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Abstract

We extend the notion of confidence
region to fuzzy data, by defining a
pair of fuzzy inner and outer confi-
dence regions. We show the connec-
tion with previous proposals, as well
as with recent studies on hypothesis
testing with low quality data.

Keywords: Confidence region,
Possibility measure, Hypothesis
testing, Fuzzy rough set.

1 Introduction

Imprecise measurements arise very often in
real world problems. Sometimes, this impre-
cision is small enough so that it can be safely
ignored, and other times, it can be modeled
by a probability distribution (e.g. additive
random noise). But there is another kind of
problems where the imprecision is significant,
and a probability distribution is not a natural
model (see [8], for a detailed discussion). In
this paper, we assume that the data set is a
collection of n inputs, each one of them is:

• A set of mutually exclusive values, one of
which is the attribute value of the object
under concern.

• A fuzzy subset of the real line, inter-
preted as a possibility distribution over
the class of possible values for the at-
tribute.

In the recent literature, several inferential
procedures, have been performed to manage
with this kind of imprecise data (see [5, 6, 9],
for instance). In this paper, we generalize the
concept of of confidence region. The most re-
lated precedent in the literature is the notion
of “fuzzy confidence interval” introduced by
Kruse and Meyer in [10]. There, a convex
fuzzy subset of R is assigned to each fuzzy
sample (each collection of n fuzzy numbers).
Such fuzzy confidence interval will contain the
“fuzzy perception” of the parameter θ, with
a certain confidence 1 − α. In our paper, we
will proceed in a different way. We will start
from a specific 1−α confidence interval for the
parameter θ and we will try to express the
available information about such confidence
interval. Such available information will be
imprecise, due to the imprecision in the data
set. Thus, when each one of the n inputs is
a set of values, we will represent the informa-
tion about the confidence intervals by means
of a pair “outer” and “inner” intervals. When,
in a more general setting, each input is rep-
resented by means of a fuzzy subset of pos-
sible values for the attribute, we will repre-
sent the imprecise information about the con-
fidence interval by means of a pair of “inner”
and “outer” fuzzy subsets of the real line.

Furthermore, we will check that the compu-
tation of the “outer” fuzzy region is also re-
lated to the fuzzy confidence interval defined
by Kruse and Meyer, even when the interpre-
tation is totally different. But we will show
that the information provided by such fuzzy
confidence interval is not enough in the de-
cision stage, and that we also need the ad-



ditional information provided by the “inner”
fuzzy region. At the end of the paper, we will
give some guidelines about the way to take
decisions based on this kind of information.

2 Imprecise confidence regions
associated to low quality data

Let X∗ : Ω → R be a random variable
with distribution function F ∗ and let X∗ =
(X∗1 , . . . , X

∗
n) : Ωn → Rn be a simple ran-

dom sample of size n from F ∗ (a collection
of n iid random variables with common dis-
tribution F ∗. They represent n independent
observations of X∗.) Let now the set-valued
mapping Reg : Rn → ℘(R) represent a 1− α-
level confidence interval for a certain unknown
parameter θX∗ of the df F ∗, i.e., let is satisfy
the following restriction:

PθX∗ ({x ∈ Rn : Reg(x) 3 θX∗}) ≥ 1− α.

Let us now assume that we have got imprecise
information about x∗, and such imprecise in-
formation is given by means of a fuzzy subset
of Rn, x̃ ∈ F(Rn). According to the possi-
bilistic interpretation of fuzzy sets1, x̃(x) rep-
resents the possibility grade that the “true”
realization x∗ coincides with the vector x.

We will extend the mapping Reg : Rn → ℘(R)
to the class of fuzzy subsets of Rn. But we will
not apply Zadeh’s Extension Principle. If we
would do so, we would define a mapping from
F(Rn) to F(℘(R)). Instead, we will define two
mappings ÕutReg and ˜InnReg from F(Rn) to
F(R) as follows.

Definition 2.1 We will call the outer fuzzy
confidence region associated to x̃ to the fuzzy
set ÕutReg(x̃) defined as follows:

ÕutReg(x̃)(y) = sup{x̃(x) : Reg(x) 3 y}, ∀ y.
(1)

According to the possibilistic interpretation of
the fuzzy sample x̃, ÕutReg(x̃)(y) will repre-
sent the grade of possibility that x∗ belongs

1We show in [1, 3, 4] some specific situations where
such a membership function is derived from an impre-
cise perception of some x∗.

to the family of samples:

{x ∈ Rn : Reg(x) 3 y}.

In other words, the membership value
ÕutReg(x̃)(y) represents the possibility that
the confidence region determined by x∗ con-
tains y, when our imprecise perception about
x∗ is represented by x̃.

When, in particular, x̃ is a crisp set A ⊆ Rn,
then ÕutReg(A) is the indicator function as-
sociated to the crisp set ∪x∈AReg(x). In fact,
if all we knew about x∗ were that it be-
longs to the crisp set A, then ÕutReg(A) =
∪x∈AReg(x) would be the most committed set
that would contain Reg(x∗) with certainty. So
it is an outer approximation of Reg(x∗).

Let us now consider inner approximations of
Reg(x∗) associated to imprecise perceptions
of x∗.

Definition 2.2 We will call the inner fuzzy
confidence region associated to x̃ to the fuzzy
set ˜InnReg(x̃) defined as follows:

˜InnReg(x̃)(y) = 1− sup{x̃(x) : y 6∈ Reg(x)}.

For an arbitrary y ∈ R, the value
[ ˜InnReg(x̃)]c(y) = 1 − ˜InnReg(x̃)(y) =
sup{x̃(x) : y 6∈ Reg(x)} represents the grade
of possibility that x∗ belongs to the following
family of samples:

{x ∈ Rn : Reg(x) 63 y}.

Thus, according to the duality between pos-
sibility and necessity measures, the member-
ship ˜InnReg(x̃)(y) represents the necessity of
the complementary

{x ∈ Rn : Reg(x) 3 y}.

In other words, ˜InnReg(x̃)(y) represents the
degree of certainty (necessity) that Reg(x∗)
(the “true” confidence region) contains y.

Let us notice that if, in particular, x̃ is a
crisp set A ⊆ Rn, ˜InnReg(A) is the indica-
tor function of the crisp set ∩x∈AReg(x). In
other words, it is the largest set contained in
Reg(x∗) with certainty. So it is an inner ap-
proximation of Reg(x∗).



Example 2.1 We have a container of ap-
ples and we are asked about their expected
weight. We use a scale, but we do not fully
trust the obtained measurement. Let us de-
note the displayed quantity for each apple ω by
d = D(ω). We consider the scales are “under
control” 90% of the time, and in such situa-
tion the measurements are within a 3g error
margin. In the remaining 10% of the time,
the scales are “out of control” and we can
only guarantee an error lower than 15g. Ap-
ples are picked at random from the container,
Ω. Let us denote by x∗ = X∗(ω) the ill-
known quantity describing the (true) weight
of an arbitrary apple ω ∈ Ω. We suppose
that the random variable X∗ is normally dis-
tributed, with know variance σ2 = 100g2 and
unknown expectation, E(X∗) = θ. We want
to provide some confidence-interval informa-
tion about θ, on the basis of a sample of 100
displayed quantities, (d1, . . . , d100). We have
imprecise information about the true weights
x∗ = (x∗1, . . . , x

∗
25) (based on the displayed

quantities and our knowledge about the preci-
sion of the scale). According to [3], we can de-
scribe this information by means of the fuzzy
set x̃ ∈ F(Rn) whose membership is defined
as follows for each x = (x1, . . . , x25):

x̃(x) =



1 if xi ∈ [di − 3, di + 3], ∀ i
0.1 if xi ∈ [di − 15, di + 15], ∀ i,

and xj 6∈ [dj − 3, dj + 3]
for some j

0 otherwise.

Now we will provide the imprecise informa-
tion we have about the 0.95-confidence inter-
val about θX∗ = E(X∗), Reg (x∗) = (x −
3.92, x + 1.96), based on our imprecise infor-
mation about the realization x∗. According
to Equation 1, we will define the fuzzy set
ÕutReg(x̃) as follows:

ÕutReg(x̃)(y) = sup{x̃(x) : y ∈ Reg(x)} =
sup{x̃(x) : y ∈ (x− 3.96, x+ 3.92)} =

1 if y ∈ (d− 6.92, d+ 6.92),
0.1 if y ∈ (d− 18.92, d+ 18.92),

but y 6∈ (d− 6.92, d+ 6.92)
0 otherwise.

As we pointed out at the beginning of this sec-
tion, ÕutReg(x̃)(y) represents the degree of
possibility that y belongs to Reg(x∗).

Similarly, we can define the fuzzy set
˜InnReg(x̃) as follows:

˜InnReg(x̃)(y) = 1− sup{x̃(x) : y 6∈ Reg(x)} =
1 − sup{x̃(x) : y ∈ (−∞, x − 3.92) ∪ (x +
3.92,∞)} ={

0 if y ∈ (−∞, d− 0.92) ∪ (d+ 0.92,∞)
0.0 if y ∈ [d− 0.92, d+ 0.92],

˜InnReg(x̃)(y) represents the degree of cer-
tainty that y belongs to Reg(x∗).

2.1 Relationship with Kruse and
Meyer approach

First of all, we need to recall the notion of
“fuzzy perception” of a parameter in Kruse
and Meyer’s context. According to the last
section, let us denote θX∗ a certain parameter
associated to the df F ∗ of the random variable
X∗ : Ω→ R. Let X̃ denote the fuzzy percep-
tion of X∗ in the sense that, for any random
variable X, X̃(X) denotes the grade of possi-
bility that X coincides with the “true random
variable”, X∗. The fuzzy perception of θX∗ is
the fuzzy set θ̃X̃ defined as follows:

θ̃X̃(y) = sup{X̃(X) : θX = y}.

The membership θ̃X̃(y) represents the grade
of possibility that the true value of the pa-
rameter θX∗ coincides with y. This possibility
degree is calculated on the basis of the vague
perception of X∗, but let us recall that such
uncertainty is not related at all to the idea of
random sample. Let us now recall the defini-
tion of a fuzzy confidence interval introduced
in [10]. The authors say that the convex fuzzy
subset Π ∈ F(R) is a “fuzzy confidence inter-
val” when it satisfies the restrictions

P ({ω ∈ Ω : (θ̃X̃)δ ⊆ Πδ}) ≥ 1−α, ∀ δ ∈ (0, 1).

Let now Reg = (T1, T2) : Rn → ℘(R) denote
a 1 − α-confidence interval for θX∗ based on
a specific realization x∗ and let x̃ denote the



fuzzy perception of x∗. The authors check
that the convex fuzzy set Π(x̃) defined in
Equation 2 satisfies the above definition.

Π(x̃)(y) = sup{δ ∈ [0, 1] : y ∈ (Π1
δ(x̃),Π2

δ(x̃))},
(2)

where Π1
δ(x̃) and Π2

δ(x̃) are defined as follows:

Π1
δ(x̃) = inf{T1(x) : x ∈ x̃δ} and

Π2
δ(x̃) = sup{T2(x) : x ∈ x̃δ}.

When the extremes of the confidence interval,
T1 and T2, are continuous functions from Rn

to R, and the δ-cuts x̃δ are closed, our outer
fuzzy region ÕutReg(x̃) is a convex fuzzy set
and it coincides with Kruse & Meyer’s fuzzy
interval Π(x̃). But our interpretation is not
the same: while they try to cover the im-
precise (fuzzy) perception, θ̃X̃ of the param-
eter θX∗ , we aim to describe the available
imprecise information about the (crisp) con-
fidence region Reg(x∗). Furthermore, Kruse
and Meyer definition does not consider the in-
ner fuzzy region ˜InnReg(x̃). In Section 2.2, we
will show that we need to take it into account,
when we aim to construct “fuzzy tests” (see
[5, 6, 8]) from fuzzy regions.

2.2 Fuzzy tests induced by fuzzy
confidence regions

In classical statistics, we find a strong connec-
tion between the construction of parametric
tests and confidence regions. In this subsec-
tion, we will show how this connection can be
extended to the case of fuzzy imprecise per-
ceptions of the sample. More specifically, we
will show the relation between the inner and
outer fuzzy regions considered in the last sub-
section and the fuzzy tests considered in some
recent papers as [5, 6, 8], for instance.

Let X∗ : Ω→ R be a random variable and let
us state the hypothesis

H0 : θX∗ = θ0 against H1 : θX∗ ∈ Θ1, (3)

where θX∗ is a parameter that depends on
the probability distribution F ∗ induced by
X∗. (The last equation contains, as partic-
ular cases, all one-sided and two-sided para-
metrical tests). Let ϕ : Rn → {0, 1} be a non-
randomized test that represents the decision

rule that will lead to a decision to accept or
reject the null hypothesis. The critical region
associated to ϕ is:

C = {~x ∈ Rn :ϕ(~x) = 1}.

The mapping ϕ is said to be a test with level
of significance α, 0 ≤ α ≤ 1, when

Eθ0(ϕ) = Pθ0(C) ≤ α

Let now Reg : Rn → ℘(R) denote a 1 − α-
confidence region, in the sense that

PθX∗ ({x ∈ Rn : Reg(x) 3 θX∗}) ≥ 1− α.

It is well known that the test ϕReg defined as
follows:

ϕReg(x) =

{
1 if Reg(x) 63 θ0
0 if Reg(x) 3 θ0

(4)

is a test of size α for testing the hypotheses
given in Equation 3.

On the other hand, in some recent papers
([5, 6, 8]) the notion of α-test has been ex-
tended to the case where the sample realiza-
tion x∗ = (x∗1, . . . , x

∗
n) is perceived with im-

precision. Let us recall the construction pro-
posed in those papers.

Let us first suppose that such imprecise per-
ceptions are given by sets mutually exclu-
sive points in Rn. Then, given an α-test
ϕ : Rn → {0, 1}, it seems natural to extend it
to ℘(R) as follows:

ϕ(A) = {ϕ(x) : x ∈ A} =
{1} if ϕ(x) ∈ C, ∀x ∈ A,
{0} if ϕ(x) ∈ Cc, ∀x ∈ A,
{0, 1} otherwise.

(5)

The assignation ϕ(A) = {0, 1}means that our
perception of x∗ is too imprecise and prevents
us to take a clear decision (rejecting (1) or
no rejecting (0)). So we would need further
information to be able to take a decision.

Let us now suppose the more general case
were the imprecise perception of x∗ is repre-
sented by a fuzzy set x̃. Then, according to
Zadeh’s Extension Principle (that extends the



construction proposed in Equation 5) ϕ can
be extended from Rn to F(Rn) (see [5, 6]) as
follows:

ϕ̃(x̃)(1) = sup{x̃(x) :ϕ(x) = 1} and

ϕ̃(x̃)(0) = sup{x̃(x) :ϕ(x) = 0}. (6)

Having into account the possibilistic interpre-
tation of the fuzzy set x̃, ϕ̃(x̃)(1) represents
the possibility that the null hypothesis would
be rejected, had the sample realization x∗

been precisely observed. Similarly, ϕ̃(x̃)(0)
represents the possibility that H0 would not
be rejected, had the data been precisely ob-
served. Equivalently, it is equal to one minus
the necessity of rejection of the null hypothe-
sis.

When, in particular, the crisp test, ϕReg is
derived (according to Equation (4)) from a
confidence region Reg, the associated fuzzy
test, ϕ̃Reg, can be expressed in terms of the
outer and inner fuzzy regions considered in
the last subsection. In fact, we can easily
check that the fuzzy test ϕ̃Reg obtained by ap-
plying Equation (6) to the classical ϕReg can
be alternatively expressed as follows:

ϕ̃Reg(x̃)(0) = ÕutReg(x̃)(θ0)

ϕ̃Reg(x̃)(1) = 1− ˜InnReg(x̃)(θ0)

Note that we need to take into account not
only the outer, but also the inner fuzzy region.
Thus, the information provided by Kruse and
Meyer fuzzy region would not be enough to
take such kind of fuzzy decisions.

Example 2.2 Let us consider again the situ-
ation described in Example 2.1 and let us sup-
pose that the mean of the displayed quantities
has been d = 95g, so the outer and the inner
fuzzy regions are:

ÕutReg(x̃)(y) = sup{x̃(x) : y ∈ Reg(x)} =
1 if y ∈ (88.04, 101.96),
0.1 if y ∈ (78.04, 88.04) ∪ (101.96, 111.96),
0 if y < 78.04 or y > 111.96.

and
˜InnReg(x̃)(y) ={

0.9 if y ∈ (94.08, 95.92),
0 otherwise.

If, for instance, we want to test the null hy-
pothesis H0 : E(X∗) = 95.5 against H1 :
E(X∗) 6= 95.5, the fuzzy test associated to the
above fuzzy confidence regions is the following
fuzzy subset of {0, 1}:

ϕ̃Reg(x̃)(0) = ÕutReg(x̃)(95.5) = 1

ϕ̃Reg(x̃)(1) = 1− ˜InnReg(x̃)(95.5) = 0.1.

To clarify our approach a bit more, let us
modify a bit this example. Let us now sup-
pose that the scales are always under control,
so we know with certainty that the sample of
the 25 true weights x∗ falls into the rectan-
gle A = Π25

i=1[di − 3, di + 3]. In such a case,
the outer and the inner confidence regions are
respectively the crisp sets:

OutReg(A) = (88.04, 101.96)

and
InnReg(A) = (94.08, 95.98).

In that case, if we wanted to to test again
the null hypothesis H0 : E(X∗) = 95.5
against H1 : E(X∗) 6= 95.5, the imprecise
test ϕReg(A) would return the crisp set {0, 1}.
So, we would not be able to take any de-
cision (reject/no reject), due the scales im-
precision. But if, for instance, we test the
null hypothesis H0 : E(X∗) = 96 against
H1 : E(X∗) 6= 96, then our imprecise test
would be informative enough to reject the null
hypothesis. (The imprecise test would return
the set {1}). Notice that we have made use
of our knowledge about the inner confidence
interval InnReg(A) = (94.08, 95.98) to make
such distinction between both situations.

3 Concluding remarks and future
work

We have extended the notion of confidence re-
gion of a parameter to the case where the sam-
ple is a collection of n crisp or fuzzy subsets



of the real line. We suppose that each (fuzzy)
subset represents some imprecisely observed
quantity, interpreted as a possibility distribu-
tion (when the subset is crisp, such possibility
distribution is 0-1 valued). We have defined a
pair of inner and outer (fuzzy) confidence re-
gions that represent our knowledge about the
confidence region determined by the “true”
sample, and they remind us to the concept
of (fuzzy) upper and lower approximations in
rough set theory. In a future, we will try to
check whether these outer and inner regions
can be expressed as upper and lower fuzzy-
rough-set approximations associated to some
similarity relation [7] or if, at least, they can
be integrated into a broader context described
in [2], where the similarity relation is non-
transitive.

The fuzzy tests considered in Section 2.2 de-
fine “fuzzy decisions”. In the case where a
crisp decision is absolutely needed, these fuzzy
subsets may be defuzzified. In [6] the follow-
ing defuzzification is proposed: the null hy-
pothesis is rejected whenever the possibility
of rejection is greater than the possibility of
nonrejection (φ̃(x̃)(1) > (φ̃(x̃)(0)). In [5], we
propose an alternative defuzzification. It is
based on an interval-valued assignation for the
critical level. Such defuzzification of the fuzzy
p-value makes sense within the theory of Im-
precise Probabilities [11], in accordance with
the possibilistic interpretation of fuzzy ran-
dom variables developed in [4]. In a expanded
version of the paper, we plan to formalize the
way that such defuzzifications transform our
pair of fuzzy inner and outer regions into a
pair of crisp regions, and how the new crisp
regions can be interpreted in both cases.
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