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Computer Science Department

Universidad de Oviedo
Campus de Viesques

33271 Gij́on, Asturias, Spain
E-mail: luciano@uniovi.es

Inés Couso
Statistics Department

Universidad de Oviedo
Campus de Viesques

33271 Gij́on, Asturias, Spain
E-mail: couso@pinon.ccu.uniovi.es

Abstract— To our opinion, and in accordance with the current
literature, the precise contribution of Genetic Fuzzy Systems to
the corpus of the machine learning theory has not been clearly
stated yet. In particular, we question the existence of a set of
problems for which the use of fuzzy rules, in combination with
genetic algorithms, produces classifiers inherently better than
those arising from the bayesian point of view.

We will show that this set of problems actually exists (and
comprises intervalar and fuzzy valued datasets) but it is not being
exploited. Current GFSs deal with crisp classification problems,
where the role of fuzzy sets is reduced to give a parametric
definition of a set of discriminant functions, with a convenient
linguistic interpretation. Provided that the customary use of fuzzy
sets in statistics is vague data, we propose to test GFSs over
imprecisely measured data and design experiments well suited to
these problems.

I. I NTRODUCTION

Statistics and machine learning are closely intertwined. The
ambit of application of statistics ranges from experimental
designs [20] to theoretical studies about the generalization
properties of algorithms, or computational learning theory
[17]. Genetic Fuzzy Systems (GFSs), being machine learning
tasks, are likewise influenced by this trend, and since recently
statistical tests are a standard tool when the performances of
genetic classifiers or models are compared [7].

Aside from the machine learning field, fuzzy statistics [2]
is an active research area, and there have been advances in the
fuzzy counterparts of most of the aforementioned techniques.
But, as far as we know, there are scarce connections between
fuzzy statistics and GFSs. Contrary to this, we think that the
nature of GFSs makes desirable to introduce some elements
of fuzzy statistics. In this work we will introduce intervalar
and fuzzy extensions of the classification problem, and discuss
the impact of these extensions on the design of new Genetic
Fuzzy Learning algorithms, and over the experimental design
of GFSs.

This work is structured as follows: first, the statistical
definition of classification under stochastic noise is introduced,
and it is explained that current GFSs are designed to solve
the stochastic, crisp problem and not the fuzzy one. Then, an
extension to the classification definition is introduced. This
extension copes with both stochastic noise and observation

errors, and is based upon the relations between random and
fuzzy sets. In section four, it is shown, by means of one
example, how the fuzzy valued fitness of the extended GFS is
evaluated. The work finishes with the concluding remarks and
a discussion about the new opened research lines.

II. STATISTICAL CLASSIFIERS ANDGFSS

A. Classification systems based on discriminant functions

Let us suppose we have a setΩ that contains objectsω,
and let us admit also that each one of them is assigned to
a classci, i = 1 . . . Nc. We are given a set of measurements
X(ω) = (X1(ω), . . . , XNi(ω)) over every object. We will say
that a classification system is a decision rule that maps every
element ofX(Ω) to a classci, whose main objective is to
produce a low number of errors.

For example, letΩ be a set of fruits; apples (c1), pears (c2)
or bananas (c3). We observe the weight and the colour of a ran-
domly selected fruit, for example,X(ω) = (yellow , 150).
Our classification system relates the pair(yellow , 150) to
the classc3, and we wish this relation to be true most of
times (i.e., most of the yellow fruits that weight 150 g. are
bananas).

Since we do not assume thatω1 6= ω2 ⇒ X(ω1) 6= X(ω2)
(i.e., we admit that there can exist a yellow pear weighting 150
g.) perhaps a decision rule that never fails can not be defined
for this problem. But an optimum classifier can be defined
with respect to the average number of errors.

To define the concept “average number of errors” we need
to assume that the mappingX fulfills all necessary conditions
to be a random variable. Let us also define a new random
variable that quantifies the cost of assigning the classci to
an object when it belongs to classcj , cost(i, j). If we choose
cost(i, j) = 1 when i 6= j and 0 else, the expectation of the
cost function is the mean number of errors. This rule is called
“minimum error Bayes rule”.

For the problem stated, if the classifier is a decision rule,
D(X), and “class(ω)” is the class of the objectω, then the
merit value of a classifier can be numerically quantified as

err(D) =
∫

Ω

cost(D(X(ω)), class(ω)) dP (1)



where the error function is integrated with respect to a prob-
ability measureP defined overΩ. It is well known that this
error is optimized by a classifier defined as follows: [16]

D(x) = arg max
i=1,...,Nc

P (class(ω) = ci|X = x). (2)

In practical designs, a monotonic transformationM(·) of the
conditional probabilitiesP (ci|X) does not alter the classifi-
cation but simplifies computations. We defineNc functions
gi(X) = M(P (ci|X)), taking as the decision rule thatX
belongs to classi for which gi(X) is maximum.g’s are called
“discriminant functions” and the optimal classifier is written

D(x) = arg max
i=1,...,Nc

gi(x). (3)

B. GFS should be learnt and evaluated with fuzzy data

It is important to note that this last approach is followed,
up to our knowledge, by all Genetic Fuzzy Systems [6].
The random nature of the problem is clearly assumed by all
GFS’s authors, because current standard experimental designs
(leave one out, cross validation, etc.) are unbiased estimations
of the classification error over the whole populationΩ (see
eq. 1), and therefore the optimal classifer, no matter the
learning technique, is defined by eq. 2, or by one of its
transformations, as defined in eq. 3. Moreover, when an input
is applied to a fuzzy rule base, the inference process eventually
computesNc truth values [11] orNc number of votes [12]
for the set of assertions “the input matches classci” and the
defuzzification, in classification problems, consists in chosing
the class maximizing the corresponding set of votes. This
process is not different from the depicted in eq. 3.

As a consequence of this, the term “fuzzy” does not mean in
GFSs that a classification problem different from the crisp one
is being solved. “Fuzzy” means here that the parameterising
of the discriminant functions has a linguistic interpretation
compatible with the fuzzy logic postulates. This does not mean
that a fuzzy classifier cannot be fed with fuzzy data; obviously,
it can. We mean that neither learning algorithms nor statistical
tests take into account the fuzzy nature of the output of the
classifier. For example: we know that a random piece of fruit
is yellow and weights “about 150 g”. Now imagine that we
want to compare two classifiers, A and B. Classifier A outputs
”pear” with confidence 0.1 and ”apple” with confidence 0.2.
Classifier B outputs confidences 0.8 and 0.9. Which one is
better? Under all statistical tests we are aware of, the two
are assigned the same error, because they both eventually will
classify the fruit as being an apple.

The experimental designs of GFS that are focused on
imprecisely observed data are not being actively studied by
the GFS community. Contrary to this, and according to the
fuzzy statistics community, the customary use of fuzzy sets
in classification and regression problems is the treatment of
vague data [10], [15]. We think that this last point should not
be understressed. If we admitted that the classification problem
being solved by GFSs is not different to the crisp one, it may
follow that

• GFSs are not a different machine learning technique than
bayesian classifiers. They are a numerical method able to
obtain discriminant functions with intuitive meanings.

• There are no reasons different from linguistic inter-
pretability that favour fuzzy rule based classifiers. There-
fore, the usefulness of approximate classifiers [5], where
linguistic concerns are secondary, is compromised.

By the contrary, if imprecise datasets were used to train and
test GFSs, and specific statistical tests were devised to compare
classifiers with fuzzy outputs, we would be able to compare
different fuzzy classifiers over the set of problems where
we expect that fuzzy classifiers make a difference over crisp
classifiers, namely datasets with intervalar or fuzzy valued
data.

III. A N EXTENDED DEFINITION OF THE CLASSIFICATION

PROBLEM

We will consider that a fuzzy valued dataset is a sample
of a fuzzy random variable, as defined in [13], whoseα-cuts
are random sets. We will extend first the definition of the
classification problem to the intervalar case, and then apply
the results to all cuts of the fuzzy random variable sample.

A. Intervalar data

Recall eq. 2: to succeed, a learning algorithm should be
able to estimate the valuesP (class(x)|x) from a sample of
measures taken over a subset ofΩ. To simplify the notation,
in this section we assume thatX takes values inIR. WhenX
has absolutely continuous distribution, the standard technique
consists in making a transform

D(x) = arg max
i=1,...,Nc

f(x|ci)P (ci)
f(x)

. (4)

wheref is the density function induced by the random variable
X. The denominator can be removed without affecting the
result:

D(x) = arg max
i=1,...,Nc

f(x|ci)P (ci) (5)

and we obtain a well known result: from an statistical point of
view, learning a classifier is the same problem as estimating
a density function from a sample of a random variable.

Now we are presented with a sample from a random set,
and need to know how can we estimate the density function
of the underlying, imprecisely observed random variable (so
calledoriginal random variable in random sets literature [19]).
Rephrasing the problem, we need to generalice the concept of
density function to the random set case. Our primary thought
was to define un “upper” density function as

f∗(x) := lim
h↓0

P ∗((x− h, x + h))
h

,

provided that this limit exists. For instance, if the random
set Γ : Ω → P(IR) is a random interval of the form
Γ(ω) = [X(ω)−ε,X(ω)], ∀ω, whereX is a random variable
with absolutely continuous distribution, this limit exists almost
everywhere, but it is∞. Observe thatP ∗((x − h, x + h)) =



P ({ω ∈ Ω | Γ(ω) ∩ (x − h, x + h) 6= ∅}) = P ({ω ∈
Ω | X(ω) − ε < x + h, X(ω) > x − h) = P ({ω ∈
Ω | x − h < X(ω) < x + h + ε). For the continuity of
the probability distribution induced byX, this probability
converges toPX([x, x + ε]) when h tends to0. When this
last one is not null, the limit of the quotient tends to infinite.

To solve this problem, we work directly with eq. 2. We
need to estimate the valuesP (ci|X = x), to choose in each
case thei for which the corresponding value is maximum
(whereX represents, in this section, the mentioned original
variable, whose imprecise observation is given byΓ.) For each
h > 0, we can try to give a couple of upper and lower bounds
for the valueP (ci|X ∈ (x − h, x + h)). Following [1], the
limit when h tends to 0 of these quantities is the value we
need,P (ci|X = x). Applying the definition of conditional
probability, we have thatP (ci|X ∈ (x− h, x + h)) =

P (ci ∩ {ω ∈ Ω | X(ω) ∈ (x− h, x + h)})
P ({ω ∈ Ω | X(ω) ∈ (x− h, x + h)})

. (6)

The denominator is, again, the same for all classes, therefore
we only need to compare the numerators for the different
classes, and give lower and upper bounds for it. The bounds
of P (ci ∩ {ω ∈ Ω | X(ω) ∈ (x− h, x + h)}) are

P i(x, h) = P (ci ∩ {ω ∈ Ω | Γ(ω) ⊆ (x− h, x + h)}) (7)

and

P i(x, h) = P (ci∩{ω ∈ Ω | Γ(ω)∩(x−h, x+h) 6= ∅}). (8)

Since we do not know the value ofPi, but a set that
contains it, it is clear that, unless the intervals[P i, P i] do not
overlap, we can not know ifPi > Pj for all pairs of classes,
thus the decision ruleD is not completely defined. This is is
graphically illustrated in Figure 1: the decision ruleD is not
longer a point function, but a set valued function, where

ID(x) = {i | @ j 6= i with P j > P i} (9)

andh is assigned a value small enough for the problem.
Given thatID is a set valued function, the average error of

the classifier is not longer known (or, alternatively, we could
say that the average error is a set valued statistic.) Anyway,
we can find upper and lower bounds for it (see eq. 1). Let us
define a pair of functions

cost(ω) = 0 if class(ω) ∈ ID(Γ(ω)), 1 else (10)

cost(ω) = 0 if ID(Γ(ω)) = {class(ω)}, 1 else. (11)

In words, costis the optimistic estimation of the error, where
we admit that an object is correctly classified if its class
number is included in the output, andcost is a pessimistic
estimation, where we suppose that an object is misclassified
unless its class number is the only output of the classifier.
Therefore, the average classification error is contained in the
interval

err(ID) =
[∫

Ω

cost(ω) dP,

∫
Ω

cost(ω) dP
]

(12)

P 1

P 2

P 3
P 1

P 2

P 3

{1, 2, 3}{2, 3}{3}

Fig. 1. Example of three possible situations when comparing interval-valued
probabilities. Left: the lower bound ofP3 is higher than the upper bounds of
P2 andP3, thus the object is assigned to class 3. Center: the lower bound of
P3 is contained in the range of values ofP2, but is higher thanP1, thus the
object can be assigned to classes 2 or 3. Right: the intersection of all ranges
is not empty, thus the object can be assigned to classes 1, 2 or 3.

B. Fuzzy data

If we are given a fuzzy dataset, both the output of the
classifier and its expected error will be fuzzy sets, as we show
in this section.

Fuzzy datasets can be regarded as samples of a fuzzy
random variablẽΓ. Every instance of the variable combines
two types of noise: random noise, originated in the selection
of the object (“we choose a piece of fruit at random”) and
observation error, originated in an imprecise measure (“the
weight of the fruit is high, where ’high’ is one of the values
of the linguistic variable ’weight”’).

α-cuts of Γ̃ are random sets (for example, the 0.5-cut of
the value ’high’ can be the interval [100,160]). Therefore,
for every value ofα we can build an intervalar classifier, as
shown in the preceding section, whose output is a discrete set
of class labels (“if the weight is [100,160], then the object
is compatible with both pear and apple”). It is intuitive to
conclude that the output of the classifier, if presented a fuzzy
input, will be a fuzzy set defined over the set of class labels
(“if the weight is high, then the object is 0.1/apple+0.6/pear”.)
The same can be said about the average error of the fuzzy
classifier; it will be a fuzzy set.

To obtain this last value, it suffices to admit that the best
description we can make about the probabilityP (ci ∩ {ω ∈
Ω | X(ω) ∈ (x− h, x + h)}), given that the original random
variableX is contained in the fuzzy random variablẽΓ, is a
fuzzy setP̃i, whoseα-cuts are intervals[Pα

i , P
α

i ] defined as
follows:

Pα
i = P (ci ∩ {ω ∈ Ω | [Γ̃(ω)]α ⊆ (x− h, x + h)}) (13)



and

P
α

i = P (ci ∩{ω ∈ Ω | [Γ̃(ω)]α ∩ (x− h, x + h) 6= ∅}). (14)

Therefore, the fuzzy output of the classifier will be the set

[ĨD(x)]α = {i | @ j 6= i with [P j ]
α > [P i]α} (15)

and its average error is another fuzzy set,

[ẽrr(ID)]α =
[∫

Ω

costα(ω) dP,

∫
Ω

costα(ω) dP
]

(16)

where

costα(ω) = 0 if class(ω) ∈ [ID(Γ(ω))]α, 1 else (17)

costα(ω) = 0 if [ID(Γ(ω))]α = {class(ω)}, 1 else. (18)

C. Computer-friendly definition

In the preceding subsection we have stated that the average
error of a classifier, when its input comprises fuzzy sets,
should also be a fuzzy set. Therefore, the fitness functions in
GFSs will return a fuzzy value. This value can be numerically
estimated by means of eqs. 16, 17 and 18. Since these
equations are expressed in terms of a family ofα-cuts, we
give a rewriting of them that is easier to codify in a computer.

Let ĨD =
∑

i=1...Nc
µi/i be the fuzzy output of the

classifier,p the class label with maximum membership value
in ĨD, p = arg maxi=1...Nc

(µi), and q the second maximum
membership,q = arg maxi=1...Nc,i 6=p(µi). Let the height of
ĨD, µp = 1. Then, the contribution of the objectω to the total
error is

ẽrr(ω) =
{

1/0 + µq/1 if class(ω)=p
µclass(ω)/0 + 1/1 otherwise. (19)

For example, suppose that, in a problem with three
classes, the output of the classifier is the fuzzy set
{0.2/pear+1/apple+0.8/banana}. If the object was a pear, the
accumulated error of the classifier would be increased by
the fuzzy amount{0.2/0+1/1}. If it was an apple, the new
error would be{1/0+0.8/1} higher, or{0.8/0+1/1} if it was a
banana.

IV. EXAMPLE OF FITNESS EVALUATION IN THE EXTENDED

CLASSIFIER

In this section we will numerically evaluate a fuzzy classifier
over a small problem, to illustrate the ideas introduced in the
preceding section.

Let us suppose that we have to discriminate between three
classes (apple, pear, banana), given the weight of a piece
of fruit. To design the classifier, we are given a sample
comprising five pieces, whose weights and classes are given
in table I. Weights are triangular fuzzy numbers, designated
by three numbers: leftmost, center and rightmost values.

Let us also suppose that the GFS has to evaluate the fitness
of the rule base that follows:

if weight is small then banana
if weight is medium then apple

if weight is high then pear

crisp weight fuzzy weight class
1 111 (102,111,116) pear
2 96 (88,96,112) apple
3 116 (104,116,128) pear
4 91 (83,89,90) banana
5 101 (91,101,118) apple

TABLE I

DATASET FOR THE EXAMPLE PROBLEM’ FRUIT’

small medium high

80 13010555 155

Fig. 2. Definition of the linguistic variable “weight”, as used in the example
problem “fruit.”

where the linguistic variable “weight” takes the values shown
in figure 2. We wish to assign a fitness value to this rule base,
given the mentioned dataset.

Observe that the fitness value assigned to this rule base
measures the classifier error as defined in eq. (16). This, on
one hand, assess the degree to which these rules approximate
the usual Bayes criterium in eq. (5), but, on the other hand, also
takes into account how sensible these rules are to measurement
errors. The nonspecificity of the fuzzy fitness value is higher
when bases are less robust, thus the ranking of the fitness
values should take into account more information than the
given, for example, in the COG of the set.

Let us evaluate first this classifier over the crisp dataset
given by the column “crisp weight” in table I. The output of
the classifier, using max-min inference, is as follows:

Crisp Input Output Cost
111 apple 1
96 apple 0
116 apple 1
89 banana 0
101 apple 0

therefore, the cost of this classifier is 2 (in other words, we
estimate that it is wrong 40% of times).

If we apply an intervalar input to the same classifier (the
support of the fuzzy examples,) its output is a crisp subset
of the class labels. For example, the interval[88, 112] has
associated the crisp subsetID(Γ(x)) = ID([88, 112]) =
{banana, apple}, because, if we classify all the points in
[88, 112], we observe that points in[88, 92.5] are assigned the
class “banana”, and points in(92.5, 112] are assigned the class
“apple.” To calculate the cost of the classifier we operate as
follows:



Fuzzy Input Output Cost
(102, 111, 116) { 1/apple} {1/1}
(88, 96, 112) { 0.5625/banana+1/apple} {1/0 + 0.5625/1}

(104, 116, 128) { 0.875/apple+1/pear} {0.875/0 + 1/1}
(83, 89, 90) { 1/banana} {1/0}

(91, 101, 118) { 0.15/banana+1/apple+0.0294/pear} {1/0 + 0.15/1}

TABLE II

OUTPUT OF THE EXAMPLE CLASSIFIER WHEN THE INPUT IS A FUZZY SET

Interval Input Output Cost
[102, 116] { apple} {1}
[88, 112] { banana, apple} {0, 1}
[104, 128] { apple, pear} {0, 1}
[83, 90] { banana} {0}
[91, 118] { banana, apple, pear} {0, 1}

therefore the cost is contained in the interval[1, 4] (i.e., when
data is precisely measured, we estimated that the classification
was wrong 40% of times; when data is intervalar, all we can
say without assuming a random distribution of the observation
error is that it is wrong between 20% and 80% of times.)

Finally, if the classifier is applied a fuzzy input, its outputs
and costs are shown in table II. The inputs are fuzzy triangular
numbers, and the data(x, y, z) are left, center and right point.
The cost of the classifier is{1/1} ⊕ {1/0 + 0.5625/1} ⊕
{0.875/0+1/1}⊕{1/0}⊕{1/0+0.15/1} = {0.875/1+1/2+
0.5625/3 + 0.15/4}, or in words, the error of the classifier
is 20% with confidence 0.875, 40% with confidence 1, 60%
with confidence 0.5625 and 80% with confidence 0.15. The
error still is between 20% and 80%, but a genetic algorithm
could prefer this result over a different classifier that has, say
{0.875/1 + 1/2 + 0.5625/3 + 0.25/4}, even in the punctual
estimations of the classification error of either are the same,
because the differences in the fuzzy errors state that the former
classifier is less afected by imprecision in the input data (it
is less likely to obtain an 80% error.) Observe also that, if
input data are triangular fuzzy sets, the punctual error of the
classifier is given by the value with membership 1 in the fuzzy
cost, 2 (or %40 of errors) in this example.

It is remarked that the algorithm used here to calculate the
output, and the error of the classifier, given a fuzzy input, does
not produce the same results that we would have obtained
by means of the direct use of fuzzy inference. For example,
if we apply max-min inference to compute the output of
the rule base when its input is the fuzzy set(91, 101, 118)
we obtain {0.4/banana+0.9048/apple+0.3095/pear}. By the
contrary, the procedure proposed in this paper produces the set
{0.15/banana+1/apple+0.0294/pear}. In other words, we have
proposed to use fuzzy logic to assign a class to a crisp input,
but a fuzzy statistics-based interpretation of the observation
error to extend the classification to imprecise data.

V. CONCLUDING REMARKS AND OPEN PROBLEMS

We have suggested in this paper that the kind of problems
where GFSs are inherently better than their stochastic coun-

terparts is composed by those problems including imprecisely
observed data. To deal with imprecise data, stochastic algo-
rithms have to introduce additional hypotheses, as a probability
distribution (uniform, gaussian, etc.) over the measurement
errors, that fuzzy algorithms do not need.

When the classification problem is extended to fuzzy data,
there are some changes that have to be done in the numerical
algorithms. We enumerate these changes and briefly comment
on the problems that these modifications leave open:

1) Since the error of a classifier will not be a scalar, but
a fuzzy set, the fitness function in the extended GFS
must return a fuzzy value. Genetic Algorithms must do
fitness-based orderings of individuals, therefore we must
a) use a fuzzy ranking [3] to induce a total order over
fuzzy parts of[0, 1] or b) induce only a partial ordering
and use multicriteria genetic algorithms instead [14].
The selection of the best fuzzy ranking, or, from a more
general point of view, processing fuzzy values when
evaluating the fitness function in genetic algorithms, is
a problem that can not yet be considered as generally
solved [18].

2) New statistical tests have to be designed in order to judge
the relevance of the differences of two fuzzy algorithms.
There are some works in fuzzy statistical inference [4],
[8], [9], but more work needs to be done in order to do
practical comparisons between fuzzy valued algorithms.
It is not clear yet how the comparison between fuzzy
and crisp data should be done (and we need that, to
compare extended GFSs to other algorithms,) and this
poses other open problems: the definition of statistical
contrasts about fuzzy-valued parameters in fuzzy ran-
dom variables, the very definition of parametric families
of random sets or fuzzy random variables, and the design
of their corresponding tests.

3) The benchmarks most commonly used to compare GFSs
include missing values, that can be codified with fuzzy
information, and linguistic data, that can also be assim-
ilated to fuzzy sets, but we lack datasets of imprecisely
measured data that allow us to compare the robustness
of GFSs to that of stochastic methods in terms of the
degree of imprecision in the data. This absence prevent
us from optimizing GFSs towards the main objective
of fuzzy techniques, as stated by Zadeh [21]: “Exploit
the tolerance for imprecision [...] to achieve tractability,



robustness, and low solution cost”.
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