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Abstract

We are in the initial stages of the
design of a fuzzy rule-based test-
ing system that can be used by un-
qualified personnel while screening
the children for dyslexia. The main
novelty of our work is the exploita-
tion of low quality data (incomplete
items, intervals, lists, subjective val-
ues, etc.) A sample of infants has
been obtained, and some tests have
been applied to them. In addition,
a psychologist has examined and di-
agnosed each child. We want to re-
late the responses to the tests with
the expert judgement of the profes-
sional, and highlight those factors
that are involved in the early devel-
opment of the dyslexia during the
preschool age. However, this data
being imprecise, we lack tools to as-
sess the quality of each test and its
influence in the diagnosis. We have
used different graphical visualization
techniques, to detect the most use-
ful sets of factors, but have found
that none of the approaches that we
are aware of is able to show all the
relevant information in the sample.
Therefore, we propose a new Multi-
dimensional Scaling algorithm, that
gains a better insight into the spa-
tial properties of the data and also
into the amount of vagueness in the
pieces of information comprising it.

1 Introduction

Dyslexia is a learning disability in people
with normal intellectual coefficient, and with-
out further physical or psychological prob-
lems that can explain such disability. It
has been estimated that between 4% and 5%
of schoolchildren have dislexia, with reading
and writing problems [1]. The average num-
ber of children in a Spanish classroom is 25,
therefore most of them have dyslexic children.
Dyslexia may become apparent in early child-
hood, with difficulty putting together sen-
tences and a family history. Recognition of
the problem is very important in order to give
the infant an appropriate teaching.

Using Soft Computing techniques for diagnos-
ing dyslexia seems to us a natural choice, be-
cause of the properties of our data (linguistic
terms, and vague measurements). As a mat-
ter of fact, there are many references where
fuzzy techniques were used to learn medical
diagnosis models from data (see, for instance,
[18][14][2][12]). In particular, in [5] and [10],
fuzzy techniques have been used in the diag-
nosis of disabilities in language, and in [17]
some different dyslexia related tests were as-
sessed with soft computing-based methods.
However, in all of the preceding works, the
data was crisp or categorical. Instead, most of
our measurements are not crisp. Some of our
responses are linguistic (“low”, “high”), oth-
ers are subjective (for example, the “square-
ness” of a hand-drawn shape) or interval val-
ued (f.e. a dyslexia degree “between 2 and
4”). Lastly, a high percentage of cases have
missing values. None of the preceding ap-



proaches are directly applicable to the prob-
lem at hand.

In previous works [16], we have proposed some
learning algorithms that input a vague train-
ing set and produce a fuzzy rule-based re-
gression model, as we will explain in Section
2. Nevertheless, before we can apply these
new algorithms, we must carry an exploratory
analysis for determining a small subset of in-
puts (we use 413 different tests) that is infor-
mative enough to reproduce the criteria of the
psychologist, or else the system will not have
practical use.

The problem of feature selection in regression
models with linear dependences between the
variables is customary solved with Principal
Component Analysis (PCA) or Factor Analy-
sis. Both techniques have been generalized to
certain types of fuzzy data, see for instance
[6][13]. In addition, nonlinear dependences
between vague data have also been studied.
On the one hand, certain fuzzy feature selec-
tion algorithms that were designed for fuzzy
classifiers can also be applied to regression
problems with fuzzy data [15]. Moreover,
modern approaches like Independent Compo-
nent Analysis (ICA) and Self Organized Maps
(SOM) have fuzzy extensions, but they are in-
tended to improve the robustness when work-
ing with crisp data [8][3]. Other nonlinear
extensions of PCA, like Curvilinear Compo-
nent Analysis (CCA) [11] have not yet been
extended to the fuzzy case. However, these
advanced nonlinear techniques are closely re-
lated to a technique widely used in psychol-
ogy, Multi-Dimensional Scaling (MDS) [9],
that has been recently generalized to the fuzzy
case [7]. We will use and extend this last tech-
nique.

The structure of this work is as follows: In
Section 2 we will review the tests used in
this research, measuring verbal understand-
ing, logic reasoning, memory, and sensory-
motor ability. In Section 3 we introduce the
new graphical model. In Section 4 the results
of applying the new model to our data are
shown. Section 5 concludes the paper.

2 Symptoms and detection of
dyslexia

The dyslexia is a disability that is diagnosed
with the help of some tests, by a psychologist
or specialist dyslexia teacher. In many Span-
ish schools these tests are routinely applied
to children. However, attendance to school
is not mandatory under the age of 6, thus
dyslexic children might not be examined early
enough, unless their parents suspect a prob-
lem. We intend to provide the parents with
an automated tool that can screen for certain
symptoms, suggesting that a professional is
contacted for further diagnosis, if needed. We
want to find those children possibly affected
by dyslexia and also those that, without hav-
ing dyslexia, have learning problems or are
prone to have them in the future.

According to [1], the characteristic signs of
the dyslexia depend on the age of the child.
We are mostly interested in preschool educa-
tion (between ages 4 and 6). These children
are being initiated in reading and writing, but
they can not properly read yet. Therefore,
we can detect a tendency to the dyslexia, but
the symptoms of the disability are not self-
evident and the tests are designed to detect
them. The most significant symptoms have to
see with a slow acquisition of language skills
(failing to remember lists of names, numbers,
alphabet, days of the week, shapes, colours,
etc.), mismatching words with similar pronun-
ciation, limited vocabulary, attention deficit,
hyperactivity and natural ability with techni-
cal toys, i.e., greater manual than linguistic
ability, which typically will show in I.Q. tests.

From ages from 6 to 9 the symptoms begin to
be conspicuous. Reading, writing and calcu-
lus skills are not acquired at the proper rate.
In this case, the tests have to detect the symp-
toms, as before, but they are also intended to
separate those children which actually suffer
from dyslexia from those others for whom the
problem can be related to other causes.

All the tests and evaluation criteria that have
been used in this research are currently being
used in Spanish schools for detecting dyslexia.
In Figure 1 we have included an example of



Figure 1: Example of some of Bender’s tests for detecting dyslexia. Upper part: The angles of
the shape in the right are qualified by a list of adjectives that can contain the words “right,”
“incoherent,” “acceptable,” “regular” and “extra.” Middle and lower part: The relative position
between the figures can be “right and separated,” “right and touching,” “intersecting”, etc.

one of the tasks that the children have to solve
in these tests: copying some geometric draw-
ings. When a child is being evaluated, the
expert has to decide whether the angles, rel-
ative position and other geometrical proper-
ties have been accurately copied or not, choos-
ing between a given set of adjectives. Other
tests produce numbers, or linguistic labels as
“low”, or “very high”. Lastly, we allow the
use to express indifference between different
responses by means of intervals, as in “lower
than 3” or “between 2 and 4”. There are 13
categories of tests, that expand to a total of
413 numerical, categorical and interval-valued
variables.

In this research we have selected a sample of
65 infants between 5 and 8 years old, in ur-
ban schools of Asturias (Spain), and collected
their responses to the tests mentioned before.
Afterwards, the same children were examined
by a psychologist, who assigned each one of
them a subjective score, which is an interval
of values between 0 (normal child) and 4 (high
degree of dyslexia). We remark that we do not
intend to design a classifier, but an interval-
valued regression model, as we can not assume
that the output variable is categorical neither
crisp, i.e., certain children are not assigned
numbers by the psychologist, but ranges of

values. Consequently, the desired output of
our model is an interval of numbers, between 0
and 4, describing the degree of dyslexia. The
width of the interval codifies the confidence
in the prediction, and will be related to the
vagueness of the input: the more vague the in-
put is, the less specific the output of the model
should be. The objective of this paper is to
use soft computing techniques to relate these
measured variables with the expert judgement
of the professional, and highlight those factors
that are involved in the early development of
the dyslexia during the preschool age.

3 Graphical exploratory statistics

In the problem at hand, the data is vague and
there is also a high proportion of missing val-
ues. We need to detect whether the vague-
ness of each instance is too high - thus that
instance should be removed from the train-
ing set. Measures of vagueness are affected
by the scaling of the data. For instance, one
of the tests is assigned a value between 0 and
40, while others produce binary values. If the
data is not scaled, the imprecision in the first
test will be much more noticeable than the
imprecision in the second. In crisp data, we
solve the scaling problem by applying PCA to
the correlation matrix instead of the distance



matrix, but there is not an standard proce-
dure when the data is imprecise.

In this respect, PCA finds projections of max-
imal variability, because the first k principal
components span a subspace containing the
best k-dimensional view of the data. There-
fore, PCA minimizes the sum of the squared
distances between the points and their pro-
jections. Multidimensional scaling (MDS) [9]
generalizes this property, as it projects the in-
stances in a low dimensional Euclidean space
so that their proximity reflects the similarity
of their variables. Fuzzy MDS, as described
in [4][7], in turn generalizes MDS to the case
where the distance matrix comprises intervals
or fuzzy numbers. In this sense, the MDS
map coordinates are the best approximation
we have to the PCA when the data is vague
and there are missing values.

3.1 A new fuzzy-MDS algorithm

MDS also depends on the scaling of the data.
But, having into account that our ultimate
objective is to obtain a fuzzy rule based-
model, this problem can be circumvented.
The main innovation in our algorithm is re-
lated to this problem: we will map the activa-
tion space instead of the input space. That is
to say, we do not consider that two examples
are similar when their coordinates are near in
the space. Instead, we will consider that two
examples are similar when they fire the same
rules of the knowledge base.

Therefore, we propose to modify the Fuzzy
MDS algorithm in [7] and use a new, non-
Euclidean distance measure. This distance
takes into account not only the vagueness,
but also the granularity of the linguistic dis-
cretization used in the fuzzy knowledge base,
and in this sense does not depend on the scal-
ing of the data.

3.1.1 Representation of an instance in
the activation space

We will assume, as most researchers in this
field do, that those fuzzy sets defining the
meaning of each linguistic variable form a
Ruspini’s partition. This means that the

xi

xj

R−ij

R+
ij

Figure 2: The projected data are polygons
defined by the distances Rij in the directions
that pairwise join the examples.

memberships of any crisp value to the ele-
ments of such a partition are conditional prob-
ability distributions. In other words, every
precise observation of a numerical variable can
be matched with a precise probability distri-
bution over its corresponding universe of lin-
guistic labels. For example, if a linguistic
variable has three terms “L”,“M” and “H”,
then we will map every numerical value x0 to
a triplet of membership values. This triplet
can be named (p(L|x0),p(M|x0), p(H|x0)) and
p(L|x)+p(M|x)+p(H|x) = 1 for all x.

We propose that interval-valued observations
are mapped to sets of probabilities. For ex-
ample, an interval [x1, x2] will be mapped to
a set {(p(L|x), p(M|x), p(H|x)) | x ∈ [x1, x2]},
which we will enclose in the imprecise proba-
bility distribution given by the triplet of up-
per probabilities (p∗(L|x), p∗(M|x), p∗(H|x))=
( max
[x1,x2]

p(L|x), max
[x1,x2]

p(M|x), max
[x1,x2]

p(H|x)),

with p∗(L|x)+p∗(M|x)+p∗(H|x) ≥ 1 for all
x. Finally, we propose too that a fuzzy
set with normal membership function X(x)
is represented by the tuple of upper prob-
abilities (maxxX(x) · p(L|x),maxxX(x) ·
p(M|x),maxxX(x) · p(H|x)). Notice that our
representation produces an interval-valued
distance either with interval valued or fuzzy
data, because it depends on the extrema of a
set of distances that are induced by a set of
probability distributions in both cases.
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Figure 3: The distance between the projec-
tions of xi and xj is between dij − R−
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3.1.2 Distance between cases

According to our representation, we define
the distance between two imprecisely mea-
sured multivariate values xi = (xi1, . . . , xif )
and xj = (xj1, . . . , xjf ), with f features
each, where the value of the feature xik

is represented by the imprecise probabilities
(p∗ik1, . . . , p

∗
ikn), as the set of distances

Dij = {
√∑f

k=1

∑n
l=1(pikl − pjkl)2 :∑

l pikl =
∑

l pjkl = 1 for all k
and pikl ≤ p∗ikl, pjkl ≤ p∗jkl for all k, l}.

(1)

The distance between two imprecise objects
(either interval or fuzzy) is an interval, that
can be easily obtained by quadratic program-
ming or approximated by Montecarlo simula-
tion.

3.1.3 Stress function

In [7] the projection of an imprecise case is a
circle. We have found that, in our problem,
this is a too restrictive hypothesis. Instead,
we propose to approximate the shape of the
projections by a polygon (see Figure 2) whose
radii R+

ij and R−
ij are not free variables, but

depend on the distances between the cases.

Let {x1, . . . , xN} be a set of multivariate
imprecise data, let xi be the crisp cen-

terpoint of the imprecise value xi and let
{(z11, . . . , z1r), . . . , (zN1, . . . , zNr)} be a crisp
projection, with dimension r, of that set. We
propose that (see Figure 3 for a graphical ex-
planation):

R+
ij = dij

(
δ+ij
δij
− 1

)
R−

ij = dij

(
δij

δ−ij
− 1

)
(2)

where dij =
√∑r

k=1(zik − zjk)2, δij =
{D(xi, xj)}, δ+ij = max{D(xi, xj)}, and δ−ij =
min{D(xi, xj)}.

Consequently, we propose that the value of
the stress function is
N∑

i=1

N∑
j=i+1

dH(Dij , [dij−R−
ij−R

−
ji, dij+R+

ij+Rji]+)2

(3)
where dH is the Haussdorff distance between
intervals.

4 Experiments

In [4, 7] the Haussdorff distance was not used,
but the average of the differences between the
extrema of the intervals, thus the stress func-
tion can be optimized by quadratic program-
ming (QP). However, the stress function is not
convex (notice, for example, that it is invari-
ant under translations and rotations) and QP
is not guaranteed to find a good solution. Our
stress function function contains the “max”
operator and it is not differentiable. Instead
of using QP, the experiments in this section
were obtained with a real-coded genetic al-
gorithm, where each chromosome contains all
the coordinates zi of a map. Tournament se-
lection, and a mix of uniform and arithmetic
crossover were used. The population size was
100 and the number of generations 1000.

In Figure 4, we have applied some standard
exploratory statistics to the data. Each in-
terval value has been replaced by its center-
point, and categorical data was represented
by numbers. Principal Component Analysis,
Independent Component Analysis and Multi-
dimensional Scaling were evaluated. For scal-
ing the data, the MDS algorithm was applied
to the correlation matrix (therefore the map is
different than that of PCA). The numbers are
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Figure 4: From top to bottom: PCA, ICA
and MDS analysis of the data. Each inter-
val has been replaced by its centerpoint. The
numbers are the mean degree of dyslexia of
the children, from 0 (no dyslexia) to 4.

the mean degree of dyslexia of the children,
from 0 (no dyslexia) to 4. In the three dia-
grams, there is an area where normal children
are concentrated, but there is not a clear de-
pendence between the position of a point and
the dyslexia degree that it represents. It is
also emphasized that these maps do not con-
sider the vagueness of the data.

In Figure 5 we have applied both the algo-
rithm in [4, 7] and the proposal in this paper
to our data. The first algorithm represents
the data as circles. Since the scores of the
tests have different ranges, this map does not
show too useful information. By contrast, the

MDS that we propose here is based on dis-
tances in the activation space (the member-
ships of the data to the linguistic partitions).
Observe that it gains much more insight into
the structure of this data.

In Figure 6, three subsets of 8 features have
been examined. One of them has been ob-
tained by means of a feature selection algo-
rithm based on our own definition of fuzzy
mutual information [15]. A second set has
been obtained with classical techniques (anal-
ysis of variance), replacing the missing data
and the imprecise measurements by crisp
numbers. In the last place, an expert has cho-
sen 8 variables that she considered relevant.

The second map, which is based in classi-
cal techniques, did not take into account the
missing values neither the imprecision. As a
consequence of this, highly imprecise variables
were not avoided and most cases overlap in
the map. Unexpectedly, the set of variables
chosen by the expert has a good separabil-
ity, but it does not produce a clear distinction
between children with and without dyslexia.
Only the first map, using fuzzy Mutual Infor-
mation, has produced reasonable results.

Lastly, in Figure 7, we have studied the influ-
ence of the number of labels in the linguistic
variables in the separability of this last case.
Granularities 3, 5 and 7 were compared over
that feature set obtained by MI. The set of
granularity 5 seems to be a sensible choice,
as the projection of the set of granularity 7
does not significantly improve the separabil-
ity of the data, and 3 labels are not enough
for separating the cases.

5 Concluding remarks

When tackling real-world problems involving
imprecise data, we lack many standard proce-
dures in the work cycle “exploratory analysis -
preprocessing - learning -validation.” In this
work, we have adapted an exploratory tech-
nique to the design of fuzzy rule-based sys-
tems. A new measure of distance, that allows
us to analyze the effect of different granulari-
ties, was introduced, along with a more flexi-
ble representation based on polygons.
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Figure 5: Left: MDS in input space. Right: MDS in activation space. The use of the activation
space instead of the input space gains more insight into the structure of the data, and does not
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Figure 6: Three subsets of 8 variables have been examined. Left: Fuzzy Mutual Information
[15]. Center: Analysis of Variance of linear models, with crisp data. Right: Selection of the most
relevant tests, according to the human expert. The crisp selection did not take into account
the vagueness. The set of variables chosen by the expert does not produce a clear distinction
between children with and without dyslexia. The use of fuzzy IM produced reasonable results.
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Figure 7: Interval MDS in activation space, with granularities 3, 5 and 7, and the feature set
obtained by IM. The projection of the set of granularity 7 does not significantly improve the
separability of the data and 3 labels are not enough for separating the cases, thus the best
granularity is 5.



The next problem we have to solve is the selec-
tion of the most relevant variables. We have
shown that the classical techniques, that dis-
card the imprecision, are not adequate for this
problem. In future works, we intend to ex-
tend the fuzzy MI based algorithm that we
have mentioned in the paper, and derive new
wrapper-type feature selection techniques for
regression models with imprecise data.
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