
A baseline learning genetic fuzzy classifier based on low quality data

Ana M. Palacios1 Luciano Sánchez1 Inés Couso2

1. Departamento de Informática, Universidad de Oviedo, Gijón, Asturias, Spain
2. Departamento de Estadı́stica e I.O. y D.M, Universidad de Oviedo, Gijón, Asturias Spain

Email: apalaciosjimenez@hotmail.com, luciano@uniovi.es, couso@uniovi.es

Abstract— Obtaining fuzzy rules from low quality data is a topic
that has been recently formalized. This paper contains the first appli-
cation of these principles to classification problems. We intend that
the classifier proposed here serves as a baseline for future develop-
ments in the field. For that reason, we have extended a simple crisp
genetic fuzzy classifier to imprecise data, paying special attention to
the computational details. In particular, we will discuss some issues
about the fuzzy-valued fitness function that is used in our formalism.
A synthetic problem, plus two real-world datasets of low and medium
complexities are also proposed, and used to evaluate the algorithm.

1 Introduction
The term “low quality data” refers to datasets where some or
all of the features are imprecisely perceived. It embodies dif-
ferent concepts: censored data, binning, missing values, sig-
nificant digits, confidence intervals, contradictory information
from different sources, fuzzy numbers, linguistic information,
and others.

We are interested in those cases where the imprecision in
the perception of the data is defined by a family of confidence
intervals. This includes most of the preceding situations as
particular cases. For instance, we can model few significant
digits, censored or missing data by means of a single interval
that spans the range of the unknown measure: “the weight of
an object is in [1.1, 1.2]” or “the pressure is lower than 3”. We
can also reconcile different measurements of the same feature
by means of a set of confidence intervals [8]. Certain (but
not all) kinds of fuzzy data can also be regarded as imprecise
perceptions of crisp values, known through a family of α-cuts
[1].

To make clear the extent of this concept, let us recall the sta-
tistical framework of a standard Artificial Intelligence-based
classifier. The purpose of a classifier is to predict the class of
an object, given the values of other properties of the same ob-
ject. To that end, a probability distribution is defined on the
set of objects, and the mentioned properties are assumed to
be random variables. The classifier, in turn, is a decision rule
that depends on the posterior probability of each class, given
a vector of properties.

The algorithms in this paper differ from the standard case
because we do not suppose that we can accurately observe all
the properties of the object. Otherwise, the same assumptions
hold. In the most simple case (interval-valued data) we will
perceive sets that contain these values. In the general case, we
will be given a nested family of sets, each one of them contain-
ing the true value with certain probability. From a theoretical
point of view, we hence understand that low quality data is a
kind of data for which we can not achieve a precise knowl-

edge about the posterior probability distributions induced by
the mentioned random variables, but we can obtain families of
probability distributions that are compatible with them. Ac-
cordingly, the mentioned decision rule can be inconclusive if
the input data is not specific enough.

Recent works in fuzzy statistics suggest using a fuzzy rep-
resentation when the data is known through a family of confi-
dence intervals [1]. This representation assumes that a fuzzy
set can be interpreted as a possibility distribution (which, in
turn, is a family of probability distributions) and each α-cut
of a fuzzy feature is a random set that contains the unknown
crisp value of the feature with probability 1− α. [7, 8].

1.1 GFS and Fuzzy fitness functions

Our particular fuzzy representation of low quality data is tied
to the use of a fuzzy or interval-valued measurement of the
accuracy of a classifier or model. Let us use an example: we
have a classification system, defined by these rules:

if x < 1 then class is A
if x ∈ [1, 2] then class is B
if x > 2 then class is C

(1)

and the input that follows:

x < 1.8 (2)

The output of the classifier is the set of classes {A,B}. If the
object being classified is of class C, we know that the classi-
fier has failed. Otherwise, we cannot know. Nonetheless, we
can use a set-valued variable “number of errors”, and state that
the error of the classifier in that example is the set {0, 1}. The
number of errors of the whole classifier can be obtained by
adding these individual errors with interval arithmetic opera-
tors. If the output of the classifier is a fuzzy set, the number of
errors is a fuzzy number too, and we must use fuzzy arithmetic
[6].

Roughly speaking, estimating a classifier from data requires
a numerical technique that finds the minimum of the classifi-
cation error with respect to the free parameters of the clas-
sifying system. In our case, this function is interval-valued
or fuzzy. But there are not many techniques for optimizing
interval-valued or fuzzy valued functions. In the genetic algo-
rithms field, the solutions are related to precedence operators
between imprecise values [3, 4, 11]. We have previous works
where we have jointly optimized a mix of crisp and fuzzy ob-
jectives with genetic algorithms [7]. We have also proposed a
number of different algorithms for learning regression models
from low quality data and the fuzzy representation mentioned
before [5, 10, 8]. However, to the best of our knowledge there

function GFS
1 Initialize population
2 for iter in {1, . . . , Iterations}
3 for sub in {1, . . . , subPop}
4 Select parents
5 Crossover and mutation
6 assignConsequent(offspring)
7 end for sub
8 Replace the worst subPop individuals
9 assignFitness(population,dataset)
10 end for iter
11 Purge unused rules
return population

Figure 1: Outline of the GFS that will be generalized [2]. Each
chromosome codifies one rule. The fitness of the classifier is
distributed among the rules at each generation.

function assignConsequent(rule)
1 for example in {1, . . . , N}
2 m = membership(Antecedent,example)
3 weight[class[example]] = weight[class[example]] + m
4 end for example
5 mostFrequent = 0
6 for c in {1, . . . , Nc}
7 if (weight[c]>weight[mostFrequent]) then
8 mostFrequent = c
9 end if
10 end for c
11 Consequent = mostFrequent
return rule

Figure 2: The consequent of a rule is not codified in the GA,
but it is assigned the most frequent class label, between those
compatible with the antecedent of the rule [2].

have not been previous GFSs where those principles have been
applied to learn classification problems.

1.2 Summary

The structure of this paper is as follows: in the next section we
generalize the crisp GFS defined in [2] to low quality data. In
Section 3 we evaluate the generalized algorithm in both crisp
and imprecise datasets, and propose two real-world datasets
of classification with imprecise data. The paper finishes with
the concluding remarks, in Section 4.

2 Generalizing a Genetic Fuzzy Classifier to
imprecise data

Generalizing a GFS to imprecise data involves, at the very
least, changes in the inference mechanism and the fitness func-
tion, as we have discussed in [6]. In this section we will gen-
eralize the GFS outlined in Figure 1, which was introduced in
[2]. This is a very compact algorithm that allows us to focus in
the subject of this paper (extending Genetic Fuzzy Classifiers
to imprecise data) without getting lost in the details.

Observe that this algorithm depends on two functions: “as-
signConsequent” (line 6) and “assignFitness” (line 9). These
functions are also listed in Figures 2 and 3. This algorithm
does not codify the consequent of the fuzzy rules in the ge-
netic individual. Instead, the function “assignConsequent”

function assignFitness(population,dataset)
1 for example in {1, . . . , N}
2 winnerRule = 0
3 bestMatch = 0
4 for rule in {1, . . . , M}
5 m = membership(Antecedent[rule],example)
6 if (m>bestMatch) then
7 winnerRule = rule
8 bestMatch = m
9 end if
10 end for rule
11 if (consequent(winnerRule)==class(example)) then
12 fitness[winnerRule] = fitness[winnerRule] + 1
13 end if
14 end for example
return fitness

Figure 3: The fitness of an individual is the number of ex-
amples that it classifies correctly. Single-winner inference is
used, thus at most one rule changes its fitness when the rule
base is evaluated in an example [2].

determines the class label that matches an antecedent with a
maximum confidence. The function “assignFitness,” in turn,
determines the winner rule for each object in the training set
and increments the fitness of the corresponding individual if
its consequent matches the class of the object. In the remain-
der of this section, we will study the impact of the imprecise
knowledge about the independent and dependent variables in
the structure of the rules, and how to extend these two func-
tions. That is to say: we analyze the reasoning method, the as-
signment of the consequents, the computation of a set-valued
fitness and the genetic selection and replacement of the worst
individuals.

2.1 Analysis of the reasoning method

The objective of the extended GFS is to obtain a fuzzy rule
base from objects, when there is imprecise knowledge about
some or all of the attributes of these objects. The set of classes
that is produced when the input value is a fuzzy set can be
computed in some different ways, but not all of them are con-
sistent with our representation of an imprecise value.

Having an imprecise knowledge about the input variables
differs from the standard case because:

1. The output of the FRBS will not be completely deter-
mined.

2. The number of errors of the FRBS in the training data
will be partially known. The same happens if any other
quality function is used instead of the number of errors,
i.e. likelihood, logistic loss functions, etc.

Both issues have been introduced with the crisp classifier com-
mented in the introduction: if the input is a setX that contains
a range of inputs x ∈ X , the output is not a class but a set of
classes:

class(X) = {class(x) | x ∈ X}. (3)

The first difference is apparently a trivial issue: after all, one
of the advantages of fuzzy rules is dealing with imprecision.
Nevertheless, the standard reasoning method does not produce

the set of classes that we need. To make our point clearer, let
us study a fuzzy classifier comprising M rules:

if (x is Ãi) then class is Ci, (4)

and let us use the single-winner inference mechanism:

class(x) = Carg maxi{ eAi(x)}. (5)

Observe that, classifying the set X by means of the standard
mechanism produces the class label that follows:

class’(X) = Carg maxi{min{ eAi(x)|x∈X}} (6)

while we need this set of labels:

class(X) = {Carg maxi{ eAi(x)} | x ∈ X} (7)

which is different than 6. Furthermore, the fuzzy set of classes
obtained when aggregating the rules, before the defuzzifica-
tion stage, is not what we need either, because our set class(X)
does not coincide with the fuzzy setX

C/ max{min{ eAi(x) | x ∈ X}|Ci = C}. (8)

The code we propose to use is included in lines 2–23 in Figure
5, that we will explain later.

It is remarked that, in this paper, each rule will contain a
single consequent. This is a result of our interpretation of “low
quality” as a family of confidence intervals. In words: in this
paper, if a point is labeled as “class {A,C}” we are not stating
that it belongs to both categories at the same time (which is
not an imprecise assert). We are expressing that we are not
sure about the class of the object, i.e. we only know that it is
not in class “B”. Therefore, it makes not sense in this context
to produce a rule with a double consequent, since this rule
necessarily will have non-zero error at any example.

2.2 Assignment of consequents

function assignImpreciseConsequent(rule)
1 for example in {1, . . . , N}
2 em = fuzMembership(Antecedent,example)
3 weight[class[example]] = weight[class[example]] ⊕ em
4 end for example
5 mostFrequent = {1, . . . , Nc}
6 for c in {1, . . . , Nc}
7 for c1 in {c+1, . . . , Nc}
8 if (weight[c] dominates weight[c1]) then
9 mostFrequent = mostFrequent - { c1}
10 end if
11 end for c1

12 end for c
13 Consequent = select(mostFrequent)
return rule

Figure 4: If the examples are imprecise, we might not know
the most frequent class label –lines 5 to 12–. In this paper we
have used the dominance proposed in [4] to reduce this set to
one element.

The assignment of consequents seen in Figure 2 is extended
in Figure 4. The original assigment consists in computing the
confidences of the rules “if (x is Ã) then class is C” for all the

values of “C”, then selecting the alternative with maximum
confidence. In this case, the confidence of a rule is a set of
values. The operation “dominates” used in line 8 can have dif-
ferent meanings, ranging from the strict dominance (A domi-
nates B iff a < b for all a ∈ A, b ∈ B) [11] to other definitions
that induce a total order in the set of confidences. Generally
speaking, we have to select one of the values in the set of non-
dominated confidences and use its corresponding consequent.
In this paper, we have used the uniform dominance defined in
[4], that induces a total order and thus the set of nondominated
consequents has size 1.

2.3 Computation of fitness

function assignImpreciseFitnessApprox(population,dataset)
1 for example in {1, . . . , N}
2 setWinnerRule = ∅
3 for r in {1, . . . , M}
4 dominated = FALSE
5 rule.em = fuzMembership(Antecedent[r],example)
6 for sRule in setWinnerRule
7 if (sRule dominates rule) then
8 dominated = TRUE
9 end if
10 end for sRule
11 if (not dominated) then
12 for sRule in setWinnerRule
13 if (em dominates sRule) then
14 setWinnerRule = setWinnerRule −{ sRule }
15 end if
16 end for sRule
17 setWinnerRule = setWinnerRule ∪{ rule }
18 end if
19 end for r
20 setOfCons= ∅
21 for sRule in setWinnerRule
22 setOfCons= setOfCons ∪{ consequent(rule) }
23 end for sRule
24 deltaFit= 0
25 if ({class(example)} == setOfCons and

size(setOfCons)==1) then
26 deltaFit = {1}
27 else
28 if ({class(example)}∩ setOfCons 6= ∅) then
29 deltaFit = {0, 1}
30 end if
31 end if
32 Select winnerRule ∈ setWinnerRule
33 fitness[winnerRule] = fitness[winnerRule] ⊕ deltaFit
34 end for example
return fitness

Figure 5: Generalization of the function “assignFitness” to
imprecise data. If the example is imprecisely perceived, there
are three ambiguities that must be resolved: (a) some different
crisp values compatible the same example might correspond to
different winner rules –lines 3 to 19—, (b) these rules might
have different consequent, thus we do not know if the rule base
fails in the example –lines 20 to 31– and (c) we must assign
credit to just one of these rules –lines 32 and 33–.

The output of the FRBS at the i-th object of the training set

is a set of classes:

CFRBS(Xi) = {Carg maxj{ eAj(x)} | x ∈ Xi}. (9)

The theoretical expression of the fitness function of the FRBS
is:

fitness =
⊕

ei (10)

where

ei =

 1 CFRBS(Xi) = Ci and #(Ci) = 1
0 CFRBS(Xi) ∩ Ci = ∅
{0, 1} else

(11)

In words, if the output of the FRBS is a single class label that
matches the class label of the example, this point scores 1. If
the set of classes emitted by the FRBS does not intersect with
that of the object, this point scores 0. Otherwise, it scores the
set {0, 1}.

The evaluation of this function is computationally very ex-
pensive, and we will use an approximation, described in Fig-
ure 5. This algorithm computes an interval of values of match-
ing between each rule and the input, then discards all rules that
can not be the winner rule, and approximates the output of the
FRBS by the set of the consequents of the non-discarded rules.
This set includes the theoretical output, but sometimes it also
includes extra class labels. In Figure 6 we have also included
a more accurate approximation which is based on a sample of
values of the support of the input. This second approximation
will be used in the next section to better determine the quality
of a classifier, but our learning will be guided by the function
in Figure 5, because of its lower cost.

2.4 Genetic selection and replacement

There are two other parts in the original algorithm that must be
altered in order to use an imprecise fitness function: (a) the se-
lection of the individuals in [2] is based on a tournament, that
depends on a total order on the set of fitness values. And (b)
the same happens with the removal of the worst individuals.
In both cases, we have used the uniform dominance defined in
[4] to impose such a total order. We leave for future works the
application of a multicriteria genetic algorithm similar to those
used in our previous works in regression modeling [8, 10].

3 Numerical results
This section contains a brief numerical analysis of the gen-
eralized algorithm. We have performed the experiments that
follow:

1. Synthetic datasets: Gaussian distribution, known
Bayesian error, and different amounts of observation er-
ror.

2. Crisp datasets: three standard benchmarks, for testing
that the extended algorithm has the same performance as
the original version in crisp problems.

3. Imprecise, real world datasets: we propose two real
world datasets, of small and medium size. One of them
has been specifically designed for the purpose of this re-
search, and the other is part of a practical problem of
medical diagnosis.

function assignImpreciseFitnessExhaustive(population,dataset)
1 for example in {1, . . . , N}
2 S = sample(example)
3 maxScore = 0
4 for s in S
5 winnerRule = 0
6 bestMatch = 0
7 for rule in {1, . . . , M}
8 m = membership(Antecedent[rule],s)
9 if (m > bestMatch) then
10 winnerRule = rule
11 bestMatch = m
12 end if
13 end for rule
14 if (consequent(winnerRule) == class(example)) then
15 score[winnerRule] = score[winnerRule] ⊕ 1
16 elif (consequent(winnerRule) ⊂ class(example)) then
17 score[winnerRule] = score[winnerRule] ⊕ {0, 1}
18 end if
19 if (max(score[winnerRule]) > max(score[maxScore]))
20 then maxScore = winnerRule
21 end if
22 end for s
23 if (score[maxScore] > 0) then
24 if (score[maxScore] == size(S)) then
25 fitness[maxScore] = fitness[maxScore] ⊕ 1
26 else
27 fitness[maxScore] = fitness[maxScore] ⊕ {0, 1}
28 end if
29 end if
30 end for example
return fitness

Figure 6: Other generalization of the function “assignFitness”
to interval-valued data. This function is computationally too
expensive for being used as a fitness function; it will be used
instead for obtaining better estimations of the train and test
errors of the final rule bases. Lines 14–18 deal with the case
where an object has imprecise output, i.e. “the class is A or
C”; otherwise, the value of the variable “score” is crisp.

All the datasets used in this paper are available in the website
of the KEEL project: http://www.keel.es. All the ex-
periments have been run with a population size of 100, proba-
bilities of crossover and mutation of 0.9 and 0.1, respectively,
and limited to 200 generations. The fuzzy partitions of the la-
bels are uniform and their size is 3, except when mentioned
otherwise.

3.1 Synthetic datasets

The set “Gaussian” comprises 699 points of two classes. The
distribution of both classes is bidimensional Gaussian, with
unity covariance matrix, and centered in (0, 0) and (3, 0) re-
spectively. To this data we have added interval-valued impre-
cision of sizes β = 0.03, 0.05, 0.1, 0.2, 0.5. A 10-cv exper-
imental design was applied, and the mean values of the test
errors are shown in Table 1. The training error has been also
included, to show the differences between the approximation
of the fitness function seen before and the exhaustive compu-
tation that has been used to compute the test error. Observe
that the approximate error computed by the fitness function is
less specific than the actual error, and the difference is relevant

Crisp Low Quality
β Theoretical Train Test Exh. Train Exh. Test Approx. Train
0 0.084 0.083 0.086 [0.086,0.086] [0.082,0.082] [0.086,0.086]

0.03 [0.047,0.086] [0.083,0.094] [0.076,0.091]
0.05 [0.075,0.089] [0.081,0.098] [0.071,0.094]
0.1 [0.070,0.103] [0.068,0.104] [0.076,0,093]
0.2 [0.052,0.116] [0.055,0.128] [0.075,0.089]
0.5 [0.022,0.183] [0.022,0.179] [0.014,0.225]

Table 1: Results of the extended GFS in the synthetic dataset “Gauss” for crisp data (first column) and different degrees of
observation error (second column). The approximate error computed by the fitness function is less specific than the actual
error, and the difference is relevant when the observation error is high (β = 0.2 and β = 0.5, nevertheless it still guides the
evolution correctly.

●

CTrain CTest ITrain ITest

0.1

0.3

0.5

0.7

0.9

Dyslexic 4 labels

Figure 7: Boxplots illustrating the dispersion of the 10 repeti-
tions of crisp and extended GFS in the problem “dyslexia-12”,
with 4 labels/partition. The boxplot of the imprecise experi-
ments is not standard: we show respectively the 75% of the
maximum and 25% percentile of the minimum fitness, thus
the box displays at least the 50% of data; there are two marks
inside the box, because the median of the data is an interval.

when the observation error is high (β = 0.2 and β = 0.5),
nevertheless it still guides the evolution correctly.

3.2 Crisp datasets

Crisp datasets are included for assessing the performance of
the generalized algorithm in standard problems. Since, in this
case, the particularization of the algorithm to crisp data recov-
ers the original algorithm in [2], the results are expected to
be adequate. Nonetheless, we have included some estimations
in Table 2. As expected, the results of both algorithms are
similar; the differences are originated in the different random
seeds.

3.3 Real world datasets

We propose two datasets for testing this and future learning
algorithms with low quality data:

1. Dataset “Screws-50”: 21 objects, 3 classes, 2 features
(weight and length). We have weighed and measured 21
screws of three different types, taking into account the
accuracy of the physical measurement: each feature is
an interval. The class labels are precise. There are not

●

CTrain CTest ITrain ITest

0

0.2

0.4

0.6

0.8

Screws

Figure 8: Boxplots illustrating the dispersion of the 10 repeti-
tions of crisp and extended GFS in the problem “screws-50”.

Iterations

E
rr

or
s

1 50 100 150 200

0.4

0.6

0.8

1

Crisp and Imprecise. Dyslexic

Crisp

Max Imp.

Min Imp.

Figure 9: Compared evolution of crisp and imprecise GFS in
the dataset “dyslexia-12”. The ranges and means of 10 rep-
etitions of the learning are shown, for both the crisp and the
imprecise versions of the algorithm. The upper bound of the
mean imprecise fitness is consistently lower than the mean of
the crisp fitness.

outliers, i.e. 0% of error is attainable in absence of im-
precision.

2. Dataset “Dyslexia-12”: 65 objects, 4 classes, 12 fea-
tures. This is a selection of the original dataset described
in [9], where the 12 most relevant variables have been
hand-picked by a psychologist. There are imprecision in
both the input and the output. The theoretical error is

Crisp Low Quality
Dataset Train Test Exh. Train Exh. Test Approx. Train
Pima 0.254 0.287 [0.258,0.258] [0.288,0.288] [0.258,0.258]
Glass 0.323 0.365 [0.321,0.321] [0.352,0.352] [0.321,0.321]

Haberman 0.239 0.255 [0.238,0.238] [0.248,0.248] [0.238,0.238]

Table 2: Results in some crisp benchmarks, where the imprecise fitness function reduces to the crisp fitness function. The
results of “crisp” and “low quality” columns are similar.

Crisp Low Quality
Dataset Train Test Exh. Train Exh. Test Approx. Train

Screws-50 0.133 0.427 [0.096,0.096] [0.377,0.377] [0.068,0.106]
Dyslexia-12 (4 labels) 0.584 0.724 [0.481, 0.616] [0.541, 0.675] [0.477,0.516]
Dyslexia-12 (5 labels) 0.745 0.658 [0.581,0.667] [0.608,0.641] [0.537,0.549]

Table 3: Means of 10 repetitions of the generalized GFS for the imprecise datasets “Screws-50” and “Dyslexia-12” with 4 and
5 labels/variable

unknown.

We have compared the performance of the generalized algo-
rithm to that of the original crisp algorithm. To that end,
we have built a crisp dataset by removing the uncertainty in
the imprecise dataset: each imprecise measurement was re-
placed by the mid-point of the corresponding interval, and
those examples with imprecision in the independent variable
were replicated for the different options. For instance, a point
(X = [1, 3], C = {A,B}) is converted into two points
(x = 2, c = A), (x = 2, c = B).

We have used a 5x2cv design for the first problem, because
of its small size, and 10cv for the second. The boxplots of
the compared results, in both train and test sets, are depicted
in Figures 7 and 8. Observe that the boxplots of the impre-
cise experiments are not standard. We propose using a box
showing the 75% of the maximum and 25% percentile of the
minimum fitness (thus the box displays at least the 50% of
data) and also drawing two marks inside the box, because the
median of the data is an interval. In Figure 9 the ranges and
means of 10 repetitions of the learning are shown, for both the
crisp and the imprecise versions of the algorithm. The upper
bound of the mean imprecise fitness is consistently lower than
the mean of the crisp fitness.

4 Concluding remarks
Extending a GFS to imprecise data in classification problems
is based on the use of an interval or fuzzy valued fitness func-
tion. Most GFSs can be extended to low quality data if some
changes are made in their reasoning method, and the genetic
algorithm can deal with an imprecisely known fitness func-
tion. We have shown in detail how to apply this changes to
a simple GCCL-type algorithm, and evaluated it with some
synthetic and real-world benchmarks. The numerical results
are as expected for an elementary algorithm like this; there
is room for improvement and future works will address more
complex GFSs that are based on a multicriteria fitness func-
tion.

Acknowledgements
This work was supported by the Spanish Ministry of Ed-
ucation and Science, under grants TIN2008-06681-C06-04,

TIN2007-67418-C03-03, and by Principado de Asturias,
PCTI 2006-2009.

References

[1] Couso, I., Sánchez, L. Higher order models for fuzzy random
variables. Fuzzy Sets and Systems 159: 237–258 (2008)

[2] Ishibuchi, H., Nakashima, T., Murata, T, A fuzzy classifier sys-
tem that generates fuzzy if-then rules for pattern classification
problems. In Proc. of 2nd IEEE International Conference on
Evolutionary Computation, 759-764 (1995)

[3] Koeppen, M., Franke, K., and Nickolay, B., Fuzzy-Pareto-
Dominance driven multi-objective genetic algorithm. in Proc.
10th International Fuzzy Systems Assotiation World Congress
(IFSA), Istanbul, Turkey, 2003: 450–453. (2003)

[4] Limbourg, P., Multi-objective optimization of problems with
epistemic uncertainty. in EMO 2005: 413–427. (2005)

[5] Sánchez, L., Otero, J., Villar, J. R., Boosting of fuzzy mod-
els for high-dimensional imprecise datasets. Proc. IPMU 2006,
Paris, France: 1965–1973. (2006)

[6] Sánchez L., Couso I. Advocating the use of imprecisely ob-
served data in genetic fuzzy systems IEEE Transactions on
Fuzzy Systems 15 (4): 551–562. (2007)

[7] Sánchez, L., Couso, I., Casillas, J. Modelling vague data with
genetic fuzzy systems under a combination of crisp and impre-
cise criteria Proc. 2007 IEEE Symp. on Comp. Int. in Multicri-
teria Decision Making, Honolulu, USA: 30–37. (2007)

[8] Sánchez, L., Couso, I., Casillas, J. Genetic Learning of Fuzzy
Rules based on Low Quality Data. Fuzzy Sets and Systems.
Submitted.

[9] Sánchez, L., Palacios, A., Couso, I., A Minimum Risk Wrap-
per Algorithm for Genetically Selecting Imprecisely Observed
Features, applied to the Early Diagnosis of Dyslexia. Lecture
Notes in Computer Science 5271, 608–615 (2008)

[10] Sánchez, L., Otero, J., Couso, I., Obtaining linguistic fuzzy
rule-based regression models from imprecise data with multi-
objective genetic algorithms. Soft Computing. 13(5): 467–479
(2008)

[11] Teich, J., Pareto-front exploration with uncertain objectives. in
EMO, 2001: 314–328. (2001)

