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Abstract

The evaluation of the fitness function in ge-
netic fuzzy systems with low quality data is
a costly process, and this conditions the ap-
plicability of this technique to large datasets.
Nevertheless, we have observed that, in many
practical cases, a few instances are responsi-
ble for the main part of the dispersion of the
fitness function.

In this paper we propose a new technique for
coevolving a FRBS and a list containing the
less informative instances in the dataset. We
guide the learning with an approximate fit-
ness, that combines a crisp component with
an estimation of the dispersion of the fitness
value, obtained from the mentioned subset of
instances.

1 Introduction

Obtaining Fuzzy Rule Based Systems (FRBS) from
low quality data with Genetic Algorithms (GA) dif-
fers from the crisp case [2] on the use of a fuzzy fitness
function [16], and on an order structure defined in the
set of images of this function, that allows us to com-
pare two FRBSs [9, 11, 18]. Nonstandard GAs are
also used; a modified scalar genetic algorithm can find
the primal element of this order, or an adapted multi-
criteria algorithm can retrieve a set of nondominated
individuals [8, 17].

At the root of this search, we need to know the er-
ror of each candidate FRBS in the population, for
any selection of the input data which is compatible
with our set of imprecise measurements [16]. If our
dataset is interval-valued, we need to obtain the ex-
trema of the error of the model for each instance, when
their inputs are box-constrained to the corresponding
interval-valued data. The interval arithmetic-based

sum of these couples of bounds is regarded as an im-
precise perception of the quality of the FRBS at this
instance [3]. Else, if our data is fuzzy, these bounds
must be produced for each α-cut of the data, and fuzzy
arithmetic is used to compute the fuzzy fitness of the
FRBS.

There are some difficulties that limit the applicability
of this schema. Obtaining the bounds of the error of a
model in an interval is a costly computational problem
unless these extrema are known to be in the boundary
of the region [15]. Since, generally speaking, the er-
ror of the FRBS will not be monotonic, it is expected
that this stage will consume a large part of the learning
time, precluding the application of this kind of algo-
rithms to large datasets. That is the reason why, in
this paper, we try to overcome this limitation by ex-
ploiting certain characteristics of the fitness function.

Let us introduce our idea with an example. In Figure
1 we have plotted the decision surface of a classifier,
whose error we want to evaluate. The squares rep-
resent imprecise measurements of objects; that is to
say, the actual measurements could be anywhere in-
side each square. Observe that, in the worst case, the
error of this classifier can be as high as 3/15. In the
best case it is 0. Observe also that the vagueness of the
error of the classifier in the figure depends only on the
three instances that have been marked: from a com-
putational point of view, there is no need for obtaining
the bounds of the value of the decision function at the
12 intervals that do not intersect the decision surface.
We might as well compute the decision function at the
centerpoint of each square except at the three “con-
flicting” instances, where we must launch that costly
optimization algorithm we have just mentioned.

Let us introduce now the regression case with a second
example. Observe the graph in Figure 2. In this case,
all instances (A, B and C) would contribute to the
vagueness of the fitness. But we can replace the output
of the model in A and C by the output in the midpoints
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Figure 1: The vagueness in the estimation of the clas-
sification error is caused by the three marked elements.

of these intervals, without introducing large errors. In
this case, we say that the less informative instance is
B.
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Figure 2: Most of the vagueness in the estimation of
the regression error will depend on the instance ’B’.

The rationale of this work is, therefore: when learn-
ing FRBSs from low quality data, we can save most
of the computing time if we replace each imprecise in-
stance by a crisp value in all but the less informative
instances. If we identify these points then we can di-
vide the fitness computation into two parts: fuzzy (or
interval) values at these instances, and crisp values at
the remaining part of the dataset.

The remaining part of the paper is devoted to define
a GA that coevolves a population of FRBSs and the
mentioned set of instances (Section 2), thus solving at
the same time two problems: the learning of a FRBS
from vague data, and the detection of the instances of
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Figure 3: Interval optimization: f−(x) ≤ f(x) ≤
f+(x). f− and f+ are known, but f is not. Hence,
the minimum of f cannot be known; at the most we
can bound the values of x and f(x) at the minimum.

data that contribute the most to the variability of the
fitness function. In Section 3 we provide compared nu-
merical results. The paper finishes with the concluding
remarks in Section 4.

2 A proposal of coevolutionary
learning of FRBS from vague data

The objective of this work is to learn a FRBS from
a dataset whose input values are imprecise. In
the following, we will use an interval valued dataset
{(A1, y1), (A2, y2), . . . , (An, yn)}, Ai ⊂ Rn. In turn,
we will assume that a FRBS is completely defined by
a vector of real parameters x. We will denote the out-
put of the FRBS, given a crisp input t, by Fx(t), with
Fx : Rn → R. The error of the FRBS in the men-
tioned dataset will be denoted by f(x), and this func-
tion is unknown, but we are given a couple of functions
f− and f+ (see Figure 3),

f−(x) =
∑

i=1...N

min
t∈Ai

||Fx(t)− yi||

f+(x) =
∑

i=1...N

max
t∈Ai

||Fx(t)− yi||

where f−(x) ≤ f(x) ≤ f+(x) for all x.

The objective of the learning is obtaining the param-
eter vector x∗ that minimizes the error. Observe in



Figure 3 that the most we can know about the value of
the objective function in the minimum, f(x∗), is that
it is in the segment we have labelled “Best bounds
of f(x∗)”. In turn, x∗ is in the area marked “Best
bounds of x∗”. Observe also that the actual value of
x∗ is not related to the minimum of f− neither f+:
we just know that it cannot be out of the mentioned
region.

Alternatively, this can be expressed by defining a par-
tial order between fitness values as follows:

[a, b] ≺ [c, d] ⇐⇒ b ≤ c. (1)

If the fitness of the individual x is the interval
[f−(x), f+(x)] then the best bounds of x∗ coincide
with the set of all nondominated values of x under
that order. This alternative expression is the basis of
the use of multicriteria genetic algorithms for learning
FRBS with low quality data; those algorithms pro-
duce sets of individuals contained in the “Best bounds
of x∗” [17].

Let us introduce now the approximation mentioned in
the introduction: let A be the subset of {A1, . . . , An}
containing the less informative input intervals. In this
paper we want to approximate the fitness function
[f−, f+] by the pair of functions

g−(x) =
∑

Ai∈A− mint∈Ai ||Fx(t)− yi||
+

∑
Ai 6∈A− ||Fx(mid(Ai))− yi||

(2)

g+(x) =
∑

Ai∈A+ maxt∈Ai ||Fx(t)− yi||
+

∑
Ai 6∈A+ ||Fx(mid(Ai))− yi||

(3)

whereA = A−∪A+ and mid(A) is the center of gravity
of the interval A.

We propose to obtain the three unknowns (A−, A+

and also the best FRBS) at the same time, with a
coevolutionay algorithm based on three populations.
The first population contains different model candi-
dates (each individual will represent a model, Pitts
style [7]), and the other two codify the sets A− and
A+, respectively. In these two last populations, each
individual represents one point in the sample, and the
whole population is the solution (cooperative approach
[6]). In the sections that follow we describe this algo-
rithm in detail, detailing the representation of an indi-
vidual, the fitness function, the coevolutionary scheme
and the genetic operators.

2.1 Representation of an individual

For representing the individuals in the first population
we will use the same representation that was defined
in [18], that we will not repeat here because of space
reasons: DNF rules and a single chromosome with bi-
nary codification for representing the linguistic terms

and real coding of the weights. Observe that will not
evolve the membership functions, but assign weights
to the rules instead [5].

The second population codify as a whole the set A−
and also the points of these intervals where the error of
the FRBS is minimum. An individual is a pair com-
prising the index s of an interval, As ∈ A−, and a
point ts ∈ As. We have coded this pair with an in-
teger and a real-coded number (s, δ), where δ(ts) =
(ts − t−s )/(t+s − t−s ).

For instance, if we are given a dataset formed by two
imprecise tuples {(A1 = [0, 3] × [1, 2] × [3, 4], y1 =
1), (A2 = [3, 4] × [1, 1] × [3, 3], y2 = 2)}, the list
{1, (0.5, 1, 0.25)} is a valid individual, and it represents
a point (1.5, 2, 3.25) ∈ [0, 3] × [1, 2] × [3, 4]. The pres-
ence of this individual in the second population means
that A1 ∈ A−. The codification of the third popula-
tion is similar.

2.2 Fitness function

The fitness of an individual x in the first population
is the interval [g−(x), g+(x)], defined in eqs. (2) and
(3). For regression problems,

||Fx(t)− y|| = (Fx(t)− y)2 (4)

and for classification problems

||Fx(t)− y|| =

{
1 if FRBS(t) = yi

0 otherwise .
(5)

The fitness of an individual in the first population
depends on the other two populations, as follows. Let
M be the size of populations 2 and 3, let s−j be the
first part of j-th element of population 2, and let
t−j be the value encoded in the second part of the
same element. Similarly, let s+j and t+j be the first
and second part of an element of the third popula-
tion. Therefore, A− = {As−j

| j = 1, . . .M} and

A+ = {As+
j
| j = 1, . . .M}. Then the fitness of an

individual x is the interval [g−(x), g+(x)] defined as
follows:

g−(x) =
∑M

j=1 ||Fx(t−j )− ys−j
||

+
∑
{i|Ai 6∈A−} ||Fx(mid(Ai))− yi||

(6)

g+(x) =
∑M

j=1 ||Fx(t+j )− ys+
j
||

+
∑
{i|Ai 6∈A+} ||Fx(mid(Ai))− yi||.

(7)

The fitness value of an individual in the second or the
third last two populations is, respectively, the gain or
loss in the lower and upper bounds of the error of the
elite model, when the point contained in the individual



Figure 4: Example run of the GA: Bounds of the er-
ror of the best model in the first population when the
second and third populations evolve

is replaced by the middlepoint of As (where s is the
index codified in the individual, as mentioned); that
is to say, the fitness of the j-th element of the second
and third populations are

fitj1 = −||FRBSelite(t−j )− ys−j
||

+||FRBSelite(mid(As−j
))− ys−j

|| (8)

and

fitj2 = ||FRBSelite(t+j )− ys+
j
||

−||FRBSelite(mid(As+
j

))− ys+
j
||. (9)

With this definition, the sum of the fitness values of
all the individuals in the population equals the dif-
ference between the error on the sample comprising
the midpoints of the interval-valued training set and
the error commited when A− and A+ are codified by
populations 2 and 3. The genetic evolution produces,
therefore, a cooperative behavior and the populations
evolve to encode sets of values with respectively lower
and higher errors (see Figure 4 for an actual plot of the
bounds of the error of the best model in the first popu-
lation when the second and third populations evolve).

It is remarked that, in case that an index appears more
than once in the same population, the fitness values of
all the individuals but the best one must be set to zero,
or else the sum of the fitness values is no longer the
mentioned difference.

2.3 Coevolutionary scheme

The coevolutionary scheme is as follows:

1. The three populations are initialized with random
values.

2. Repeat steps 3 to 9, G1 times:

3. The fitness of individuals in the first
population are computed

4. The first population is ranked by means of a
precedence operator between intervals [9]. The elite
is copied apart. Tournament selection, crossover and
mutation are performed in this population, and the
offspring is inserted in place of the worst individuals
in the tournament.

5. Repeat steps 6 to 9, G2 times:

6. Evaluate the fitness of population 2
7. Evaluate the fitness of population 3
8. Assign fitness 0 to duplicates in pop. 2 and 3
9. Crossover and mutation are performed in

these last two populations, and the offspring is
inserted back in place (steady state).

2.4 Genetic operators

All algorithms are steady state and based in a tour-
nament selection. The offspring of the winners of the
tournament replace the last two elements of the tour-
nament, whose length is used to control the selective
pressure.

Standard two-point crossover and mutation are used in
the first population. The application of the crossover
operator is followed by a Lamarckian local search
(Nelder and Mead’s algorithm) with certain probabil-
ity.

The other two populations need custom operators; two
individuals (s1, δ1) and (s2, δ2) are crossed as follows:

• If s1 = s2, we do an arithmetic crossover between
δ1 and δ2 [10].

• If s1 6= s2, we insert a copy of the best individual
and randomly generate the other.

3 Numerical results

This section contains the initial results of the algo-
rithm, when applied to synthetic problems. There are
two categories of datasets that should be suitable for
a method like this:

1. Data for which the classification rules can be ex-
pressed with a compact rulebase: low to moderate
number of features, not too complex decision sur-
face.

2. Low quality data: censoring, interval valued and
missing features in the data.

To comply with our first requirement, we have built
a FRBS comprising 9 rules in a problem with two



Crisp Interval
Linear Quadratic Neural KNN WM ISH PM FRBS FRBS

censored - 100 0.492 0.478 0.460 0.448 0.448 0.488 0.478 0.478 0.424
censored - 1000 0.421 0.414 0.424 0.437 0.409 0.413 0.474 0.403 0.402
interval - 100 0.554 0.478 0.490 0.506 0.460 0.478 0.458 0.442 0.432
interval - 1000 0.394 0.397 0.402 0.416 0.450 0.393 0.424 0.351 0.346
missing - 100 0.408 0.372 0.426 0.376 0.364 0.328 0.518 0.330 0.372
missing - 1000 0.416 0.445 0.412 0.461 0.470 0.426 0.456 0.415 0.401

Table 1: Numerical results: Crisp algorithms (LDA and QDA discriminant analysis [4], multilayer perceptron,
KNN classifier, Chi [1], Ishibuchi [5], Pal-Mandal [13] and FRBS [12] were compared to Interval-FRBS. The best
test results are boldfaced.
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Figure 5: Boxplots showing the dispersion of the results in Figure 1. Censored data (a), interval valued data (c)
and missing data (c). The algorithms being compared are in the same order as they appear in Figure 1.

inputs between 0 and 1, and two classes. Since we
know the distribution of the population, we have gen-
erated datasets whose Bayes error is also known, and
for which there exists a FRBS which is the optimal
solution. Two datasets of sizes 100 and 1000 were
generated.

The second requirement has been fulfilled by adding
imprecision to these datasets. We have considered
three different categories of imprecision:

1. Censoring: in the 50% of cases, the training data
xs is replaced by the interval [0, xs]. The other
cases were replaced by the interval [xs, 1].

2. Interval valued data: each training data is re-
placed by the interval [xs, xs + 0.4]. or [xs, 1] if
xs + 0.4 > 1

3. Missing values: 40% of the points in the train-
ing set had one of their features replaced by the
interval [0, 1].

These three additions were performed for both
datasets, giving the six problems we will use in this
section. Other details of the experimental setup are:
each experiment has been repeated 10 times, with a
5x2cv experimental design. The size of the first ge-
netic population is 50. Second and third populations
have sizes 100 or 1000, depending on the dataset. The
number of generations G1 is 50 and G2 is 5 (see Sec-
tion 2.3). The probabilities of crossover and mutation
in the first population are 0.7 and 0.1, and the proba-
bility of crossover in the second and third populations
are equal to 0.9. The probability of the local search is
0.25. The tournament size is 5.

For crisp algorithms (LDA and QDA discriminant
analysis [4], multilayer perceptron, KNN classifier, Chi
[1], Ishibuchi [5], Pal-Mandal [13] and FRBS [12]), we
replaced each interval by its midpoint. We expect that
our approach performs the best in all the cases we
selected, and also that the final populations 2 and 3
contain the less informative points for the classifier
(i.e., those points that, if removed, reduce the most



the width of the interval of likelihoods of the model).

The mean value of the test results are shown in Table
1, and the boxplots depicting the relevance of the dif-
ferences are displayed in Figure 5. We have obtained
the expected results in all cases but one (40% of miss-
ing data, datasets of size 100), where the crisp version
of the same algorithm improved the results. At the
sight of these preliminary results, we think that this
algorithm is a promising new technique for exploiting
interval data in rule-based classification problems.

4 Concluding remarks

In this paper we have tried a different approach for
obtaining linguistically understandable classifiers from
interval-valued data. We have defined a coevolution-
ary scheme able to search in parallel for the best set
of rules, and for the two selections of the training set
where the lowest and highest errors are reached. These
two bounds are used to find a model which is not dom-
inated by other models, and that results in a robust
estimation under vague input data. We have checked,
with an ad-hoc dataset, that this approach is able to
obtain better models than some statistical and fuzzy
classifiers, if the conditions are appropriate.
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