
On the use of bagging, mutual information-based feature selection and
multicriteria genetic algorithms to design fuzzy rule-based classification

ensembles

Oscar Cordón, Arnaud Quirin and Luciano Sánchez∗†‡

Abstract

In this contribution we explore the combination of bag-
ging with random subspace and two variants of Battiti’s mu-
tual information feature selection methods to design fuzzy
rule-based classification system ensembles. Besides, we
consider a multicriteria genetic algorithm guided by the
training error to select the component classifiers, in order to
look for appropriate accuracy-complexity trade-offs in the
final multiclassifier.

1 Introduction

Classifier ensembles or multiclassifiers have been shown
as very promising tools to improve the performance of sin-
gle classifiers when dealing with complex, high dimen-
sional classification problems in the last few years [1]. This
research topic has become especially active in the classical
machine learning area, considering decision trees or neu-
ral networks to generate the component classifiers, but also
some work has been done using different kinds of fuzzy
classifiers (see [2] for a review). In that previous study, we
described fuzzy rule-based classification systems (FRBCS)
ensembles from classical approaches such as bagging [3]
and random subspace [4] with a basic, heuristic fuzzy clas-
sification rule generation method [5]. We applied a multi-
criteria genetic algorithm (GA) [15] guided by a likelihood
measure for component classifier selection, allowing us to
both improve their accuracy and to make them fit with high
dimensional classification problems.
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The aim of the current contribution is to take a step ahead
on those first developments by paying more attention to
the feature selection process. To do so, we will consider
a more advanced approach than random selection based on
the use of mutual information measures. The classical Bat-
titi’s mutual information feature selection (MIFS) method
[6], a greedy heuristic, and its extension to a greedy ran-
domized adaptive search procedure (GRASP) [7] will be
both considered for the generation of the component FR-
BCSs and compared to simple random subspace, all of them
together with the bagging resampling.

The combination of the latter generation approach and a
multicriteria GA for component classifier selection guided
by the training error will allow us to generate FRBCS en-
sembles with different accuracy-complexity trade-offs in a
single run. The new proposals will be tested on four popular
data sets from the UCI machine learning repository with dif-
ferent characteristics, providing results both with and with-
out the genetic selection stage.

The resulting techniques will thus belong to the ge-
netic fuzzy systems family, one of the most successful
approaches to hybridize fuzzy systems with learning and
adaptation methods in the last fifteen years [8], and will be
quite novel in the fuzzy systems area as no previous pro-
posal considering neither bagging nor joint bagging and
feature selection has been done in the literature up to our
knowledge.

This paper is set up as follows. In the next section, pop-
ular classifier ensemble design approaches are reviewed.
Sec. 3 recalls our approach for designing FRBCS ensem-
bles considering bagging and feature selection, while Sec.
4 describes the proposed GA for component classifiers se-
lection. The experiments developed and their analysis are
shown in Sec. 5. Finally, Sec. 6 collects some concluding
remarks and future research.

2 Background and related work

An ensemble of classifiers (also called a multiclassifier)
is the result of the combination of the outputs of a group of
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individually trained classifiers in order to get a system that
is usually more accurate than any of its single components
[1]. There are different ways to design these ensembles. On
the one hand, there is a classical group of approaches con-
sidering data resampling to obtain different training sets to
derive each individual classifier. In bagging [3], the indi-
vidual classifiers are independently learnt from resampled
training sets (“bags”), which are randomly selected with
replacement from the original training data set. Boosting
methods [9] sequentially generate the individual classifiers
by selecting the training set for each of them based on the
performance of the previous classifier(s) in the series. Op-
posed to bagging, the resampling process gives a higher
probability of selection to the incorrectly predicted exam-
ples by the previous classifiers.

On the other hand, a second group can be found com-
prised by a set of approaches using some alternative ways
to induce the component classifier diversity different from
resampling. Feature selection plays a key role in many of
them where each classifier is derived by considering a dif-
ferent subset of the original features. Random subspace
[4], where each feature subset is randomly generated, is
one of the most representative methods of this kind. Other
generic approaches considering more advanced feature se-
lection strategies are to be found in [10].

Finally, there are some advanced proposals that can be
considered as combinations of the two groups. The most
extended one could be random forests [11], where the indi-
vidual classifiers are decision trees learnt from a resampled
“bag” of examples, a subset of random variables is selected
at each construction step, and the best split for those se-
lected variables is chosen for that node.

The interested reader is referred to [12, 13] for two re-
views for the case of decision tree ensembles (both) and
neural networks (the latter), including exhaustive experi-
mental studies. For a short review on the existing fuzzy
classifier ensemble generation approaches based on bag-
ging, boosting and feature selection, the interested reader
is referred to our previous study [2]. Up to our knowledge,
apart from our proposals in that same contribution, no pre-
vious work has been done on bagging FRBCSs.

3 Bagging and feature selection-based FR-
BCS ensembles

In this section we will both detail how the individual
classifiers and the ensembles are designed.

3.1 Individual FRBCS composition and
design method

The FRBCSs considered in the ensemble will be based
on fuzzy rules Rj with a class Cj and a certainty degree

CFj in the consequent: If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CFj , j = 1, 2, . . . , N , and they will
take their decisions by means of the single-winner method
[5]. To derive the fuzzy knowledge bases, one of the heuris-
tic methods proposed by Ishibuchi et al. in [5] is consid-
ered: Cj is computed as the class h with maximum con-
fidence according to the rule compatible training examples
D(Aj) = {x1, . . . , xm}:

c(Aj ⇒ Class h) = |D(Aj)
T

D(Class h)|
|D(Aj)| =

=
P

p∈Class h µAj
(xp)

Pm
p=1 µAj

(xp) ; h = 1, 2, ..., M ;

CFj is obtained as the difference between the confidence of
the consequent class and the sum of the confidences of the
remainder (called CF IV

j in [5]):

CFj = c(Aj ⇒ Class Cj)−
m∑

h=1;h �=Cj

c(Aj ⇒ Class h).

This method is good for our aim of designing FRBCS en-
sembles since it is simple and quick. However, it carries
two drawbacks: its low accuracy and the generation of large
fuzzy rule bases. We aim to consider more advanced tech-
niques in the future.

3.2 FRBCS ensemble design approaches

In this contribution we are applying a bagging approach
in order to generate FRBCS ensembles. Three different fea-
ture selection methods, random subspace and two variants
of Battiti’s MIFS, greedy and GRASP, are considered.

As said before, random subspace [4] is a method in
which we select randomly a set of features from the orig-
inal data. The greedy Battiti’s MIFS method [6] is based
on a forward greedy search using the Mutual Information
measure [14], with regard to the class. This method selects
the set S of the most informative features about the output
class which cannot be predicted with the already selected
features. The Mutual Information I(C, F ) for a given fea-
ture F is defined as:

I(C, F ) =
∑

c,f

P (c, f) log
P (c, f)

P (c)P (f)
(1)

where P (c), P (f) and P (f) are respectively the values of
the density function for the class and the feature variables,
and the joint probability density. In the MIFS method, we
select as a first feature f , the one that maximizes I(C, f),
and then the features f that maximize Q(f) = I(C, f) −
β

∑
s∈S I(f, s), until S reaches the desired size. β is a

coefficient to set up the penalization on the information
brought by the already selected features.
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The MIFS-GRASP variant is an approach where the set
is generated by iteratively adding features randomly cho-
sen from a Restricted Candidate List (RCL) composed of
the best τ percent decisions according to the Q measure.
Parameter τ is used to control the amount of randomness
injected in the MIFS selection. With τ = 0, we get the
original MIFS method, while with τ = 1, we get the ran-
dom subspace method.

For the bagging approach, the bags are generated with
the same size as the original training set, as commonly done.
In every case, all the classifiers will consider the same fixed
number of features.

In order to keep the interpretability of the generated clas-
sifier ensembles as high as possible, two decisions has been
made. First, no weights will be considered to combine the
outputs of the component classifiers to take the final multi-
classifier decision, but a pure voting approach will be ap-
plied: the ensemble class prediction will directly be the
most voted class in the component classifiers output set.
Besides, a multicriteria GA for classifier selection will be
applied to design the optimal ensemble from the individual
classifiers derived by each of the former approaches.

4 A multicriteria genetic-based classifier en-
semble selection method

We propose to use a multicriteria GA in order to be able
not only to obtain a single solution, i.e., a classifier ensem-
ble composition, but a list of possible ensemble designs,
ranked by their quality (cumulative training error), from a
single chromosome.

This training error is computed as follows. Let
h1(x), h2(x), . . . , hl(x) be the outputs of the component
classifiers of the selected ensemble for an input value x =
(x1, . . . , xn). For a given sample {(xk, Ck)}k∈{1...m}, the
training error of that ensemble is:

1
m

· #{k | Ck �= arg max
j∈{1...M}

hj(xk)}, (2)

Notice that, in our previous study [2], we used the same
GA approach, but considering the likelihood instead of the
training error as the error measure, as it seems to be more
appropriate when basic feature selection methods are used.

The GA looks for an optimal ordering of the compo-
nent classifiers, so that the most relevant classifiers have
the lowest indices and those redundant members that can be
safely discarded are in the last places. The coding scheme is
thus based on an order-based representation, a permutation
Π = {j1, j2, . . . , jl} of the l originally generated individual
classifiers. In this way, each chromosome encodes l differ-
ent solutions to the problem, based on considering a “basic”
ensemble comprised by a single classifier, that one stored

in the first gene; another one composed of two classifiers,
those in the first and the second genes, and so forth.

The degree to which a permutation fulfills this goal is
measured by means of the cumulative training error of the
ensemble, defined as the vector containing the training er-
ror values of the first classifier; the subset formed by the
first and the second; and so on. The fitness function is
thus multicriteria, being composed of an array of l values,
Li = L′

{j1,j2,...,ji}, corresponding to the cumulative train-
ing error of the l mentioned ensemble designs. The best
chromosome is that member in the population with the low-
est minimum cumulative training error. Then, the final de-
sign is the ensemble comprising the classifiers from the first
one to the one having the minimum cumulative training er-
ror value (although any other design not having the optimal
training error but, for example, showing a lowest complex-
ity can also be directly extracted).

Instead of using a Pareto-based approach [15], a lexico-
graphical order is considered to deal with the multicriteria
optimization, since we think it better matches our scenario.
When comparing two chromosomes, one is better than the
other if it takes a better (lower) minimum value of the cu-
mulative training error. In case of tie, the first positions of
the fitness arrays are compared. If both first positions are of
equal value, the second position is compared, and so on.

To increase its convergence rate, the GA works following
a steady-state approach. The initial population is composed
of randomly generated permutations. In each generation,
a tournament selection of size 3 is performed, and the two
winners are crossed over to obtain a single offspring that di-
rectly substitutes the loser. In this study, we have considered
OX crossover and the usual exchange mutation.

5 Experiments and analysis of results

In this section, we discuss the performance obtained by
a single FRBCS, an FRBCS ensemble and a GA-selected
FRBCS ensemble on four selected data sets.

5.1 Experimental setup

To evaluate the performance of the FRBCS ensembles
generated, we have selected four data sets from the UCI
machine learning repository (see Table 1). In order to com-
pare the accuracy of the considered classifiers, we used Di-
etterich’s 5×2-fold cross-validation (5×2-cv) [16]. Three
different granularities, 3, 5 and 7, are tested for the single
FRBCS derivation method, as well as it is run by consid-
ering two different feature sets of size 3 and 5 selected by
means of three approaches: the greedy Battiti’s MIFS filter
feature selection method, the Battiti’s method with GRASP
(with τ equal to 0.25 and 0.5), and random subspace. Bat-
titi’s method has been run by considering a discretization of
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the real-valued attribute domains in ten parts and setting the
β parameter to 0.1.

Table 1. Data sets considered
Data set #attr. #examples #classes

Pima 8 768 2
Glass 9 214 7

Vehicle 18 846 4
Sonar 60 208 2

The FRBCS ensembles generated are initially comprised
by 50 classifiers. The GA for the component classifier se-
lection works with a population of 50 individuals and runs
during 50 generations. The mutation probability considered
is 0.05.

All the experiments have been run in an Intel dual-core
Pentium 2.8 GHz computer with 2 GBytes of memory, un-
der the Linux operating system.

5.2 Single FRBCS vs. bagging + feature
selection FRBCS ensembles

The statistics (5×2-cv error, number of rules and run
time required for each run, expressed in seconds) for the
single FRBCSs are collected in Table 2. The best results
for a given feature selection method are shown in bold, and
the best overall are outlined. Those results for the FRBCS
ensembles of 50 classifiers generated from the four differ-
ent selection approaches considered are shown in Table 3.
There are four blocks in each table for each feature selec-
tion method considered: Battiti’s method (greedy), Battiti’s
method combined with GRASP with 25% of randomness
(GRASP 0.25), GRASP-based Battiti’s method with 50%
of randomness (GRASP 0.50), and the random subspace
method.

As in our previous study [2], the best results were ob-
tained using 5 labels for the smaller problems (pima and
glass), and 7 labels for the largest ones (vehicle and sonar).
We have also demonstrated that a feature selection is always
needed to obtain the best results for the largest problems.
For example, for sonar, the best results without feature se-
lection is 0.250 using 3 labels, that is outperformed by the
GRASP 0.50 selection (0.209 using 5 labels and 0.200 us-
ing 7 labels).

With a single FRBCS, the best results were obtained
with the greedy and the GRASP 0.25 approaches for the
smaller datasets (pima and glass), but with GRASP 0.50
for the largest dataset (sonar), thus confirming the fact that
randomness in the feature selection process is useful when
combined with FRBCSs.

The bagging+feature selection approach is able to give
better or almost the same accuracy than a single FRBCS, but
with a smaller number of rules, for the largest dataset. The

single FRBCS gets a test error of 0.200 using the GRASP
0.50 approach with 7 labels and 3 attributes (best result for
sonar) using 7662 rules, while the bagging+feature selec-
tion approach gets a slightly worst test error of 0.202 using
the same approach, but with only 6895 rules. This confirms
our assumption that bagging is able to give a good accuracy-
complexity trade-off, when combined with a highly random
feature selection approach.

Finally, over all the different feature selection ap-
proaches, for the sonar dataset, the bagging+feature selec-
tion approach allowed a decrease of 2% of the test error,
while reducing by 10% the average size of the individual
classifiers. The best example is produced with the greedy
approach, using 5 labels and 5 attributes, in which the bag-
ging allowed us to get a decrease of 16% of the test error,
while reducing the size of the rule base by a 13%.

5.3 FRBCS ensemble genetic selection

The values for the genetically selected FRBCS ensem-
bles are collected in Table 4. The first conclusion we can
draw is that the GA was able to reduce the best test error for
the first two problems, in comparison with a single classi-
fier, and even the best test error obtained with the FRBCS
ensembles for the glass problem. For the two last prob-
lems, the best test error slightly increases in comparison to
the best FRBCS ensembles (+3% for vehicle and +17% for
sonar), but in comparison with the corresponding approach,
the size of the rule base is dramatically decreased (-71% for
vehicle and -85% for sonar). Using the GA, here again, we
have achieved a good accuracy-complexity trade-off.

In general, the number of selected classifiers is very
small (less than 18 for vehicle and less than 8 for sonar),
while keeping the same order of accuracy than the corre-
sponding full 50 FRBCS ensembles. The GA is even able
to decrease the test error in many cases (for instance, for all
the configurations used with vehicle, but with 7 labels and
5 attributes, and for almost all the configurations used with
sonar with 3 labels and 3 attributes).

In comparison with our previous study (i.e. without a
high quality feature selection method), we are now able to
improve the results obtained in the pima problem (previ-
ously, the best test errors obtained were 0.233 with a single
classifier, 0.253 with an ensemble and 0.244 using the GA):
now, not only an original ensemble, but also a selected en-
semble, are outperforming the previous best results (0.232
for an ensemble generated with the greedy feature selection
method and 0.233 using GRASP with τ = 0.25 and the GA).

In summary, combining bagging and the GA selection
process performs better for high dimensional problems with
a large number of attributes, producing a smaller rule base
while reducing the test errors in some cases, which was our
original goal. Now, combining these two techniques with
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Table 2. Results for the single FRBCSs with feature selection
Greedy

Pima Glass Vehicle Sonar
3 labels 5×2-cv 0.266 0.500 0.582 0.276
3 #attr. #rules 1345 1235 1080 1240

time 1.60 0.83 2.68 4.42

5 labels 5×2-cv 0.233 0.434 0.422 0.283
3 #attr. #rules 3910 3110 2310 3735

time 2.98 1.49 4.18 4.82
7 labels 5×2-cv 0.239 0.490 0.419 0.273
3 #attr. #rules 7770 4905 4005 7005

time 5.05 2.67 7.00 5.30

3 labels 5×2-cv 0.266 0.446 0.549 0.261
5 #attr. #rules 8925 6765 6820 7330

time 7.24 3.39 10.30 5.72

5 labels 5×2-cv 0.246 0.376 0.430 0.287
5 #attr. #rules 34135 14550 21880 30760

time 39.77 25.45 64.92 14.93
7 labels 5×2-cv 0.262 0.414 0.402 0.291
5 #attr. #rules 79985 21560 51045 60915

time 157.21 118.77 307.60 47.78

GRASP τ = 0.25
Pima Glass Vehicle Sonar
0.267 0.496 0.585 0.263
1299 1177 1108 1245
2.01 1.25 3.15 4.89

0.233 0.415 0.465 0.247
3762 2789 2746 3983
3.37 1.86 4.88 5.26

0.238 0.427 0.408 0.229
7454 4348 4845 7655
5.39 3.01 7.95 5.85

0.263 0.448 0.512 0.240
9053 6876 7337 8401
7.92 3.89 11.15 6.41

0.240 0.406 0.407 0.234
34228 15698 26766 35037
40.44 25.60 68.16 15.95
0.251 0.412 0.363 0.231
79319 23718 59619 69140
157.47 118.34 302.83 47.51

GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.315 0.490 0.535 0.259
1248 1178 1186 1230
2.47 1.71 3.59 5.30

0.281 0.481 0.427 0.243
3613 2814 3199 3956
3.71 2.31 5.50 5.67

0.272 0.421 0.373 0.200
7104 4483 5868 7662
5.72 3.41 8.73 6.33

0.271 0.448 0.478 0.229
8770 6768 7893 8538
8.15 4.25 11.74 6.82

0.244 0.410 0.390 0.209
33084 15860 28467 36408
39.90 25.92 69.73 16.62
0.260 0.392 0.337 0.213
76253 24424 62233 71557
155.72 118.56 305.84 49.23

Random Subspace
Pima Glass Vehicle Sonar
0.336 0.517 0.490 0.279
1212 1083 1223 1248
2.89 2.12 4.06 5.74

0.296 0.512 0.414 0.247
3492 2372 3717 4048
4.12 2.68 6.14 6.10

0.283 0.429 0.357 0.213
6750 3754 7330 7882
5.95 3.78 9.61 6.72

0.280 0.445 0.444 0.231
8510 6374 8501 8915
8.58 4.61 12.49 7.29

0.251 0.420 0.375 0.210
32257 14640 34446 39090
39.94 25.97 73.33 17.37

0.260 0.395 0.320 0.204
74369 23009 79232 76650
154.55 117.85 317.42 50.91

Table 3. Results for the FRBCS ensembles
Bagging+Greedy

Pima Glass Vehicle Sonar
5×2-cv 0.265 0.505 0.583 0.252

3 labels #rules 1310 1187 1076 1221
3 #attr. avg. #rules 26.20 23.74 21.52 24.42

time 1.51 0.83 2.66 3.73

5×2-cv 0.229 0.420 0.427 0.250
5 labels #rules 3537 2721 2490 3588
3 #attr. avg. #rules 70.74 54.42 49.79 71.76

time 3.52 2.24 5.09 5.06
5×2-cv 0.236 0.447 0.400 0.236

7 labels #rules 6845 4217 4167 6642
3 #attr. avg. #rules 136.91 84.35 83.34 132.84

time 6.24 4.27 8.83 6.55

5×2-cv 0.265 0.469 0.520 0.244
3 labels #rules 8539 6220 6909 7248
5 #attr. avg. #rules 170.78 124.40 138.17 144.96

time 7.26 3.83 10.86 5.72
5×2-cv 0.232 0.392 0.395 0.241

5 labels #rules 29284 12879 22269 26826
5 #attr. avg. #rules 585.68 257.57 445.38 536.53

time 38.06 26.33 66.61 15.34
5×2-cv 0.246 0.419 0.378 0.262

7 labels #rules 64707 19016 49516 50284
5 #attr. avg. #rules 1294 380.32 990.32 1006

time 153.20 119.91 300.13 46.81

Bagging+GRASP τ = 0.25
Pima Glass Vehicle Sonar
0.265 0.489 0.576 0.250
1276 1156 1112 1219
25.53 23.12 22.25 24.38
2.50 1.80 3.22 3.92

0.232 0.428 0.443 0.237
3458 2613 2731 3738
69.17 52.26 54.62 74.76
4.33 2.82 5.19 5.63

0.236 0.423 0.389 0.217
6665 4044 4791 7045

133.30 80.89 95.81 140.90
6.63 4.38 8.69 6.73

0.267 0.438 0.495 0.233
8544 6355 7331 7953

170.89 127.10 146.62 159.06
8.47 4.53 11.17 6.59

0.238 0.413 0.391 0.217
29525 13828 25220 30345
590.51 276.57 504.40 606.89
38.98 26.08 67.30 16.07
0.247 0.408 0.358 0.239
65087 20223 54596 55234
1302 404.46 1092 1105

148.88 116.56 293.13 46.58

Bagging+GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.285 0.496 0.545 0.258
1243 1130 1154 1205
24.86 22.59 23.09 24.09
4.09 0.50 5.17 3.71

0.252 0.457 0.424 0.238
3358 2509 3085 3683
67.15 50.19 61.70 73.66
6.10 4.75 7.83 7.63

0.249 0.408 0.379 0.202
6361 3796 5533 6895

127.23 75.91 110.66 137.89
8.95 6.71 11.92 9.06

0.275 0.456 0.477 0.212
8318 6159 7744 7952

166.37 123.18 154.89 159.04
10.08 6.33 13.95 8.35
0.247 0.426 0.388 0.220
28646 12968 26780 30721
572.91 259.37 535.61 614.42
40.74 28.33 73.25 18.26
0.253 0.406 0.338 0.229
63845 19050 59027 55449
1277 381.01 1181 1109

154.13 120.95 312.22 50.27

Bagging + Random Subspace
Pima Glass Vehicle Sonar
0.331 0.515 0.487 0.281
1191 1043 1193 1184
23.81 20.87 23.86 23.67
1.27 0.71 1.69 0.77

0.281 0.480 0.424 0.255
3238 2156 3472 3608
64.76 43.13 69.45 72.15
3.12 2.13 4.39 1.96

0.272 0.436 0.370 0.223
6042 3285 6567 6708

120.84 65.69 131.35 134.16
5.55 4.05 8.59 3.38

0.282 0.465 0.458 0.249
8092 5721 8078 8151

161.83 114.43 161.57 163.02
6.70 3.54 10.07 2.72

0.253 0.427 0.374 0.200
27590 12228 30756 31833
551.80 244.56 615.13 636.66
36.15 25.84 71.45 12.72

0.266 0.389 0.331 0.235
61112 17837 66911 57658
1222 356.74 1338 1153

145.77 117.28 309.93 45.06

Table 4. Results for the FRBCS ensembles selected by the GA, using the Training Error fitness
Bagging+Greedy

Pima Glass Vehicle Sonar
5×2-cv 0.255 0.399 0.485 0.238

3 labels #classifiers 3.4 6.6 9.1 12.0
3 #attr. #rules 89.2 154.1 204.3 295.2

avg. #rules 26.2 23.3 22.4 24.7
time 112.03 31.91 125.23 30.01

5×2-cv 0.232 0.378 0.393 0.264
5 labels #classifiers 6.6 10.0 9.3 14.1
3 #attr. #rules 469.9 546.0 494.1 1047.8

avg. #rules 71.0 55.6 52.5 74.6
time 112.44 31.51 124.87 30.04

5×2-cv 0.243 0.406 0.375 0.244
7 labels #classifiers 9.9 9.8 10.1 14.3
3 #attr. #rules 1358.5 824.2 939.1 1989.5

avg. #rules 137.0 84.6 97.1 139.1
time 111.31 31.71 124.57 30.17

5×2-cv 0.255 0.354 0.461 0.244
3 labels #classifiers 3.3 8.8 12.6 10.3
5 #attr. #rules 581.1 1106.9 1856.9 1538.3

avg. #rules 176.4 126.9 144.5 148.3
time 111.35 31.99 125.41 30.23

5×2-cv 0.239 0.373 0.390 0.240
5 labels #classifiers 9.9 10.9 12.7 9.1
5 #attr. #rules 5829.1 2853.7 6082.3 5125.5

avg. #rules 589.7 266.4 481.9 578.9
time 111.93 31.82 124.92 29.99

5×2-cv 0.253 0.398 0.373 0.266
7 labels #classifiers 13.2 11.5 15.5 6.0
5 #attr. #rules 17562.1 4640.3 17500.8 6373.3

avg. #rules 1327.8 417.1 1129.2 1062.1
time 111.95 31.61 124.36 29.84

Bagging+GRASP τ = 0.25
Pima Glass Vehicle Sonar
0.254 0.368 0.460 0.238

5.7 11.1 7.8 15.5
145.2 251.7 179.8 379.3
25.5 22.5 22.9 24.3

111.07 31.41 125.17 30.20
0.233 0.383 0.386 0.256

8.0 18.0 9.9 21.2
555.7 943.1 558.8 1605.9
69.7 52.3 55.8 76.3

110.34 32.10 127.30 30.31
0.239 0.380 0.368 0.253

8.1 13.9 17.1 9.3
1069.3 1146.8 1732.2 1406.9
132.0 83.3 101.5 151.4
111.08 31.49 125.30 30.17

0.251 0.371 0.451 0.222
5.4 9.4 11.8 14.9

938.6 1183.1 1800.0 2433.1
171.0 125.1 153.2 164.8
111.00 31.64 126.91 30.30
0.245 0.373 0.372 0.237
12.7 13.4 12.1 7.2

7435.5 3793.1 6968.9 4658.1
588.3 283.7 581.8 658.5
111.20 31.71 126.06 29.93
0.257 0.393 0.368 0.277
18.3 10.1 13.0 5.1

24337.5 4291.3 18473.0 5968.5
1333.5 435.0 1421.9 1178.1
110.17 31.80 124.62 30.21

Bagging+GRASP τ = 0.50
Pima Glass Vehicle Sonar
0.251 0.356 0.449 0.239

4.8 15.7 11.1 17.5
121.0 355.5 263.9 426.3
25.3 22.5 23.8 24.3

110.90 31.74 126.07 30.31
0.243 0.392 0.389 0.236

9.8 12.6 13.9 18.9
662.5 648.5 876.2 1418.0
67.5 51.4 64.1 75.3

113.66 31.63 124.76 30.10
0.261 0.406 0.363 0.244
11.2 15.9 16.1 10.8

1463.5 1247.8 1925.3 1594.6
130.2 78.5 121.9 150.1

111.77 31.59 125.48 30.25

0.256 0.359 0.427 0.222
5.2 13.2 9.9 15.6

908.1 1612.6 1577.1 2557.6
172.0 122.9 158.9 163.5

111.64 31.99 125.44 30.57
0.249 0.381 0.370 0.247
14.1 12.2 13.6 8.0

8137.4 3354.7 8171.8 5238.0
579.5 277.0 608.6 657.0

111.64 31.45 125.64 29.98
0.263 0.388 0.340 0.299
18.6 12.6 14.8 4.6

23936.1 5061.8 21532.6 5590.5
1288.5 398.9 1470.5 1230.2
110.55 31.69 126.40 29.81

Bagging + Random Subspace
Pima Glass Vehicle Sonar
0.261 0.386 0.435 0.243

3.2 13.5 13.9 18.0
79.5 283.2 337.9 430.2
24.7 21.1 24.4 24.0

111.19 31.56 124.99 30.30
0.247 0.411 0.394 0.240

9.0 13.8 16.7 22.8
597.2 643.7 1216.9 1687.9
65.4 47.2 73.3 73.9

112.41 32.01 125.17 29.44
0.253 0.369 0.360 0.285
10.6 13.7 18.6 11.4

1308.7 968.0 2705.8 1625.3
123.6 71.0 145.6 144.8

111.81 31.59 126.47 30.21

0.258 0.375 0.419 0.221
4.6 10.0 13.4 19.8

751.4 1145.2 2206.6 3267.0
165.2 114.5 166.9 164.4

111.60 31.43 126.38 30.42
0.255 0.379 0.373 0.262
13.8 13.7 15.2 6.8

7737.5 3388.3 10810.5 4540.0
560.0 248.5 716.9 669.4

112.25 31.92 126.78 29.46

0.271 0.389 0.335 0.297
14.8 14.1 20.3 5.5

18787.0 5312.1 31294.8 6732.6
1269.0 383.4 1556.7 1230.4
110.67 31.93 126.42 29.40

an advanced feature selection process improves also the ac-
curacy on the smaller datasets (pima and glass).

6 On the different FRBCS ensembles con-
tained in the best chromosome

Due to the lack of space, we will only show an example
of the multicriteria selection capability. In Fig. 1, a graph-
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ical representation of the training and test error trends of
the 50 ensembles selected by the best chromosome gener-
ated for the sonar dataset, with the bagging+random sub-
space approach and for a granularity of 3 and 5 attributes, is
shown. The chosen solution (the one with the lowest train-
ing error TE=0, with 26 classifiers) is highlighted. Notice
that the ensemble of 9 classifiers has a better test error and is
actually smaller; and how bigger ensembles lead to bigger
training and test errors.

Figure 1. Training and test errors for the 50
ensembles selected by a chromosome

7 Conclusion and future works

We have proposed the use of bagging and feature se-
lection approaches like random subspace and greedy and
GRASP-based Battiti’s methods, together with a training
error-guided multicriteria GA, to design FRBCS ensem-
bles with a good accuracy-complexity trade-off, able to deal
with classification problems with a large number of fea-
tures. The results obtained in some popular data sets of high
dimensions are quite promising.

Now, our future work will be concentrated on larger
datasets (more than 1,000 examples), on the design of more
advanced genetic ensemble selection techniques (for exam-
ple, the use of Pareto-based algorithms), on the design of
ensembles of more powerful FRBCSs, or even on the use of
different/complementary fuzzy classifiers.
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