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Abstract— To our opinion, and in accordance with the current errors, and is based upon the relations between random and
literature, the precise contribution of Genetic Fuzzy Systems to fuzzy sets. In section four, it is shown, by means of one
the corpus of the machine learning theory has not been clearly example, how the fuzzy valued fitness of the extended GFS is

stated yet. In particular, we question the existence of a set of e . .
problems for which the use of fuzzy rules, in combination with evaluated. The work finishes with the concluding remarks and

genetic algorithms, produces classifiers inherently better than @ discussion about the new opened research lines.
those arising from the bayesian point of view.

We will show that this set of problems actually exists (and [I. STATISTICAL CLASSIFIERS ANDGFSs
comprises intervalar and fuzzy valued datasets) but it is not being
exploited. Current GFSs deal with crisp classification problems,
where the role of fuzzy sets is reduced to give a parametric  Let us suppose we have a $etthat contains objects,
definition of a set of discriminant functions, with a convenient and let us admit also that each one of them is assigned to

linguistic interpretation. Provided that the customary use of fuzzy . .
sets in statistics is vague data, we propose to test GFSs ovet classc;, i = 1... N.. We are given a set of measurements

A. Classification systems based on discriminant functions

imprecisely measured data and design experiments well suited to X (w) = (Xll(_w% = s XN, (W))_ over every object. We will say
these problems. that a classification system is a decision rule that maps every
element of X(2) to a classc;, whose main objective is to
. INTRODUCTION produce a low number of errors.

Statistics and machine learning are closely intertwined. The':Or example, let2 be a set of fruﬁs; apples), pears ¢2)
ambit of application of statistics ranges from experiment§f Pananasd). We observe the weight and the colour of a ran-
designs [20] to theoretical studies about the generalizati ley selgcted fruit, for exampleX (w) :'(yellow , 150).
properties of algorithms, or computational learning theo ur classification systgm relgtes thg paellow ,150) to
[17]. Genetic Fuzzy Systems (GFSs), being machine learni cla§SC3, and we wish this rel_at|on to b? true_most of
tasks, are likewise influenced by this trend, and since recerjf) es (i.e., most of the yellow fruits that weight 150 g. are

statistical tests are a standard tool when the performance pgnas). q ha
genetic classifiers or models are compared [7]. Since we do not assume thaf # w; = X (w:) # X (w2)

Aside from the machine learning field, fuzzy statistics [2 i.e., we admit that there can exist a yellow pear weighting 150

is an active research area, and there have been advances i %%ﬁrhapsb? decglotn rule t?at nevelr fa|'lfs' can no'é be dd?flngd
fuzzy counterparts of most of the aforementioned techniqu Qr this prot ten:H ut-an op |mug1 cafssu ier can be define
But, as far as we know, there are scarce connections betw&véw respect (o the average number of errors.

fuzzy statistics and GFSs. Contrary to this, we think that theTo define the concept "average number of errors” we need

nature of GFSs makes desirable to introduce some elemetﬁt ssume that the mappidgfulfills all necessary conditions

of fuzzy statistics. In this work we will introduce intervalart© 'ebla rﬁndom va}fr_labler.] Let us ?ISO ‘?'ef!“e aLneW random

and fuzzy extensions of the classification problem, and discd’éag'ab,e t art1 qugnél |Ies the COISt 0 ass[gmn?ft e céasto

the impact of these extensions on the design of new Gené’m:o_]e_ciw enhlt ?0”95 t?jcoasfls COS&’J)' we ¢ oo];seh

Fuzzy Learning algorithms, and over the experimental desigﬂsu’]) = 1 wheni # j and 0 else, the expectation of the

of GFSs. ost function is the mean number of errors. This rule is called
This work is structured as follows: first, the statisticalTn!Mmum error Bayes rule”.

definition of classification under stochastic noise is introduced For the problem stated, if the classifier is a decision rule,

and it is explained that current GFSs are designed to solgé).()’ and “clasgw)” 'S the class of the'objeczb, thgp the
the stochastic, crisp problem and not the fuzzy one. Then, merit value of a classifier can be numerically quantified as

extension to the classification definition is introduced. This
extension copes with both stochastic noise and observation

err(D) = /QCOS(D(X(w)),ClaSS(w)) dp 1)



where the error function is integrated with respect to a prob-« GFSs are not a different machine learning technique than

ability measureP defined overQ. It is well known that this bayesian classifiers. They are a numerical method able to
error is optimized by a classifier defined as follows: [16] obtain discriminant functions with intuitive meanings.
o There are no reasons different from linguistic inter-
D(x) = arg ,nax .P (class(w) = ;| X =x).  (2) pretability that favour fuzzy rule based classifiers. There-
T fore, the usefulness of approximate classifiers [5], where
In practical designs, a monotonic transformatiuf(-) of the linguistic concerns are secondary, is compromised.

coqditional p_robgpilitiesP(c,;|X ). does not aIt_er the C'?‘SSi“' By the contrary, if imprecise datasets were used to train and
cat;m Eu'{]\;";p“f"?(s comlgutat|onsh Wg d_ef_MQ fL:nCtL?;fS test GFSs, and specific statistical tests were devised to compare
ffﬂ ) = I( (,c]f| ))ﬁ‘tﬁ '”?Xa? the .ECISIOI’,] rule t lled classifiers with fuzzy outputs, we would be able to compare
; ongs to cafss orw ,',C gé( h> IS m'axwmim.g_? are called  yifarent fuzzy classifiers over the set of problems where
Iscriminant functions™ and the optimal classifier is written,, o expect that fuzzy classifiers make a difference over crisp

D(x) = arg max _ g;(x). ©) classifiers, namely datasets with intervalar or fuzzy valued
i=1,...,N, data.
B. GFS should be learnt and evaluated with fuzzy data ||, A N EXTENDED DEFINITION OF THE CLASSIFICATION
It is important to note that this last approach is followed, PROBLEM

up to our knowledge, by all Genetic Fuzzy Systems [6]. we will consider that a fuzzy valued dataset is a sample
The random nature of the problem is clearly assumed by gl 5 fuzzy random variable, as defined in [13], wheseuts
GFS's authors, because current standard experimental desigias random sets. We will extend first the definition of the
(leave one out, cross validation, etc.) are unbiased estimatigfigssification problem to the intervalar case, and then apply

of the classification error over the whole populatiin(see the results to all cuts of the fuzzy random variable sample.
ed. 1), and therefore the optimal classifer, no matter the

learning technique, is defined by eq. 2, or by one of it8. Intervalar data

transformations, as defined in eq. 3. Moreover, when an inputRecal| eq. 2: to succeed, a learning algorithm should be
is applied to a fuzzy rule base, the inference process eventuglpje to estimate the valueB(class(x)|x) from a sample of
computesN. truth values [11] orN. number of votes [12] measures taken over a subsettdbfTo simplify the notation,
for the set of assertions “the input matches classand the jn this section we assume thit takes values inR. When X

defuzzification, in classification problems, consists in chosinghs apbsolutely continuous distribution, the standard technique
the class maximizing the corresponding set of votes. Thignsists in making a transform

process is not different from the depicted in eq. 3.
As a consequence of this, the term “fuzzy” does not mean in D(x) = arg max M (4)
GFSs that a classification problem different from the crisp one =L Ne f(x)
is being solved. “Fuzzy” means here that the parameterisiggeref is the density function induced by the random variable
of the discriminant functions has a linguistic interpretatiory. The denominator can be removed without affecting the
compatible with the fuzzy logic postulates. This does not meagsylt:
that a fuzzy classifier cannot be fed with fuzzy data; obviously, D(x) =arg max  f(x]¢;)P(¢;) (5)
it can. We mean that neither learning algorithms nor statistical i=1,...,Ne
tests take into account the fuzzy nature of the output of t@d we obtain a well known result: from an statistical point of
classifier. For example: we know that a random piece of frujiew, learning a classifier is the same problem as estimating
is yellow and weights “about 150 g". Now imagine that we density function from a sample of a random variable.
want to compare two classifiers, A and B. Classifier A outputs Now we are presented with a sample from a random set,
"pear” with confidence 0.1 and "apple” with confidence 0.2and need to know how can we estimate the density function
Classifier B outputs confidences 0.8 and 0.9. Which one ds the underlying, imprecisely observed random variable (so
better? Under all statistical tests we are aware of, the twalledoriginal random variable in random sets literature [19]).
are assigned the same error, because they both eventually ébhrasing the problem, we need to generalice the concept of
classify the fruit as being an apple. density function to the random set case. Our primary thought
The experimental designs of GFS that are focused orms to define un “upper” density function as
imprecisely observed data are not being actively studied by P*((z— by + 1))
the GFS community. Contrary to this, and according to the f*(z) :=lim : ,
fuzzy statistics community, the customary use of fuzzy sets hi0 h
in classification and regression problems is the treatment pbvided that this limit exists. For instance, if the random
vague data [10], [15]. We think that this last point should natet " : Q@ — P(IR) is a random interval of the form
be understressed. If we admitted that the classification probl&ifw) = [X (w) —¢, X (w)], Vw, whereX is a random variable
being solved by GFSs is not different to the crisp one, it mayith absolutely continuous distribution, this limit exists almost
follow that everywhere, but it iso. Observe thatP*((x — h,z + h)) =




Plw € Q | Tw)N(z — hy,x + h) # 0}) = PHw € T
Q| Xw)—e<axz+h Xw) >2x—-h) = P{w €
Q| z—-h < X(w) < x4+ h+e). For the continuity of TPs
the probability distribution induced by, this probability T PoT
converges toPx ([z,z + €]) when i tends to0. When this
last one is not null, the limit of the quotient tends to infinite.
To solve this problem, we work directly with eq. 2. We T -
need to estimate the valud¥c;|X = x), to choose in each —
case thei for which the corresponding value is maximum
(where X represents, in this section, the mentioned original - - P,
variable, whose imprecise observation is giverlbyFor each
h > 0, we can try to give a couple of upper and lower bounds
for the valueP(¢;|X € (z — h,z + h)). Following [1], the -
limit when h tends to O of these quantities is the value we

need, P(¢;|X = x). Applying the definition of conditional - N Ly
probability, we have thaP(c;| X € (x — h,z + h)) = {3} {2,3} {1,2,3}
Ple,N{we Q| X(w) € (x—h,z+h)})
P({w cQ | X(w) c (x “hoao+ h)}) . (6) Fig. 1. Example of three possible situations when comparing interval-valued

probabilities. Left: the lower bound aPs is higher than the upper bounds of

The denominator is again the same for all classes. thereféeednd Ps, thus the object is assigned to class 3. Center: the lower bound of
’ ’ ! is contained in the range of values B$, but is higher thanPy, thus the

ly need h for the differefy
we only need to compare the numerators for the di ere{)ﬁject can be assigned to classes 2 or 3. Right: the intersection of all ranges
classes, and give lower and upper bounds for it. The bourislgot empty, thus the object can be assigned to classes 1, 2 or 3.

of Ple,N{we Q| X(w) € (x—h,z+h)}) are
P.(zx,h) =Plc;iN{weQ | T(w) C (z—h,z+h)}) (7) B. Fuzzy data
and

— If we are given a fuzzy dataset, both the output of the
Pi(z,h) = Ple;n{w € Q[ Tw)N(z—h,x+h) #0}). (8)  ¢15ssifier and its expected error will be fuzzy sets, as we show
Since we do not know the value df;, but a set that in this section.
contains it, it is clear that, unless the intervgly, P;] do not Fuzzy datasets can be regarded as samples of a fuzzy
overlap, we can not know iP; > P; for all pairs of classes, random variablel’. Every instance of the variable combines
thus the decision rulé® is not completely defined. This is istwo types of noise: random noise, originated in the selection
graphically illustrated in Figure 1: the decision ruleis not of the object (“we choose a piece of fruit at random”) and
longer a point function, but a set valued function, where  observation error, originated in an imprecise measure (“the
T — weight of the fruit is high, where ’high’ is one of the values
D(x) = {i| #j # i with P> Pi} ©) of the linguistic variable 'weight™).
andh is assigned a value small enough for the problem. a-cuts of I' are random sets (for example, the 0.5-cut of
Given thatD is a set valued function, the average error ahe value ’high’ can be the interval [100,160]). Therefore,
the classifier is not longer known (or, alternatively, we coulfbr every value ofe we can build an intervalar classifier, as
say that the average error is a set valued statistic.) Anywafown in the preceding section, whose output is a discrete set
we can find upper and lower bounds for it (See eq. 1). Let o$ class labels (“if the weight is [100,160], then the object
define a pair of functions is compatible with both pear and apple”). It is intuitive to
. conclude that the output of the classifier, if presented a fuzzy
coslw) = 0 ifclasqw) € D(T'(w)), 1 else (10) input, will be a fuzzy set defined over the set of class labels
cos{w) = 0if D(I'(w)) = {clasgw)},1 else  (11) (“if the weight is high, then the object is 0.1/apple+0.6/pear”.)

In words, cosiis the optimistic estimation of the error, wherel '€ Same can be said about the average error of the fuzzy
glassmer; it will be a fuzzy set.

we admit that an object is correctly classified if its clas - . _ _
number is included in the output, arabst is a pessimistic To obtain this last Value, it suffices to admit that the best
estimation, where we suppose that an object is misclassif@@8cription we can make about the probabilityc; N {w €
unless its class number is the only output of the classifiét.| X (w) € (z — h, 2+ h)}), given that the original random

Therefore, the average classification error is contained in tf@riable X_is contained in the fuzzy random varialdfg is a
interval fuzzy setP;, whosea-cuts are interval§Py, P, | defined as

follows:
ernD) = [/ @(u)dR/ cos{w) dP] (12)
° . P =Plein{weQ|[[(W]a C (@ —ha+h)}) (13)

i =



| crisp weight | fuzzy weight | class

and

T 111 (102,111,116)| pear
P} = Ple:n{w e Q| F(@)a @ —hz+h) £0}). (14) 3| L | (10411628 pear
Therefore, the fuzzy output of the classifier will be the set g 19011 (éif”l*?,ﬁ%) b;;;za
[D(x)lo = {i | # # i with [P} > [P,]*}  (15) TABLE |
and its average error is another fuzzy set, DATASET FOR THE EXAMPLE PROBLEM FRUIT
D)L, = | [ cost)ap. [ s ap| (o
where ¢ . small medium high
cost, (w) =0 if clasqw) € [ID(T'(w))]a, 1 else a7
cost,(w) =0 if [D(I'(w))]o = {clasgw)},1 else  (18) £ < a - .

C. Computer-friendly definition

In the preceding subsection we have stated that the averéige2. Definition of the linguistic variable “weight”, as used in the example
error of a classifier, when its input comprises fuzzy setRoblem *fruit”
should also be a fuzzy set. Therefore, the fithess functions in
GFSs will return a fuzzy value. This value can be numerically
estimated by means of egs. 16, 17 and 18. Since these o ) ]
equations are expressed in terms of a familyaeuts, we yvh_ere the Ilngws_tlc varlabl_e “Welght” takes the va_lues shown
give a rewriting of them that is easier to codify in a computel? figure 2. We WISh to assign a fitness value to this rule base,
Let D = Y,_, x u/i be the fuzzy output of the given the mentioned dataset.
classifier,p the class label with maximum membership value Observe that the fitness value assigned to this rule base
in ID, p = arg max—1...n, (1), and ¢ the second maximum measures the classifier error as defined in eq. (16). This, on
membershipg = arg max-1..n,,izp(p:). Let the height of one hand, assess the degree to which these rules approximate
D, u, = 1. Then, the contribution of the objectto the total the usual Bayes criterium in eq. (5), but, on the other hand, also

error is takes into account how sensible these rules are to measurement
. 1/0 + pg/1 if clasgw)=p errors. The nonspecificity of the fuzzy fitness value is higher
err(w) = {Ncla3$w)/0+ 1/1 otherwise. (19) when bases are less robust, thus the ranking of the fitness

) ) values should take into account more information than the
For example, suppose that, in a problem with thre@

> ’ ven, for example, in the COG of the set.
classes, the output of the classifier is the fuzzy set } ] N .
accumulated error of the classifier would be increased B{ven by the column “crisp weight” in table I. The output of
the fuzzy amount{0.2/0+1/%. If it was an apple, the new the classifier, using max-min inference, is as follows:
error would be{1/0+0.8/3 higher, or{0.8/0+1/% if it was a

banana. Crisp Input  Output Cost
111 apple 1
IV. EXAMPLE OF FITNESS EVALUATION IN THE EXTENDED 9% anole 0
CLASSIFIER PP
. . . ) . 116 apple 1
In this section we will numerically evaluate a fuzzy classifier 89 banana O
over a small problem, to illustrate the ideas introduced in the 101 apple 0

preceding section.

Let us suppose that we have to discriminate between thteerefore, the cost of this classifier is 2 (in other words, we
classes (apple, pear, banana), given the weight of a piestimate that it is wrong 40% of times).
of fruit. To design the classifier, we are given a sample . . -

o . ) : -~ ~ If we apply an intervalar input to the same classifier (the
comprising five pieces, whose weights and classes are given . : ;
) . . . sypport of the fuzzy examples,) its output is a crisp subset
in table 1. Weights are triangular fuzzy numbers, designaté ;

. ; of the class labels. For example, the inter{@s, 112] has
by three numbers: leftmost, center and rightmost values.

Let us also suppose that the GFS has to evaluate the fitn%ﬁs%ﬁgs;edath?e Cgfé)aussuebsﬁv\(Igéxgl)aszify]Da(”[Sfﬁé12]3"]; in
of the rule base that follows: - app ’ P

[88,112], we observe that points 88, 92.5] are assigned the
if weight is small then banana class “banana”, and points {92.5, 112] are assigned the class
if weight is medium then apple “apple.” To calculate the cost of the classifier we operate as
if weight is high then pear follows:



Fuzzy Input Output Cost

(102,111, 116) { 1/apple} {1/1}

(88,96,112) { 0.5625/banana+1/apple {1/0 + 0.5625/1}
(104, 116,128) { 0.875/apple+1/pea¥ {0.875/0+1/1}
(83,89,90) { 1/banana} {1/0}

(91,101,118)  { 0.15/banana+1/apple+0.0294/péar {1/0+ 0.15/1}

TABLE I
OUTPUT OF THE EXAMPLE CLASSIFIER WHEN THE INPUT IS A FUZZY SET

Interval Input Output Cost terparts is composed by those problems including imprecisely
(102, 116] { apple} {1} observed data. To deal with imprecise data, stochastic algo-
(88, 112] { banana, apple {0,1} rithms have to introduce additional hypotheses, as a probability
(104, 128] { apple, pear} {0, 1} distribution (uniform, gaussian, etc.) over the measurement

83,90 { banana} {0} errors, that fuzzy algorithms do not need.
[91,118] { banana, apple, pear {0,1}

When the classification problem is extended to fuzzy data,

therefore the cost is contained in the interidald] (i.e., when there are some changes that have to be done in the numerical
data is precisely measured, we estimated that the classificatigorithms. We enumerate these changes and briefly comment

was wrong 40% of times; when data is intervalar, all we cagn the problems that these modifications leave open:

say without assuming a random distribution of the observation
error is that it is wrong between 20% and 80% of times.)

Finally, if the classifier is applied a fuzzy input, its outputs
and costs are shown in table Il. The inputs are fuzzy triangular
numbers, and the data, y, z) are left, center and right point.
The cost of the classifier i§1/1} @ {1/0 + 0.5625/1} &
{0.875/0+1/1}@{1/0}{1/04+0.15/1} = {0.875/1+1/2+
0.5625/3 + 0.15/4}, or in words, the error of the classifier
is 20% with confidence 0.875, 40% with confidence 1, 60%
with confidence 0.5625 and 80% with confidence 0.15. The
error still is between 20% and 80%, but a genetic algorithm
could prefer this result over a different classifier that has, say
{0.875/1 + 1/2 + 0.5625/3 4+ 0.25/4}, even in the punctual
estimations of the classification error of either are the same,2
because the differences in the fuzzy errors state that the former
classifier is less afected by imprecision in the input data (it
is less likely to obtain an 80% error.) Observe also that, if
input data are triangular fuzzy sets, the punctual error of the
classifier is given by the value with membership 1 in the fuzzy
cost, 2 (or %40 of errors) in this example.

It is remarked that the algorithm used here to calculate the
output, and the error of the classifier, given a fuzzy input, does
not produce the same results that we would have obtained
by means of the direct use of fuzzy inference. For example,
if we apply max-min inference to compute the output of
the rule base when its input is the fuzzy g6t,101,118)
we obtain {0.4/banana+0.9048/apple+0.3095/geaBy the
contrary, the procedure proposed in this paper produces the set
{0.15/banana+1/apple+0.0294/pedn other words, we have
proposed to use fuzzy logic to assign a class to a crisp input,
but a fuzzy statistics-based interpretation of the observation
error to extend the classification to imprecise data.

V. CONCLUDING REMARKS AND OPEN PROBLEMS

We have suggested in this paper that the kind of problems
where GFSs are inherently better than their stochastic coun-

1) Since the error of a classifier will not be a scalar, but

a fuzzy set, the fitness function in the extended GFS
must return a fuzzy value. Genetic Algorithms must do
fitness-based orderings of individuals, therefore we must
a) use a fuzzy ranking [3] to induce a total order over
fuzzy parts of[0, 1] or b) induce only a partial ordering
and use multicriteria genetic algorithms instead [14].
The selection of the best fuzzy ranking, or, from a more
general point of view, processing fuzzy values when
evaluating the fitness function in genetic algorithms, is
a problem that can not yet be considered as generally
solved [18].

New statistical tests have to be designed in order to judge
the relevance of the differences of two fuzzy algorithms.
There are some works in fuzzy statistical inference [4],
[8], [9], but more work needs to be done in order to do
practical comparisons between fuzzy valued algorithms.
It is not clear yet how the comparison between fuzzy
and crisp data should be done (and we need that, to
compare extended GFSs to other algorithms,) and this
poses other open problems: the definition of statistical
contrasts about fuzzy-valued parameters in fuzzy ran-
dom variables, the very definition of parametric families
of random sets or fuzzy random variables, and the design
of their corresponding tests.

) The benchmarks most commonly used to compare GFSs

include missing values, that can be codified with fuzzy
information, and linguistic data, that can also be assim-
ilated to fuzzy sets, but we lack datasets of imprecisely
measured data that allow us to compare the robustness
of GFSs to that of stochastic methods in terms of the
degree of imprecision in the data. This absence prevent
us from optimizing GFSs towards the main objective
of fuzzy techniques, as stated by Zadeh [21]: “Exploit
the tolerance for imprecision [...] to achieve tractability,



robustness, and low solution cost”.
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