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Abstract— When there is a substantial difference between the
number of cases of the majority and minority classes, minimum
error-based classification systems tend to overlook these last
instances. This can be corrected either by preprocessing the
dataset or by altering the objective function of the classifier.
In this paper we analyze the first approach, in the context of
genetic fuzzy systems (GFS), and in particular of those that can
operate with imprecisely observed and low quality data. We will
analyze the different preprocessing mechanisms of imbalanced
datasets and will show the necessity of extending these for
solving those problems where the data is both imprecise and im-
balanced. In addition, we include a comprehensive description
of a new algorithm, able to preprocess imprecise imbalanced
datasets. Several real-world datasets are used to evaluate the
proposal.

I. INTRODUCTION

Most classifiers designed for minimizing the global error
rate perform poorly in imbalanced datasets [17], [31]. This
is because the minimum error Bayes rule does not equalize
the misclassification rate for the different classes unless their
sizes are similar. Conversely, the method of choice for these
last problems is based on the minimum risk Bayes rule.
Alternatively, we can preprocess the dataset and lower the
differences between the majority and minority classes.

Genetic Fuzzy Systems (GFSs) are not an exception to
this behavior. For using a GFS with an imbalanced dataset,
either we can alter the fitness function by including a cost
matrix [27] or we can preprocess the data. Both techniques
have already been studied in the context of GFSs: there
are works that deal with the use of fuzzy classifiers for
the imbalanced dataset problem [10], [34], [36], [37], [41],
and others that employ a preprocessing step in order to
balance the training data before the training, which has been
shown to solve the problem [1], [12], [13], [14], [15]. In
particular, there is an study in [12] about the combination
of imbalanced classes in the framework of FRBS and the
application of a re-sampling procedure named “Synthetic
Minority Oversampling Technique” or SMOTE [2].

Notwithstanding, the learning of Fuzzy Rule-based Sys-
tems (FRBSs) from datasets that are both imprecisely per-
ceived and imbalanced has not yet been addressed from
the perspective of the preprocessing of the training data.
Therefore, we are chiefly interested in mechanisms for
preprocessing these low quality imbalanced dataset and the
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effect caused in the GFS once the data is balanced. It is
remarked that the GFSs that we will evaluate are based on our
prior work, where we extended the Genetic Fuzzy Classifiers
to the use of low quality data [26], [28], [29]. We want
also to make clear that there are certain difficulties in this
extension. A crisp dataset is imbalanced when the sizes of its
classes are much different, and we can estimate these sizes
from the data in the training set. On the contrary, a fuzzy
dataset may have imprecision in the perception of the classes
of the objects, thus these percentages are not completely
known. Furthermore, a low specificity in the output variable
easily leads to an imbalanced dataset, as we will show in the
sections that follow.

We have chosen to base our preprocessing stage on the
aforementioned SMOTE algorithm. In turn, for extending
SMOTE to fuzzy data we have taken into account the fuzzy
arithmetic operators reviewed in [4] and [8], and different
rankings of fuzzy numbers. Ranking methods play a crucial
role in this work; beginning with [18], [19], where the
concept was first introduced for ordering fuzzy numbers,
ranking or comparing fuzzy numbers has now many different
interpretations; in this paper we will focus on the centroid
index ranking method [6], [7], [11], [23], [33], [38] which
arguably is a commonly used technique for ranking numbers
[32]. Finally, after describing a new algorithm for balancing
low quality datasets, we will analyze the behaviour of the
GFS proposed in [26], preprocessing low quality imbalanced
datasets before the learning phase, and compare the results
obtained in several real-world problems about the diagnosis
of dyslexic children [29] and the future performance of
athletes in a competition [26].

The structure of this paper is as follows: in Section II
we introduce the problem of imbalanced datasets and some
preprocesing techniques for imbalanced datasets, focusing
the SMOTE algorithm [2]. In Section III we present the
new algorithm for balancing low quality imbalanced datasets,
taking into account the possibly imprecise outputs. In Section
IV we show the results obtained with those GFSs able to use
low quality data, after applying the algorithm proposed here.
We will also compare these results with the results obtained
by the same GFSs in the original low quality dataset. The
paper finishes with the conclusions and future works, in
Section V.

II. IMBALANCED DATASETS IN CLASSIFICATION

In this section we introduce the imbalanced dataset prob-
lem and we will show some preprocessing methods that are



commonly applied in imbalanced datasets, highlighting the
SMOTE algorithm.

A. The problem of imbalanced datasets

The problem of imbalanced datasets in classification oc-
curs when the number of instances of one class is much
lower than that of the other classes. Specifically, when the
dataset has only two classes, this happens when one class is
represented by a high number of examples, while the other
is represented by only a few [3]. Some authors have named
this problem “datasets with rare classes” [39].

TABLE I
CONFUSION MATRIX FOR A PROBLEM OF TWO CLASSES

Positive Prediction Negative Prediction
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

Usually the minority class represents the concept of in-
terest, especially in medical applications [20], [24], [30].
We will study one these problems later, that of diagnosing
dyslexia in children. The so called “others” class represents
the counterpart of the concept, for example children without
dyslexia. The evaluation of the performance of classifier,
traditionally, is based on the confusion matrix (see Table I
for a typical confusion matrix for a problem of two classes).
From this table the average classification error is defined
as the total number of misclassified examples divided by the
total number of available examples (1). The accuracy is given
by eq. (2):

Err =
FP + FN

TP + TN + FP + FN
(1)

Acc =
TP + TN

TP + TN + FP + FN
= 1− Err (2)

It is clear that minimizing the global error has a bias
towards the majority class. In other words, the instances that
belong to the minority class are misclassified more often than
the other classes.

B. Preprocessing imbalanced datasets

To deal with the imbalanced dataset problem we can
alter the objective function of the classifier, making it to
depend on a cost matrix. We can also leave the classification
system as is and process the data in order to diminish the
effect caused by their class imbalance. It has been proved
that applying a preprocessing method to balance the classes
is a satisfactory solution to the problem of imbalanced
datasets, see for instance [1]. In [1], [12] different methods
of preprocessing where studied. These methods are classified
in three categories:

• Under-sampling methods: Obtain a subset of the original
dataset by eliminating some of the examples of the
majority class. This category comprises the Condensed
Nearest Neighbour rule (CNN) [16], Tomek links [35],

One-sided selection (OSS) [21], Neighbourhood clean-
ing rule (NCL) [22], Wilson’s Edited Nearest Neighbour
(ENN) [40] and the random under-sampling.

• Over-sampling methods: Obtain a superset of the orig-
inal dataset by replicating some of the examples of the
minority class or creating new ones from the original
minority class instances. These methods are Synthetic
minority over-sampling technique (SMOTE) [2] and
random over-sampling.

• Hybrid methods: These combine over-sampling and
under-sampling, and obtain a set by combining the two
previous methods. For instance, SMOTE+Tomek Link
and SMOTE+ENN.

In [12] these preprocesing methods were compared in the
context of FRBCSs, showing the good behaviour for the over-
sampling methods, and in particular SMOTE.

C. SMOTE algorithm

In the SMOTE algorithm, the minority class is over-
sampled by taking each minority class sample and introduc-
ing synthetic examples along the line segments joining any or
all of the k minority class nearest neighbors. Depending upon
the amount of over-sampling required, neighbors from the
k nearest neighbors are randomly chosen [2]. For example,
if the implementation uses four nearest neighbors (k = 4)
and the amount of over-sampling needed is 200%, only two
neighbors from the four nearest neighbors are chosen and
one sample is generated in the direction of each. In Figure
1 an example is shown where xi is the selected point, xi1

to xi4 are some of the selected nearest neighbors and r1 to
r2 are the synthetic data points created by the randomized
interpolation.

Fig. 1. Creation of synthetic data points in the SMOTE algorithm.

Synthetic samples are generated in the following way:
Take the difference between the feature vector (sample)
under consideration and its nearest neighbour. Multiply this
difference by a random number between 0 and 1, and add
it to the feature vector under consideration. This causes the
selection of a random point along the line segment between



two specific features. This approach effectively forces the
decision region of the minority class to become more general
[2]. An example is detailed in Table II.

TABLE II
EXAMPLE OF THE SMOTE METHOD.

Consider a sample (6,4) and let (4,3) be its nearest neighbor.
(6,4) is the sample for which k-nearest neighbors are being identified.
(4,3) is one of its k-nearest neighbors.
Let:
f1 1 = 6 f2 1 = 4 f2 1 - f1 1 = -2
f1 2 = 4 f2 2 = 3 f2 2 - f1 2 = -1
The new samples will be generated as
(f1’,f2’) = (6,4) + rand(0-1) * (-2,-1)
rand(0-1) generates a random number between 0 and 1.

III. PREPROCESSING OF LOW QUALITY IMBALANCED
DATASETS

As we have explained in Section II-A, the problem of
imbalanced datasets in classification occurs when the number
of instances of one class is much lower than that of the
other classes. This also happens when the dataset contains
low quality data, interval-valued or fuzzy numbers, in the
output variables. For instance, if one instance is labeled as
“class {A, B}” or, in words, if we do not know whether the
true class of the instance is A or B, then the percentage of
instances that belong to each class is also an imprecise value.
If the specificity of these imprecise values is low, the dataset
is possibly imbalanced. For instance, imagine a problem with
three classes where, after computing the ranges of the relative
frequencies of the classes, we obtain that f1 ∈ [0.05, 0.25],
f2 ∈ [0.05, 0.35] and f3 ∈ [0.4, 0.9]. This means that the
actual frequencies might be 0.25, 0.35 and 0.4, which is
not, strictly speaking, an unbalanced problem, but it is also
possible that they are 0.05, 0.05 and 0.9. In this case, a
classification system will not perform well on classes A and
B unless we preprocess the dataset.

To preprocess these kind of datasets we propose a new
algorithm based on SMOTE (explained in Section II-C).
There are three aspects in our generalization that deserve
a detailed study:

1) Selection of the minority class and the amount of
synthetic examples.

2) Computation of the k nearest neighbours of any exam-
ple. The implementation applied in this work uses the
euclidean distance to select the k nearest neighbors and
it uses fuzzy arithmetic operators and a fuzzy ranking,
as we will explain later.

3) Generation of synthetic examples from the minority
class. We will use fuzzy arithmetic operators, and
control the values that may be out of range for the
different attributes.

A. Selection of the minority class

The inputs to the SMOTE algorithm in [2] are the number
of minority class samples (T) and the amount of synthetic
examples (N). In our generalization, the fraction of examples

in each class is defined by an imprecise value and the
algorithm has to determine the amount of synthetic examples
for each class. In Figure 3, lines 1 to 13, we detail how
this last value (N) is determined for each class. All classes
but the majority will be assigned synthetic examples and the
examples with an imprecise output will have less relevance
in the classification.

B. Computation of the k nearest neighbors
In a first step we collect all the examples that possibly

belong to the minority class (that includes those whose class
we know and those whose class we cannot affirm is different
than the minority). This is outlined in Figure 3, lines 15 to
20.

The second step consists in obtaining the k nearest neigh-
bors of the example, where the meaning of “nearest” is given
by a generalized euclidean distance (lines 21 to 25) and a
certain method for ranking these distances. That is to say,
the euclidean distance between two vectors of fuzzy numbers
(Ãi1, . . . , Ãin) and (B̃j1, . . . , B̃jn) is generalized as follows:

D̃ij =

[
n⊕

m=1

(Ãim 	 B̃jm)2

] 1
2

(3)

where all fuzzy numbers are trapezoidal, Ã = (a, b, c, d) (see
Figure 2) and all the arithmetic operators are also fuzzy (see
references [4], [8]). We will consider that D̃ij is a generalized
trapezoidal fuzzy number.

Fig. 2. A trapezoidal fuzzy number.

In line 26 of Figure 3 we have used the operation “ranking”
for determining the k nearest neighbours of a given example.
It is well known (see [32]) that no single ranking method is
superior to all other methods; each ranking appears to have
some advantages as well as disadvantages. In this proposal
we use a method that was defined in [38] and improved in
[11]. Given two fuzzy numbers A and B, this method is
based on four crisp values x(A), y(A), x(B), y(B). x(A)
indicates the representative location of fuzzy number A, and
y(A) presents the average height of the fuzzy number. For a
generalized trapezoidal fuzzy number A = (a, b, c, d), these
values are defined as follows [5], [25]:

x(A) =

∫ b

a
(xfL

A)dx+
∫ c

b
xdx+

∫ d

c
(xfR

A )dx∫ a

b
(fL

A)dx+
∫ c

b
dx+

∫ d

c
(fR

A )dx
(4)



y(A) =

∫ w

0
(ygLA)dy +

∫ w

0
(ygRA)dy∫ w

0
(gLA)dy +

∫ w

0
(gRA)dy

(5)

where fL
A and fR

A are the left and right membership functions
of fuzzy number A, respectively. gLA and gRA are the inverse
functions of fL

A and fR
A , respectively. This method, assumes

that the importance of the degree of representative location
is higher than average height. Lastly, observe for any two
fuzzy numbers A and B, we have three different situations,
whose associated orderings are [38]:

1) If x(A) > x(B), then A > B.
2) If x(A) < x(B), then A < B.
3) If x(A) = x(B), then

• If y(A) > y(B), then A > B.
• If y(A) < y(B), then A < B.
• If y(A) = y(B), then A = B.

C. Generation of the synthetic examples

The generation of the synthetic examples, as in [2],
consists in taking the difference between the feature vector
(sample) under consideration and its nearest neighbor. This
difference is multiplied by a random number between 0 and
1, and added to the feature of the synthetic example. These
operations involve fuzzy arithmetic, as described in Figure
3, lines 31 to 34. We control the values that are out of range
in the different attributes in line 34.

IV. NUMERICAL RESULTS

Imbalanced datasets appear often in practice, and they are
particularly relevant for medical applications, as mentioned
in the introduction (see also references [20], [24], [30]). In
this section we will study several real-world problems. Some
of them are related to medical diagnosis (diagnosing dyslexia
in children [29]), and the future performance of athletes in
certain tests is studied in the others [26]. These datasets are
summarized as follows:

• “Athlete” datasets: This set comprises 8 datasets that
are used to predict whether an athlete will improve
certain threshold in the long jump, 100 meters and 200
meters, given some relevant indicators of each event.
All the features are interval-valued except in “B100ml-
P”, “B100ml-I”, “B200ml-P” and “B100ml-I”, where
there are mixed interval-valued and fuzzy-valued data,
obtained by reconciling different measurements taken
by three different observers.

• “Dyslexic” datasets: This set is composed by 3 datasets
that are used to diagnose whether one child is dyslexic
or not. All the datasets contain mixed interval-valued
and crisp data.

In all cases we have a certain degree of imbalance and
vagueness in the perception of the features and the class.
This experimentation is intended to assess the performance
of GFSs designed for being used with low quality data, when
applied to both unprocessed and preprocessed datasets.

Algorithm LowQuality Imbalanced(Dataset,Minority,N,k)
1 if (Minority == ∅ and N == ∅) then
2 Minority[] = 0
3 N[] = 0
4 for example in {1, . . . ,N}
5 if ({class(example)}.size == 1) then
6 Minority[class(example)]= Minority[class(example)]+1
7 end if
8 end for example
9 order(Minority)
10 for class in {1, . . . ,Majority}
11 N[class] = (int) Minority[Majority] / Minority[class]
12 end for class
13 end if
14 for Minority in {1, . . . ,Majority}
15 Sample = ∅
16 for example in {1, . . . ,N}
17 if (Minority ⊂ {class(example)}) then
18 Sample = Sample ∪ example
19 end if
20 end for example
21 ˜euclidean[] = 0
22 for Sample i in {1, . . . ,N}
23 for Sample j in {1, . . . ,N}
24 ˜euclidean[j] = distance(i,j)
25 end for Sample j
26 ranking( ˜euclidean)
27 for N in {1, . . . ,N[Minority]}
28 neighbour = random (1,k)
29 ˜synthetic = ∅
30 for Attribute in {1, . . . ,M}
31 d̃if= ˜Attribute(Sample[neighbour]) 	

˜Attribute(Sample i)
32 gap = random (0,1)
33 S̃um = ˜Attribute(Sample i) ⊕ (d̃if ⊗ gap)
34 ˜synthetic = ˜synthetic ∪ range(S̃um)
35 end for Attribute
36 Dataset = Dataset ∪ ˜synthetic
37 end for N
38 end for Sample i
39 end for Minority
return Dataset

Fig. 3. Algorithm to preprocess low quality imbalanced data.

A. Settings

All the datasets used in this section have been introduced
in [26] and [29]. It is remarked that all of them have
imprecise inputs and outputs. A brief description of this data
is provided in Table IV, where it is shown for all of them the
name, the number of examples (Ex), the number of attributes
(Atts) and the number of classes. We have also computed
the fraction of patterns in each class. The percentage of
instances assigned to each class is deduced from the numbers
of instances that belong to this class and from the instances
with an imprecise output that contain this class.

All the experiments have been run with a population
size of 100, probabilities of crossover and mutation of 0.9
and 0.1, respectively, and limited to 100 generations. The
fuzzy partitions of the labels are uniform and their size
is 5 in “athlete” datasets and 4 in “dyslexia” dataset. All



TABLE III
MEANS OF 100 REPETITIONS OF THE GFS FROM THE LOW QUALITY “ATHLETE” DATASETS WITH 5 LABELS/VARIABLE WITH ORIGINAL AND

PREPROCESSED DATASETS.

GFS Low Quality GFS Low Quality with preprocessing
Dataset Error Train Error Test Error Train Error Test
Long-4 [0.003,0.288] [0.323,0.592] [0.097,0.210] [0.245,0.514]

BLong-4 [0.006,0.276] [0.326,0.625] [0.110,0.201] [0.254,0.554]
100ml-4-I [0.070,0.273] [0.176,0.378] [0.166,0.282] [0.174,0.375]
100ml-4-P [0.066,0.280] [0.176,0.355] [0.122,0.260] [0.168,0.347]
B100ml-I [0.075,0.281] [0.172,0.369] [0.191,0.277] [0.169,0.367]
B100ml-P [0.066,0.275] [0.160,0.349] [0.146,0.255] [0.161,0.350]
B200ml-I [0.011,0.264] [0.232,0.476] [0.270,0.364] [0.125,0.370]
B200ml-P [0.002,0.273] [0.262,0.480] [0.119,0.207] [0.261,0.479]

TABLE IV
SUMMARY DESCRIPTIONS OF THE DATASETS.

Dataset Ex. Atts. Classes %Classes
Long-4 25 4 (0,1) ([36,64],[36,64])

BLong-4 25 4 (0,1) ([36,64],[36,64])
100ml-4-I 52 4 (0,1) ([0.44,0.63],[0.36,0.55])
100ml-4-P 52 4 (0,1) ([0.44,0.63],[0.36,0.55])
B100ml-I 52 4 (0,1) ([0.44,0.63],[0.36,0.55])
B100ml-P 52 4 (0,1) ([0.44,0.63],[0.36,0.55])
B200ml-I 19 4 (0,1) ([0.47,0.73],[0.26,0.52])
B200ml-P 19 5 (0,1) ([0.47,0.73],[0.26,0.52])

Dyslexic-12 65 12 (0,1,2,4) ([0.32,0.43],[0.07,0.16],
[0.24,0.35],[0.12,0.35])

Dyslexic-12-01 65 12 (0,1,2) ([0.44,0.53],[0.24,0.35],
[0.12,0.30])

Dyslexic-12-12 65 12 (0,1,2) ([0.32,0.43],[0.32,0.52]
[0.12,0.30])

the imprecise experiments were repeated 100 times with
bootstrapped resamples of the training set. The preprocessing
method applied in this work uses the three nearest neighbors
and balances all the classes taking into account the impre-
cise outputs, where the parameter “N” is estimated by the
algorithm, unless when specified otherwise. The method is
applied for preprocessing the 100 bootstrapped resamples of
the training set.

B. Compared results

The behaviour of that GFS which is able to use low
quality data, when applied to both unprocessed and pre-
processed “Athlete” datasets, is shown in Table III. This
Table includes 3 columns. The first one, “Dataset”, contains
the names of the datasets. The second one, “GFS Low
Quality”, contains the errors obtained by the GFS for the
unprocessed, original datasets. The last column, “GFS Low
Quality with preprocessing”, contains the errors produced by
the GFS when the datasets have been preprocessed with the
proposed mechanism. The interval-valued errors shown in
this table represent the minimum and maximum error of all
the obtained errors.

We have observed that, the application of the proposed
preprocessing mechanism, causes the GFS to improve its be-
haviour with respect to the low quality dataset in those cases

where the imbalance degree can be regarded as “medium”.
This kind of datasets comprises “Long-4”, “BLong-4”,
“B200ml-I” and “B200ml-P”. However, in “B200ml-P” we
have not detected a noticeable improvement of the results.
We think that this is due to the fact that this low quality
dataset has an attribute (the expert knowledge of the trainer)
that has not a definite relation with the other four attributes;
this kind of uncorrelated features is known to have bad effects
on the preprocessing stage used in this paper.

TABLE V
CONFUSION MATRIX FOR LOW QUALITY DASATES OF ATHLETICS.

GFS Low Quality GFS Low Quality Pre.
Long-4

Class 0 Class 1 Class 0 Class 1
Class 0 2591 3168 3098 2661
Class 1 2186 3463 1974 3675
BLong-4

Class 0 Class 1 Class 0 Class 1
Class 0 2379 3720 3307 2792
Class 1 2005 3764 2245 3524
100ml-4-I

Class 0 Class 1 Class 0 Class 1
Class 0 9352 2867 8044 4175
Class 1 4346 6393 2986 7753
100ml-4-P

Class 0 Class 1 Class 0 Class 1
Class 0 9135 2974 9005 3104
Class 1 3863 6626 3549 6940
B100ml-4-I

Class 0 Class 1 Class 0 Class 1
Class 0 9286 2693 8009 3970
Class 1 4298 6261 2949 7610
B100ml-4-P

Class 0 Class 1 Class 0 Class 1
Class 0 9164 2945 8618 3491
Class 1 3754 6775 3195 7334
B200ml-I

Class 0 Class 1 Class 0 Class 1
Class 0 3983 696 4093 586
Class 1 2355 744 1745 1354
B200ml-P

Class 0 Class 1 Class 0 Class 1
Class 0 3973 686 2518 2141
Class 1 2368 571 855 2084

As we expected, we have obtained similar results for



TABLE VI
MEANS OF 100 REPETITIONS OF THE GFS FROM LOW QUALITY DATASETS OF TYPE “DYSLEXIC” WITH 4 LABELS/VARIABLE WITH THE ORIGINAL

DATASET AND PREPROCESSED.

GFS Low Quality GFS Low Quality with preprocessing
Dataset Train Exh.Test Train Exh.Test

Dyslexic-12
M=∅

[0.002,0.227] [0.443,0.590] [0.165,0.241] [0.437,0.590]N=∅
M=[0,1,2,3]

[0.002,0.227] [0.443,0.590] [0.121,0.216] [0.422,0.547]N=[1,2,2,1]
Dyslexic-12-01
M=∅

[0.004,0.188] [0.344,0.476] [0.131,0.199] [0.375,0.520]N=∅
M=[0,1,2]

[0.004,0.188] [0.344,0.476] [0.100,0.183] [0.337,0.450]N=[1,2,1]
Dyslexic-12-12
Min.=∅

[0.003,0.237] [0.386,0.557] [0.118,0.196] [0.362,0.540]N=∅
M=[0,1,2]

[0.003,0.237] [0.386,0.557] [0.100,0.193] [0.355,0.516]N=[2,1,2]

the datasets “100ml-4-I”, “100ml-4-P”, “B100ml-4-I” and
“B100ml-4-P” because these datasets have a low or null
imbalance; the number of instances with imprecise outputs
is not very high (19%) and the percentages of examples in
each class (without taking into account the instances with
imprecise outputs) are homogeneous (54%,45%) as shown in
Table IV. However in “Long-4” and “BLong-4” the number
of instances with imprecise outputs is higher, up to 28% of
the total of instances, and in “B200ml-I” and “B200ml-P’
this percentage is of 26%. Relevant for the practitioners of
the real world problem where this data has been taken from,
although we have applied a preprocessing method, we still
obtain better results when we are using the knowledge of the
coach, except in “B200ml-P”, as we had also found in [26].

In Table V we have displayed the confusion matrix for
“athlete” datasets. We can check how the FN and FP decrease
in the datasets with a imbalance that we might label as “not
low”.

TABLE VII
CONFUSION MATRIX FOR THE LOW QUALITY DATASET “DYSLEXIC-12”.

GFS Low Quality
Dyslexic-12

Class 0 Class 1 Class 2 Class 4
Class 0 6499 222 1612 495
Class 1 1910 178 942 98
Class 2 2242 15 3472 574
Class 4 3246 37 2479 88

GFS Low Quality Preprocessing
Dyslexic-12

Class 0 Class 1 Class 2 Class 4
Class 0 4666 1753 656 1753
Class 1 584 872 504 1168
Class 2 146 1330 2457 2504
Class 4 612 1368 1476 3193

The behaviour of that GFS able to use low quality data
when applied to the “Dyslexic” datasets is shown in Table
VI, where the error of this GFS when the datasets are either
unprocessed or preprocessed, is shown. In addition, this table
shows the behaviour of the GFS, when the parameter “N” is
obtained with the preprocessing method proposed and also
when we specify which classes are going to be balanced
with the parameter “Minority” (M) and also their amount
with the parameter “N”. These two parameters have been
obtained through the study performed with the confusion
matrix obtained with the original datasets.

TABLE VIII
CONFUSION MATRIX FOR LOW QUALITY DATASETS “DYSLEXIC-12-01”

AND “DYSLEXIC-12-12”.

GFS Low Quality GFS Low Quality Pre.

Dyslexic-12-01
M=∅ and N=∅ M=[0,1,2] and N=[1,2,1]

Class 0 Class 1 Class 2 Class 0 Class 1 Class2
Class 0 8902 902 104 7031 2460 418
Class 1 3264 3277 438 1399 5078 501
Class 2 3849 1731 838 1797 3611 1010

Dyslexic-12-12
M=∅ and N=∅ M=[0,1,2] and N=[2,1,2]

Class 0 Class 1 Class 2 Class 0 Class 1 Class2
Class 0 3911 4105 103 6628 972 518
Class 1 1836 7139 564 3153 3600 2786
Class 2 1158 4331 659 2391 1635 2122

Lastly, we can deduce from the information in Table
VI that, when the assignments Minority = ∅ and N = ∅
are made, the preprocessing method does not influence the
performance of the GFS. This is a consequence of the
relationship that exists between the classes.



Apart from this, from the confusion matrix of “Dyslexic-
12” (see Table VII) we can detect a relationship between
the balanced classes, but for the most part this fact is only
relevant for researchers working in the medical diagnosing
of dyslexia. The GFS has a bias towards “class 1” and “class
4” (less frequent instances in the original dataset). This can
be explained by the fact that, when one child is classified
as “class 1’,’ is very probable that this child will be “class
0” in the next evaluation (and less often “class 2”). The
same happens with “class 4” and “class 2-1” [29]. Therefore,
“class 1” seems to be of little relevance and the results of
“Dyslexic-12-01” and “Dyslexic-12-12” seem to confirm it.
Otherwise, in Table VI, we observe that, if we study the
confusion matrix from the original dataset, we can specify
the parameter “Minority” and “N” and obtain improvements
in the performance of the GFS.

V. CONCLUSIONS AND FUTURE WORKS

In this work we have considered the use of low quality
imbalanced datasets in combination with certain GFSs that
are able to use low quality data. We have studied different
preprocessing methods for imbalanced datasets and used the
SMOTE algorithm as a base to propose a new algorithm able
to preprocess low quality imbalanced datasets.

The results have shown us how the behavior of a GFS is
improved when using the preprocessing mechanism proposed
here. In addition, we have observed that after applying the
preprocessing method to a low quality dataset, with a low
percentage of imprecise outputs or with a low degree of
imbalance, the GFS has a similar behaviour to the original
dataset, as we expected. Also, we have seen that, studying
the confusion matrix obtained with the original dataset, we
can estimate the parameters “Minority” and “N” needed in
the preprocessing method.

In future works, we intend to incorporate information
about the confusion matrix of the minimum error-based GFS
into the preprocessing algorithm. This information can be
used to fine tune the synthesis of instances in combination
with a particular GFS. We have also observed that multiclass
datasets might better suited for an internal approach that
takes into account the cost of misclassification for each pair
of classes (i.e. a minimum risk-based approach). In the last
place, we think possible that, in those cases where the output
variable is vague with high probability, and therefore we
are not sure that the dataset is imbalanced, some techniques
used in semi-supervised learning can be introduced in the
preprocessing stage.
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