envi- 
ronment. Starting with an initially learnt set of fuzzy rules 
(an empty rule set in the extreme case), the adaptive learning 
system is capable of adapting and extending the rules online 
over a long period of time to fit the changing environmental 
conditions and user preferences. What we try in this paper 
is to describe a system for the generation of initially fitted 
controllers. This way, the learning period could he reduced 
in time. The more fitted the initial rule set, the shorter the 
time to adapt to the user desires. 

Regarding the data driven generation of fuzzy controllers, 
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several approaches can he found in the state of the art, many 
of them based on Soft Computing technologies, such as Ge- 
netic Algorithms (CA), Genetic Programming (GP) or Ar- 
tificial Neural Networks (NN). GAS can he applied to the 
generation of fuzzy controllers in the optimization of the set 
of parameters of a given rule set, although the problem of 
extracting rules from data has been also addressed [6]. Re- 
garding NN, ANFIS (a NN where the internal stmctures rep- 
resent fuzzy relations) is one of the most popular methods 
[9]. GP can he used also for the generation of rule sets by 
means of syntactic trees, where each branch of the tree rep- 
resents a rule [I]. Nevertheless, more advanced approaches 
can he also found. Such is the case of EfuNN systems, where 
rules and fuzzy sets are generated by means of a neural net- 
work using genetic algorithms for parameter optimization 
[IO]. CA-P algorithms can he also used for this task. CA-P 
algorithms are a hybrid between GP and CA, where the GP 
is used to generate a set of syntactic rules and GA is used to 
tune the numerical coefficients [4]. 

In the work described in this paper, no initial rule set is 
available in advance. So, NN and G P  based systems seem to 
he adequate. Nevertheless, the linguistic interpretability of 
the solutions is a premise for our work. This seems to be a 
handicap for NN based systems, that usually pose the prob- 
lem of the difficulty of interpreting the internal structure of 
the network once trained. So, a GP based system was se- 
lected for the automatic generation of controllers. But, in the 
context of application, both the rule set and the membership 
functions are unknown. So, it was decided to apply the GA- 
P algorithm with the aim of getting both components of the 
controller. 

3 GA-P Generation of FLCs 
A classical single output fuzzy logic controller (FLC) [ I  21 

divides the space of characteristics of the output variables 
into a series of linguistic labels. It also implements a set of 
rules for the activation of such labels in the basis of the inputs 
to the system. The final result, i.e. the action to take over the 
output variables, would be a combination of the activation 
values for the different labels proposed by the rules. 

CA-P algorithms [SI are hybrids between a genetic algo- 
rithm and a genetic program initially applied in symbolic re- 
gression problems. Individuals in CA-P are composed of 
two parts: a tree and a vector of numerical parameters. In 
contrast with canonical GP, terminals never store numerical 
values hut linguistic identifiers that act as pointers to posi- 
tions in the vector of numerical parameters. 

Both the tree and the vector of coefficients are evolved 
during the process in the basis of the usual genetic operators 
(reproduction, crossover and mutation). This way, a parallel 
search in both the structural and parametrical components is 
made. 

In our work, a generational CA-P for the generation of 
fuzzy controllers is used. The structure represents the rule set 
and the parametrical component represents the coefficients 
for the partitions of the fuzzy sets. Reproduction, structure 



CONTROLLER: 

CONDITION: 

ASSERT,,: 

... 
ASSERT,, : 

ASSERTd, : 

... 
ASSERTd- : 

CONSTMS:  

if CONDITION then (y is k,, 1 
i f  CONDITION then (y is ko2)  

if CONDITION then (v is koma) I 
if CONDITION then (y is 0.25) 
if CONDITION then (y is 0.75) 

' 

... 

Figure 1: Fuzzy Controller Grammar. 

(crossover and mutation) and parametric (crossover and mu- 
tation) operators are used to evolve the population[l l l .  

The algorithm is applied over a set of n inputs (m analog 
inputs and m' binary inputs) and takes a single output. To 
generalize the technique to the generation of controllers for 
several outputs, it should be applied independently forleach 
output. 

On the basis of previous work 1151, a grammar for the 
fuzzy controller has been declared to define the genotype 
of the individuals (see fig. 1). From our purposes, a fuzzy 
controller will be a valid chain from the context free gram- 
mar defined by the production rules shown in fig. 1, where 
a,, . . . a ,  are analog inputs, d l ,  . . . d,. are binary inputs, n; 
is the number of partitions for the input space of analog vari- 
able ai, y is the output variable and no is the number of par- 
titions for the output in case of this to be analog. For hinluy 
variables (input and output), singleton membership functions 
are used for the partitions. 

The output value of the controller is calculated by means 
of a weighed average of the output of each condition. If the 
output variable is binary, a post-processing is applied round- 
ing the result to 0 or 1. 

Figure 2: The intelligent dormitory. 

4 Experiments 
The experimental tests described in this paper are based on 

real data taken from the Essex Intelligent DormitoIy (iDorm) 
(see fig. 2). It is used for experiments in the field of intelli- 
gent buildings [7]. A set of sensors and actuators are avail- 
able for lhe intelligent control of the devices of the iDorm. 

A PhD student had stayed in the iDorm for several days. 
During his stay his actions were monitored through seven 
sensors (External Light Level, Internal Light Level, Exter- 
nal Temperature, Internal Temperature, Desk Chair Pressure, 
Bed Pressure and Time). The user controlled ten actuators 
(Light 1 Action Level, Light 2 Action Level, Light 3 Action 
Level, Light 4 Action Level, Desk Lamp State, Bed Light 
State, Blind State, Heating State, MS Word State and MS 
Media Player State). 

In the following sections, a detailed description of the 
structure of the tests performed with GA-P is given. Next, 
results are analyzed in terms of the deviation between the 
value proposed by the fuzzy controller and the real value of 
the actuator. Two controllers will be also analyzed in depth. 
In the last part, preliminar comparative results with A N F l S  
are shown. 

4.1 GA-P Test Structure 
The GA-P was applied using a population of 200 individ- 

uals that evolves for 200 generations. Aptitude is calculated 
by the Root Mean Squared Error (RMSE). The reproduction 
fraction was set at 0.1, structural crossover and parametric 
crossover were set at 0.4, and structural and parametric mu- 
tation fractions were set at 0.05. Maximum height for the 
evolved individuals was set at 4 levels. Initial experiments 
showed that the G P  sometimes converges to local minima. 
So, each experiment was repeated three times and the best 
solution from the three was selected. 

The available sampled data was composed of 408 samples. 
It was divided into three subsets making up what we call a 
configuration sample: training (2/3 of the total used for train- 
ing), validation (U6 of the total used to select the best from 
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Figure 3: Effect of the number of partitions in the search 
results. Averaged results over the 6 sample configurations. 

the three available solutions) and test (U6 of the total used 
to analyze the accuracy of the hest solution found). All sub- 
sets were randomly selected from the 408 available samples. 
Repetition was not allowed. In order to get representative 
values, six sample configurations were generated. Every sin- 
gle experiment was applied over the six sample configura- 
tions and averaged results are shown. 

A last consideration was that related to the number of par- 
titions to use for each analog variable. It was decided to spec- 
ify the same number (k) of partitions for all the analog vari- 
ables used in a single experiment (ni = no = k) ,  repeating 
the experiment using different values f o r k  (from 2 to 20). 

4.2 Summarized Analysis 
Fig. 3 shows the averaged results over the test sample in 

the six sample configurations for the ten outputs. The X axis 
shows the number of partitions of the analog space used in 
each experiment. For binary outputs, the percentage of hits 
is shown. For analog outputs the RMSE is shown. 

The first conclusion is that there are no significant vari- 
ations in the results using different numbers of partitions. 
Although this analysis is not rigorous, it is enough for the 

Figure 4: Fuzzy controller and real outputs comparison for 
light 3 (top) and blind (bottom). 

moment IO say that good results can he obtained using a low 
number of partitions of the analog spaces. This is an impor- 
tant matter, knowing that the number of partitions has a direct 
influence in the number of terminals used in the search (on 
the basis of the grammar). And a large number of terminals 
usually degrades the linguistic interpretability of solutions. 
In conclusion, and in order to get interpretable solutions, we 
take as a fact that good results can he found using a low num- 
ber of partitions. 

Analyzing in more depth the results for one analog out- 
put (e.g. light 3) it can be seen how the RMSE is about 7%. 
Given that the variable can vary from 0 to 100, the controller 
seems to perform a good estimation. In other words, if a de- 
viation of about 7% (an admissible value in advance) was al- 
lowed in the control of the light, the success of the controller 
should be near optimum. Results for the rest of analog out- 
puts (lights 1, 2 and 4) are in the same range. For binary 
outputs the percentage of hits is always about the 100%. 

4.3 Analysis of Controllers 
At this section, the controllers for one analog output (light 

3) and one binary output (blind) are shown. Controllers that 
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use three partitions of the analog variables spaces are shown 
(labelled as LOW, MEDIUM and HIGH). Although more ac- 
curate controllers can he found in the hank of experiments, 
the use of this low number of partitions favors the inter- 
pretability of solutions. 

Fig. 4 shows a comparison between the output of the se- 
lected fuzzy controllers and the real output values ,for both 
devices, using the test sample. It can be seen how a good 
approximation is made in the prediction of light 3 and a op- 
timum prediction is made for the state of the blind. 

Fig. 5 shows also the rule sets for both controllers. These 
controllers were shown to the student who inhabited the 
iDorm and analyzed. Conclusions, detailed next, allow to 
settle that the controllers seem to be really capturing the stu- 
dent preferences when handling both devices. 

The existence of variables whose influence could he pre- 
dicted in advance can he seen. Nevertheless, in the controller 
for light 3 a strange variable appears: extemal temperature. 
The reason can he that the controller needs to make divisions 
with the same external light level: as the night advances, 
extemal light level is the same hut external temperature de- 
creases. 

Regarding the controller for light 3, it can he seen that 
if the extemal light level is MEDIUM, light 3 intensity is 
MEDIUM. If extemal light level is LOW, light 3 intensity is 
HICH. Nevertheless, it can he seen also that when the exter- 
nal light level is LOW, combined with other circumstances 
such as, for example, that the user is in bed (bed pressure is 
HIGH), the light 3 intensity must he LOW. In this circum- 
stance, rules one and three interact to give an intermediate 
light level intensity. The student explained this effect as he 
likes to have this light on to a medium intensity during the 
night. 

Regarding the blind control, it is LOW (closed) when the 
user is on the bed, and HIGH (open) when the extemal light 
level is LOW. 

4.4 ANFIS Comparison 
A preliminar comparison with ANF'IS is shown. Six sam- 

ple configurations have also been used for this experiments, 
with the difference that no validation subset is used. So, 
training sets are composed of 2/3 of the available samples 
and test subsets are composed of the remaining 1/3 of the 
samples. ANRS has heen applied to get controllers for the 
ten outputs using a cluster radii varying from 0.3 to 2.0 with 
a step of 0. I.  

ANFIS and CA-P results for all the ten outputs have been 
normalized and averaged over the six sample configurations. 
Fig. 6 shows a comparison between both techniques. No 
significant differences in accuracy are observed among the 
techniques. But differences can he observed in other mat- 
ters. ANFIS generates in some circumstances a high number 
of rules (up to 39 in some experiments) which can make it 
difficult for comparing the linguistic interpretations with the 
CA-P. But ANFIS is in general much faster than the GA-P. 

if (Bedpressure is HIGH) and 
(IntemalLightLevel is LOW) and 
(ExtemalLightLevel is LOW) and 
(ExtemalTemprature is LOW) 

then (Light3 is LOW) 

if (ExtemalLightLevel is MEDIUM) 
then (Light3 is MEDIUM) 

if (ExtemalLightLevel is LOW) 
then (Light3 is HIGH) 

(a) Light 3 

if (Bedpressure is HIGH) 
then (BlindStale is LOW) 

if (ExtemalLightLevel is LOW) 
then (Blindstate is HIGH) 

@)Blind State 

5 Conclusions and Future Work 
Although the work described at this paper has not been 

too exhaustive, it can he used to state that the CA-P is a good 
candidate technique for the off-line generation of fuzzy con- 
trollers for an intelligent building. The accuracy of the con- 
trollers is good and the rule sets are easy to interpret. They 
seem to he capable of extracting from the data the knowledge 
about the logic for the controlling of the devices based on the 
user preferences. A preliminar comparison with ANFIS has 
been also made. Though the differences are not significant, 
each of them present advantages over the other. 

With regard to future work, further analysis could he based 
on a comparison of the GA-P approach with a wider spec- 
tmm of learning techniques, not only ANF'IS. Another matter 
to investigate is to use the rules provided by the CA-P as the 
initial set for an adaptive technique for the real time control 
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of a building (it could be applied to the iDorm). The impact 
of starting from a learned set of rules could be analyzed. 

I n  the immediate future, several extensions to the algo- 
rithm are planned. The most relevant is perhaps the introduc- 
tion of reinforcement learning mechanisms in the scheme. 
The CA-P described in this paper is only valid for the gen- 
eration of initial controllers. Adding reinforcement mecha- 
nisms, the CA-P could also be used also for online adapta- 
tion. 
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