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Abstract

The study of the balance between linguistic in-
terpretability and numerical accuracy in genetic
fuzzy systems is an active area of research, and
a rich set of procedures for comparing the un-
derstandability of fuzzy rule bases is available.
Nevertheless, comparing the numerical accuracy
of two GFS is relegated to a second plane, or as-
sumed solved, as most of the researchers in this
area use classical, parametric hypotheses based,
statistical tests. With this paper, we intend to
show that the straight use of classical tests to
compare the accuracy of different machine learn-
ing algorithms may produce misleading results,
and propose to substitute them by bootstrap tests
in the experimental designs of the cross-validation
kind.

Keywords: Genetic Fuzzy Systems, Inter-
pretability vs. Accuracy Tradeoff, Experimental
Design, Bootstrap Tests.

1 Introduction

Every proposal of a new Genetic Fuzzy System
(GFS) is numerically validated by means of a set
of experiments. Typically, the objective of the ex-
perimental design is to judge whether there exist
a significant difference between the algorithm be-
ing evaluated, and a meaningful selection of the
state of the art. The opposite can also happen,
and sometimes we want to show that these differ-
ences are not significant. For instance, we might
be interested in showing that a new, highly inter-
pretable rule base, is not significantly less accu-
rate than a previous, more complex one.

This concept of experimental design, based upon
the numerical evaluation of an algorithm over a
set data, is still a controversial point [5][9][7][12].
Besides, under general conditions, we can assume
that comparing the accuracy of two algorithms
consists in deciding whether their respective ex-
pected fitness (over the whole population) are
equal [2]. The most frequent experimental de-
sign used to perform this comparison is the cross
validation [10]. Under this framework, every al-
gorithm being compared, when evaluated over a
set of test partitions, eventually will produce a
set of fitness values, that can be regarded as a
sample of a random variable. Should we want to
contrast that two algorithms are different, we use
a statistical test whose null hypothesis is “the ex-
pectation of either random variable is the same”,
with general alternative hypothesis. Test statis-
tics are used to measure the discrepancy between
the data and the null hypothesis. In the para-
metric setting, we have an explicit form from the
sampling distribution of the data, with some un-
known parameters. Often, normality is assumed,
and t-tests [4] are of widespread use.

According to our own experience, the predomi-
nance of t-tests in machine learning related ex-
perimental designs is not completely justified. t-
tests are the most powerful option when the sam-
pling distribution is gaussian. But, in many ma-
chine learning problems this assumption is not
true. In case a t-test is applied to compare
two non-gaussian distributions, the probability of
deciding that two equivalent algorithms are dif-
ferent (the so called “type-I error”) quickly in-
creases. This means that, for instance, a new al-
gorithm that only obtains a marginal result might
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be incorrectly thought of as an improvement
and, conversely, in the context of the accuracy-
interpretability tradeoff, it could also happen that
certain intelligent algorithms are incorrectly re-
garded as less precise than their statistical coun-
terparts.

The customary procedure consists in choosing be-
tween a nonparametric test and the t-test, on the
basis of a goodness of fit test (see Fig. 1 for an
example of such a construction.) But this last
construction is not optimal: on the one hand, the
goodness of fit test discards a high percentage, but
not all, of the non-gaussian distributions, which
pass on to the t-test and influence the type-I error.
On the other hand, for the most frequent nonpara-
metric tests used in machine learning literature
(Wilcoxon [13], Mann-Whitney [8]) the probabil-
ity of deciding that two different algorithms are
the same is higher than that of the t-test. There
also exist different, less extended uses of type-t
tests (see, for example, the 5x2cv [5] and 5x2cv-f
[1] methods) that do not rely on a goodness of fit
test, but they are not free from these two effects,
as we will check later in the empirical analysis.

2 Bootstrap Tests

Recent advances in so-called computer-intensive
statistics make use of extensive repeated calcu-
lations to explore the sampling distribution of a
parameter estimator. In particular, the bootstrap
procedure [14][15], construct estimates based on
the replacement of the unknown distribution F of
the data by its Empirical Distribution Function
(EDF) F̂ .

Let us suppose, for example, that we want to
obtain the density function of an estimator of a
parameter θ of certain distribution F ; its sam-
ple median, say. We are given a random sam-
ple (y1, . . . , yn), yi 7→ F . First, we draw a large
number R of bootstrap samples y∗

r , with y∗
ri 7→ F̂

(these are resamples of y, taken with replacement.)
The density function of the sample median is then
approximated by the histogram of the bootstrap
sample medians θ∗

r , or by an estimation taken
from them, for instance a kernel smoothing.

Bootstrap techniques have been applied to esti-
mate the error rate of an algorithm and confidence

Gaussian distribution 
in both samples?
(Shapiro-Wilk Test)

The medians of both
samples are the same?

(Wilcoxon test, for
paired samples, or
Mann-Whitney test 
otherwise)

Equal variances?
(F Test)

YesNo

The expectations
of both samples
are the same?

“k-fold cross
validation”

Sample of test
errors, experimental
design of type

No

Paired data?
Yes

No

Yes

The expectations
of both samples
are the same?

(Standard 2-sample
t-test)

The expectation
of the differences
is null?

(Paired t-test)

(Welch modified
t-test)

Figure 1: Combination of tests in the classical frame-
work. A goodness of fit test is used to decide whether
the t-test can be applied, and a nonparametric test is
applied if not. This setup will be used in the experi-
mental part of this article.

intervals for it, [16][17], and used to derive rela-
tions between bias and variance of classifiers [18].
The use of some early semiparametric bootstrap
based tests is also discussed in artificial intelligent
related works [3] but, up to our knowledge, recent
bootstrap techniques like the “exponential tilts”
based test, that will be discussed in section 2.1.2,
have not been yet applied to judge the relevance
of the differences between algorithms in the ma-
chine learning literature.

A statistical test is based on a test statistic T ,
which measures the discrepancy between the data
and the null hypothesis H0. If the observed value
of the test statistic is t, then the level of evidence
against H0 is measured by the p-value

p = Pr(T ≥ t | H0). (1)

Bootstrap tests numerically approximate Eq. (1)
from a sample y. The technique is similar to the
method outlined before: we first build R boot-
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strap resamples of the data that fullfill H0. The
test statistic t∗r is evaluated in all of them, and
the fraction of these samples for which this value
is greater or equal than T approximates the de-
sired p-value:

pboost = Pr∗(T ∗ ≥ t | F̂0). (2)

The key difference with the basic bootstrap is in
the selection of the resampling distribution. Since
all bootstrap samples must fulfill H0, the EDF is
not valid, and we must use a suitable null resam-
pling distribution F̂0. The selection of F̂0 is the
main difficulty of the design of a bootstrap test.

2.1 Comparison of two means

We have mentioned that two algorithms are re-
garded as equally precise if their mean test errors
are not significantly different. In the following, let
us suppose we are given two samples containing
the test errors of the two algorithms being com-
pared, (y11, . . . , y1n) and (y21, . . . , y2n), and let H0

be “µ1 = µ2”, where µ1 and µ2 are the means of
the respective populations. We want to test H0

using the test statistic t = y2 − y1, and admit
that the one-sided alternative HA = y2 > y1 is
appropriate.

There exist a wide catalog of semiparametric and
fully non parametric bootstrap tests that can be
applied to this problem. In the next two subsec-
tions, a basic, easy to program test is proposed,
along with a state of the art one.

2.1.1 Nonparametric, Permutation-based

If H0 is true, then the expectation of the differ-
ences is null E(y1−y2) = 0. Therefore, the empir-
ical distribution function is not a valid null resam-
pling model, since y1−y2 6= 0. Following the idea
under some permutation tests [3], we can design
an augmented sample containing the differences
y1 − y2 and its negated values y2 − y1. It is clear
now that the resamples of the augmented sam-
ple fulfill the null hypothesis. The corresponding
test consists in applying Eq. (2) to the sample
obtained by the following algorithm:

For r in 1 . . . R do

1. Build (y∗
1, . . . , y

∗
2·n) by resampling with re-

placement the vector (y11 − y21, . . . , y1n −
y2n, . . . ,−y11 + y21, . . . ,−y1n + y2n)

2. Compute t∗r = y∗

2.1.2 Tilted EDFs based

A better approximation to the problem consists
in defining the null sampling distribution F̂0 by
means of two sets of probabilities (p11, . . . , p1n)
and (p21, . . . , p2n) such that

n∑
i=1

p1iy1i =
n∑

i=1

p2iy2i. (3)

It is clear than samples of data, drawn with
these weights, fulfill H0. Now we select the set
of pki that forms the valid probability distribu-
tion nearest to the EDF, making the Kullback-
Leibler divergence between F̂0 and (1/n, . . . , 1/n)
to be minimum (the selection of the KL diver-
gence leads to the maximum likelihood estimation
of the unknown parameters.) We are posed a con-
strained optimization problem, that can be solved
with the help of three Lagrange multipliers

E =
∑

p1i log(n · p1i)
+ λ(

∑n
i=1 p1iy1i −

∑n
i=1 p2iy2i)

+
∑2

k=1 αk(
∑n

i=1 pki − 1)
(4)

Dropping constant terms and differentiating E
w.r.t. pki we obtain that

log pki + 1 + λpkiyki + α1pki = 0 (5)

and from the constrains
∑

i pki = 0 we obtain that

pki =
∑

yki exp(−λyki)∑
exp(−λyki)

(6)

where λ must be determined numerically, after
combining (3) and (6). These expressions of the
resampling weights are known as exponential tilts
of the empirical distribution function.

The test consists in applying Eq. (2) to the sam-
ple obtained by the algorithm that follows:

For r in 1 . . . R do

1. Build (y∗
11, . . . , y

∗
1n) by resampling with

probabilities (p11, . . . , p1n) the vector
(y11, . . . , y1n)
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2. Build (y∗
21, . . . , y

∗
2n) by resampling with

probabilities (p11, . . . , p1n) the vector
(y21, . . . , y2n)

3. Compute t∗r = y∗
1 − y∗

2

3 Empirical Study

3.1 Synthetical data

To compare the tests been discussed, we need to
use problems and learning methods with known
statistical properties. We have chosen Haykin’s
two gaussians problem [6]. This problem com-
prises two samples of the same size, of two bivari-
ate gaussian distributions with means (0, 0) and
(2, 0) and variances 2I and 4I. The samples are
crafted to have a linear suboptimal solution very
near to the optimal one, which is quadratic.

We will use our tests to assess the difference be-
tween Linear Discriminant Analysis (LDA) and
Quadratic D. A. (QDA) methods, and estimate
the power of a test by counting how many times it
fails to distinguish between LDA and QDA. More-
over, since we know the true distribution that
originated the samples, we can analytically derive
the optimal Bayesian classifier, which is not dif-
ferent in expected error from QDA (it has lower
variance, thus it a better algorithm, but current
experimental designs only look at the mean.) The
number of times a test judges that QDA is differ-
ent than the true optimal classifier, is an estima-
tor of the type I error of the test.

We have studied the influence of the number of
folds in cross validation (10, 50 and 100), the num-
ber of examples in the training set (250 and 500),
the confidence level (0.975, 0.95, 0.90) and the dis-
tance between classes. Two additional problems
were generated by displacing all points in the sec-
ond class 0.25 units to the left (problem “B”) or
0.1 units to the right (problem “C”). The results
are summarized in two Tables: (1) –datasets of
size 250– and (2) –size 500.– The datasets of size
250 are too small, therefore the tests do not have
power values near to 1. Observe the high sen-
sibility of all tests to small displacements in the
data (columns A, B and C.) In this case, boot-
strap tests were better in type I error, and also
the best compromise between power (absence of

false equals between LDA and QDA) and type I
error (presence of false differences between QDA
and the optimum). In Table (2) the effect of the
number of folds is shown. Now, the learning al-
gorithms are given information enough, thus the
estimations of power and error at 95% are near 1
and 0, and improve as cross validation tends to
be a leave-one-out. Again, the presence of not
gaussian distributions confuses parametric tests
(in particular, 5x2cvf, which relies on a F test.)
Bootstrap tests were again the best compromise,
followed by classical tests.

3.2 Benchmark data

In table 3, three fuzzy rule learning algorithms
(Fuzzy Genetic Programming, Fuzzy Adaboost
and Fuzzy Logitboost) and LINear classifiers were
compared to conjugate-gradient trained multi-
layer perceptrons. The letter ’Y’ means that the
algorithm is less accurate than the net, and ’N’
means that there are not significant differences
(α = 0.05.) Observe that, if classical tests are
used, the linear classifier is regarded as equal to
the neural net in 7 of 10 datasets, but bootstrap
tests show that the net was more precise in 8 of
10 sets. The same happens to Fuzzy Adaboost,
which classical tests regarded as similar to the net
4 of 10 times, but only 2 times when bootstrap
tests are used.

4 Concluding Remarks

Previous works combining bootstrap and machine
learning suggested alternatives to cross validation
when estimating the error of an algorithm. But
many benchmark data is already organized into
train and test partitions, thus these alternatives
have not been very used in practice. With this
work, a different approach is proposed: we rec-
ommend the use of certain bootstrap tests as a
direct “plug-in replacement” for t-tests, used in
combination with cross validation. According to
our results, bootstrap tests collect more informa-
tion from the results of an experimentation than
classical tests, thus being less prone to conclude
that two significantly different algorithms are the
same, or, by the contrary, that two similar algo-
rithms are different.
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Problem A Problem B Problem C
0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

Combined classical tests, k-fold cv
10 fold, power 0.16 0.34 0.75 0.71 0.90 1 0.08 0.12 0.28
10 fold, type-I err 0.35 0.38 0.75 0.02 0.05 0.13 0.02 0.03 0.15

5x2cv tests
5x2cv power 0.09 0.21 0.38 0.25 0.44 0.64 0.05 0.08 0.19
5x2cv, type-I err 0.08 0.15 0.26 0.01 0.02 0.03 0.05 0.08 0.14

5x2cvf power 0.37 0.57 0.84 0.76 0.87 1 0.19 0.28 0.61
5x2cvf, type-I err 0.27 0.48 0.72 0.21 0.40 0.65 0.25 0.43 0.70

Bootstrap tests
permutation, 10 fold, power 0.05 0.19 0.50 0.51 0.82 1 0.00 0.01 0.11
permutation, 10 fold, type-I err 0 0 0 0 0 0 0 0 0

tilt, 10 fold, power 0.12 0.34 0.68 0.72 0.90 1 0.01 0.05 0.26
tilt, 10 fold, type-I err 0 0 0 0 0 0 0 0 0

Table 1: Analysis of sensibility of the tests w.r.t the selection of the problem. Problem A is the original one,
problems B and C have less/more overlapped classes, respectively. The power of the tests should be higher in
B, and lower in C, than they are in the original problem “A”. The number of samples is 250, which is small,
therefore the mean error has a high variance and the overall error is high. Conservative tests are best for this
framework. According to our oppinion, the best tests for these problems were the two bootstraps, followed by
5x2cv, by the classical combination t/Wilcoxon and lastly by 5x2cvf, which was too dependant on the normality
of the samples.

10 fold 50 fold 100 fold
0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

Combined classical tests, k-fold cv
power 0.82 0.94 0.99 1 1 1 1 1 1
type-I err 0.04 0.06 0.25 0.00 0.03 0.19 0.03 0.05 0.18

5x2cv tests
power 0.30 0.43 0.62 - - - - - -
type-I err 0.05 0.07 0.20 - - - - - -

power 0.74 0.92 0.99 - - - - - -
type-I err 0.18 0.37 0.60 - - - - - -

Bootstrap tests
permutation, power 0.64 0.91 1 0.85 1 1 0.92 1 1
permutation, type-I err 0 0 0 0 0 0 0 0 0

tilted, power 0.78 0.98 1 0.96 1 1 0.97 1 1
tilted, type-I err 0 0 0 0 0 0 0 0 0

Table 2: Numerical estimations of power and type-I error for all the considered experimental designs. ”Power”
rows show the percentage of times the test detected the linear classifier was different from the quadratic one.
”Type-I Error” show the percentage of times the test was wrong and signaled that the optimal classifier had a
different mean than the quadratic one. The number of different partitions evaluated for each experimental setup
is 100. Tilted boostrap was uniformly better at 90% and 95% levels. Comparing the first column of this table
with the preceding one, the effect of an adequate sample size when drawing conclusions from error data is clear.
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Tilted Bootstrap t + Wilcoxon

Dataset LIN Fuzzy GP Fuzzy ADA Fuzzy LOG LIN Fuzzy GP Fuzzy ADA Fuzzy LOG
aut Y Y Y Y N Y Y Y
bre N Y Y N N Y N N
gls N N Y Y N N N Y
h-h Y Y Y Y N Y Y Y
ion Y Y Y Y N Y Y Y
lym Y N Y Y Y N Y Y
pim Y N N N N N N N
prt Y N N Y Y N N Y

wbcd Y N Y Y N N Y Y
zoo Y Y Y Y Y Y Y Y

Table 3: Assessment of differences in accuracy between a neural network and a selection of algorithms with a
different degree of linguistic interpretability, under bootstrap tests, and under the classical setup. ’Y’ means that
the algorithm is less accurate than the net, and ’N’ means that there are not significant differences (α = 0.05.)
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