
Digital Object Identifier (DOI) 10.1007/s00138-002-0117-7
Machine Vision and Applications (2003) 14: 185–191 Machine Vision and

Applications

3D motion estimation of bubbles of gas in fluid glass, using an optical flow gradient
technique extended to a third dimension

J. Otero, A. Otero, L. Sanchez

Computer Science Department, Oviedo University, Campus de Viesques, 33203 Gijon, Asturias, Spain; e-mail: jotero@lsi.uniovi.es

Received: 9 July 2001 / Accepted: 5 August 2002
Published online: 3 June 2003 – c© Springer-Verlag 2003

Abstract. To solve the problem of estimating velocities of
gas bubbles in melted glass, a method based on optical flow
constraint (OFC) has been extended to the 3D case. A sin-
gle camera, whose distance to the fluid is variable in time,
is used to capture a sequence of frames at different depths.
Since objects are not static, we cannot obtain two frames of
different height values at the same time, and to our knowl-
edge, this prevents the use of common 3D motion estimation
techniques. Since the information will be rather sparse, our
estimation takes several measures around a given pixel and
discards the erroneous ones, using a robust estimator. Along
with the exposition of the practical application, the estimation
proposed here is first contrasted in the 2D case to common
benchmarks and then evaluated for a synthetic problem where
velocities are known.

Key words: 3D motion parameter – 3D reconstruction –
Depth computation – Optical flow – robust estimation

1 Preliminary

There are basically three ways to perform the calculation of
the optical flow field in the case of 2D conventional images:

• Gradient-based techniques
• Correlation-based techniques
• Frequency-based techniques

Gradient-based techniques use the well-known optical flow
constraint (OFC) in order to compute the optical flow [14].
This technique makes the assumption that intensity changes
in a sequence of images are due only to the movement of
the objects in the scene: each pixel, corresponding to a given
point of an object, will have constant brightness in the different
positions that it takes during the sequence. Mathematically this
is expressed as shown in Eq. (1).

dI(x, y, t)
dt

= 0. (1)

As it can be seen, the spatiotemporal derivatives must be
estimated. This estimation is noise sensitive, so optical flow

This work has been supported by Saint Gobain Cristaleria S.A., under
contract FUO-EM-034-01 with Oviedo University, Spain.

estimation has the same problem. Later in this paper, we will
analyze this expression in depth.

Correlation-based techniques try to minimize a measure of
similarity (or dissimilarity) between patches taken from two
consecutive frames centered on a given pixel [3,5]. The dis-
placement that maximizes (or minimizes) the selected measure
divided by the interval between the acquisition of the frames
is the velocity of the pixel. This approach is computationally
expensive, and its complexity grows with the square of the
maximum displacement searched. There are approaches that
solve this problem using a bidimensional LUT (look-up table)
instead of performing floating-point calculations. The gray-
scale depth must be limited to maintain the LUT within a con-
venient size [19], but the quality of the estimation decreases
as the number of gray levels does.

Frequency-based techniques use a set of tuned spatiotem-
poral filters to search for the velocity of a pixel [13]. Each one
of the filters will give a response to the stimuli of the data (the
sequence of images); the filter with the maximal response will
be tuned with the velocity searched; once the filter is identified,
so is the velocity. Some researchers are of the opinion that this
is the most precise approach, but it is very expensive in terms
of computational cost [8]. A comparison of these techniques
can be found in [7].

3D optical flow estimation is not different in essence from
2D; thus, the three families of techniques could be used, but it
is known that information regarding the spatiotemporal deriva-
tives have an important role in 3D motion estimation [15].

We will show that previous approaches like [1,2,23] can-
not be directly applied to the practical problem that originated
this work, because of reasons that will be made clear later
(Sect. 1.2).

1.1 Overview of gradient-based techniques

In 2D problems, the OFC in Eq. (1) can be expanded and
written in the form

−∂f

∂t
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
=

∂f

∂x
u +

∂f

∂y
v = ∇(f) · c, (2)

where ∇(f) is the spatial gradient of the image, “·” is the dot
vector product, c is the velocity of the pixel and ∂f

∂t is the
temporal derivative of the sequence for that pixel.

186 J. Otero et al.: 3D motion estimation using 3D OFC

Fig. 1. Clusters of intersections of OFC pairs. Some of them belong
to a dominant cluster; a few can cause deviation of the estimation if
they are not rejected

The previous expression shows how the spatiotemporal
derivatives are related to the observed velocities.

There are two unknowns (u and v) in this equation, so it
is not possible to solve it in order to recover the full motion
vector. This is known in the literature as the aperture prob-
lem [16], meaning that there is no way to recover the complete
optical flow vector using only local (one pixel) information.
With local information only the motion in the direction of the
gradient (known as normal flow) can be computed. Many au-
thors try to solve the aperture problem by adding some kind
of global information, involving a process of regularization.
That is, given a measure of some error, the process of regular-
ization consists of applying extra restrictions to the sequence
of images, searching for a minimum in the measure of that
error. One of the first algorithms found in the literature using
this technique is the one by Horn and Schunk, in the early
80s [14]. They apply a restriction that consists in maximizing
a measure (a global smoothness criteria) and minimizing an-
other one (the error given by the fit to OFC); these restrictions
are applied all over the image.

Other researchers use an estimation of the velocities with
a confidence measurement, so for each measure it is known
how reliable it is [3].

There are authors that use other invariants than pixel in-
tensity, like the zero crossings of the Laplacian of the Gaus-
sian [11].The motivation is that they are closer to the biological
facts of animal vision systems.

Another alternative is to analyze the measures in the space
of the velocities; that is, it tries to find a robust estimation of
the velocity by performing an analysis on the results of many
systems of OFC equations, each one applied to a pair of pixels
(see Fig. 1), or it tries to fit the data to a model in order to
estimate the velocity. In this way, the analysis is performed
directly in the data domain that we want to recover, which
is the (u, v) space [21]. Finally, some researchers perform a
clustering of the OFCs themselves in order to find the most
reliable one; once obtained, the corresponding normal flow to
that OFC is obtained [9,18].

We will follow the first approach, using a 3D model of the
bubbles and an extended OFC to a third dimension (3D OFC).

Fig. 2. Reduced-scale model of the installation where the process is
analyzed

1.2 Statement of the problem and summary

This study originated in a problem in glass manufacturing.
We were asked to count the number, dimension and velocities
of gas bubbles in melted glass, in order to control working
parameters of the oven. In this paper, we are only concerned
with the third objective, measuring velocities.

The velocity of the bubbles of gas is of interest in a glass
factory because the motion is related to two features of the pro-
cess: the quantity of glass produced (the bubbles move with it)
and the amount of heat needed to make the glass fluid enough
to let the bubbles move from bottom to top and leave it. The
installation used to measure all parameters is shown in Fig. 2,
and its design is outlined in Fig. 3. Fluid glass falls from the
upper to the lower part of the oven. There is a window from
which one single camera can take images. The camera can be
manually focused to any depth in the fluid, and there is room
enough to install a motor that allows the camera to travel along
the line shown in the schema. The velocity of the camera is
2 mm/s. In any case, we cannot take two simultaneous pho-
tographs of the fluid, and thus images will be taken in both
different time and depth.

We are faced with the problem of deciding whether the ad-
dition of the automatic displacement would allow measuring
velocities with a reasonable precision. To evaluate this possi-
bility, we have synthetized a set of frames that simulate the
view of the melted glass from the motorized camera and de-
signed an algorithm able to process them. In Fig. 4, an image
obtained in the real installation is juxtaposed with a synthetic
frame. Bubbles are at a different z, and because of this, they
are blurred with a different intensity.

Intuitively, it is clear that the precision will not be as high as
it could be in the case where we could install two cameras, but
it can still be of practical interest. It is remarked that existing
3D reconstruction techniques, like optical sectioning usually
found in microscopy (see [10]), cannot be applied, and the
same can be said about stereo-based approaches [2,23], as we
anticipated in the introduction. Approaches like [1] cannot be
applied to our problem because the motion of the camera in
that work is fundamental to the behavior of the algorithm.

In the next sections, the 3D reconstruction method is ex-
plained, and after it the velocity computation is presented.
The algorithm will be applied to solve a synthetic problem for

J. Otero et al.: 3D motion estimation using 3D OFC 187

Fig. 3. Top: Schema of glass circulation in the model of the instal-
lation. The camera is mounted perpendicular to the pipe. Bottom:
Detail of elements of interest for the problem

which the true velocity field is known in order to estimate its
precision, and then it is applied to the real data. Additionally,
some of the decisions adopted when estimating OFC intersec-
tions will be contrasted to their equivalents in different optical
flow algorithms for standard 2D benchmarks [7].

2 3D motion estimation from 3D reconstruction
and 3D OFC

In this section, we explain how to obtain 3D velocity from 3D
data, and how to reconstruct 3D data from 2D sections taken
at different times.

2.1 3D extension of OFC

In order to perform our 3D motion analysis, the same assump-
tion relied upon for the usual OFC is extended to the 3D model,
and thus we postulate that the intensity of the bubbles recon-
structed is constant over the time. In this way, the sequence
becomes a function in x, y, z, t and the 3D OFC is now the
expression found in Eq. (3). In this equation, f is the intensity
of the pixels in the 3D model and c3D is the 3D velocity of the
pixels.

−∂f

∂t
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt

=
∂f

∂x
u +

∂f

∂y
v +

∂f

∂z
w = ∇(f) · c3D. (3)

Fig. 4. Top: Bubbles of gas in melted glass at different depth. Note
the different degree of blurriness. Bottom: Synthetic frame

As in the case of the usual OFC [see Eq. (2)], there are too
many unknowns in the 3D OFC to solve it and obtain c3D. The
same techniques that try to solve the OFC for u and v can be
extended to obtain u, v and w from 3D OFC.

2.2 3D reconstruction from sections
taken at different time and depth

The 3D intensity reconstruction is estimated from several im-
ages taken with a different z, which is with a different focal
distance and with a narrow field depth. In this way, we get a
2D projection of the objects at each z, where a given focal
setting gives the highest precision in the image acquisition. In
Fig. 5, this process is schematized. The volume of fluid being
studied is represented by a box with a single bubble. The left
side of the figure, shows the situation at time ti, and the right
side of the image shows the position of the bubble at time ti+1.
The focus moves down and the bubble moves to the left top
corner. In each situation, the position is shown where the fo-
cus brings finer detail. The resultant 2D image is shown above
each volume of fluid.

Since the different images are not taken at the same time,
we cannot perform a numerical estimation of the spatiotempo-
ral derivatives using a domain around each pixel and using the
difference between values in convenient directions as deriva-
tives. Instead of this, we compute an estimation of the intensity
at each (x, y, z) from images taken at different t, assuming a

188 J. Otero et al.: 3D motion estimation using 3D OFC

Fig. 5. Acquisition of the images at different z. The relative motion
between the focus plane and the bubbles bring different degrees of
blurriness

lineal evolution of the intensity as can be seen in Eq. (4).

f(x, y, z, t) = k1x + k2y + k3z + k4t + k5. (4)

It should be clear that, after the model has been estimated,
ki is the intensity derivative (i varying from 1 to 4) as can be
seen in Eq. (5).

∂f

∂x
= k1;

∂f

∂y
= k2;

∂f

∂z
= k3;

∂f

∂t
= k4. (5)

As a minimum, we need a set of five equations like Eq. (4)
to solve the linear equation system for the unknowns ki. This
leads us to the equations in Eq. (6).

f(x1, y1, z1, t1) = k1x1 + k2y1 + k3z1 + k4t1 + k5;
f(x2, y2, z2, t2) = k1x2 + k2y2 + k3z2 + k4t2 + k5;
f(x3, y3, z3, t3) = k1x3 + k2y3 + k3z3 + k4t3 + k5;
f(x4, y4, z4, t4) = k1x4 + k2y4 + k3z4 + k4t4 + k5;
f(x5, y5, z5, t5) = k1x5 + k2y5 + k3z5 + k4t5 + k5.

(6)
In order to improve the quality of the results, we choose to
perform an estimation over a larger set of data, using a neigh-
borhood of pixels that hold enough information in each di-
rection of the parameter space. Because the resolution of the
data is greater in the x and y directions than in z and t di-
rections, we take a greater amount of data in these directions,
in order to gain enough information about variations of in-
tensity through z and t. In our experiments, we have found
that a neighborhood like the one in Fig. 6 is suitable for the
estimation of ki. In this neighborhood, we take all the data in
z and t directions that have x and y coordinates from the set
(i, j), (i + 1, j), (i, j + 1). For each velocity estimation, the
camera takes images at 10 different z’s, so we have a total of
30 equations. This is an over-constrained set of equations that
can be solved to find ki, the spatiotemporal derivatives that
we need to use in Eq. (3). The final over-constrained system
is the one in Eq. (7).

Fig. 6. Neighborhood for ki estimation of the bubbles model from a
set of images at different depth

f(j, i, 1, 1) = k1j + k2i + k3 + k4 + k5
f(j, i, 2, 2) = k1j + k2i + 2k3 + 2k4 + k5
. . .
f(j, i, 10, 10) = k1j + k2i + 10k3 + 10k4 + k5
f(j, i + 1, 1, 1) = k1j + k2(i + 1) + k3 + k4 + k5
f(j, i + 1, 2, 2) = k1j+k2(i+1)+2k3 + 2k4 + k5
. . .
f(j, i + 1, 10, 10) = k1j + k2(i + 1) + 10k3 + 10k4

+k5
f(j + 1, i, 1, 1) = k1(j + 1) + k2i + k3 + k4 + k5
f(j + 1, i, 2, 2) = k1(j+1)+k2i+2k3 + 2k4 + k5
. . .
f(j + 1, i, 10, 10) = k1(j + 1) + k2i + 10k3 + 10k4

+k5
(7)

Once having calculated the spatiotemporal derivatives ki,
we can estimate the 3D velocity using Eq. (3).

3 Robust estimation of optical flow

As we stated before, the nature of the available data in our
problem complicates the computation of the optical flow. This
is due to the sparsity of the sections, which cannot bring us a
perfect reconstruction of the 3D structure of the bubbles. Since
the parameters that we recover from the different sections, ki,
are the spatiotemporal derivatives that appear in Sect. 2.1, the
resulting optical flow can be affected by the errors during the
3D reconstruction. Because of this, we have to develop an
algorithm that discards the erroneous measurements that may
occur. We decided to analyze the density of the distribution
of velocities and to search for its maximum (the mode of the
distribution) instead of calculating its mean value, which is
faster to obtain but is rather influenced by outliers, which in
the problem addressed here are frequent.

In our problem, another circumstance arises: the fact that
there is several objects (the bubbles) moving over an static
background. In this case, it is not possible to use approaches
like [14] because the global smoothness criteria does not hold
in those boundaries. Authors, like Nagel, propose to relax the

J. Otero et al.: 3D motion estimation using 3D OFC 189

Fig. 7. This is the array where the velocities are sorted in order to
improve the performance of mode calculation. Because of the sorting
criteria, we only need to examine the velocities that belong to the
search interval

smoothness criteria in those places where the gradient is high,
smoothing the flow along the contour but not through the con-
tour [17]. But the problem remains: due to the fact that the
OFC has two unknowns, it’s necessary to take measurements
from at least two pixels. If the pixels are chosen from different
objects with different velocities (for instance, a bubble and the
background), the solution to the system of equations obtained
will give an erroneous velocity. The analysis of the veloc-
ity distributions present within a neighborhood of each pixel
(in the direction addressed in [21]) is necessary to determine
which velocities are supposed to be correct and which one
is the dominant velocity in the neighborhood (see Sect. 3.1).
Most of the previous work in this area, and all standard bench-
marks, are based in 2D data. To assess the effectiveness of the
mode as a robust estimator, we will first reformulate our algo-
rithm for the 2D case and then compare it to other algorithms,
using images found in [4] and [7].

3.1 Mode as an estimator of optical flow

The maximum of the density function of the velocity field can
be estimated by finding the higher cell of the bidimensional (in
2D) histogram of the velocity field, but this estimation can be
made both faster and more precise if we numerically maximize
either a k-neighbor or a kernel estimation of this density [22].
We tried both of them, with a compact support kernel in the
latter case:

k(x) =
{ |x0−x|

d
· y(x) if |x0 − x| < d

0 otherwise
(8)

As in the previous method, we compute the solutions of every
possible pair of OFCs (except the systems whose condition
number is to high) for a given neighborhood. We discard the
solutions whose module is greater than a threshold as errors.
The solutions to the system of OFCs solved are stored in an
array with three columns. In the first column, we store the ve-
locity component in the x direction, and in the second column,
we store the velocity component in the y direction as shown
in Fig. 7 (the array is rotated 90 degrees in the figure.)

Using compact support kernels allows us to improve the
efficiency of the algorithm, because we can limit the number of
evaluations of Eq. (8) needed to find the mode. Since the kernel
is 0 for points further than d, we only need apply the kernel to
the velocities closer than this value. If the array is sorted by the
first component (u) and then by the second (v) (the third field

Fig. 8. Plot of the density value versus the error of the estimation. As
can be seen, there is a decreasing tendency in the graphic

Fig. 9. Array where the 3D velocities are stored and sorted in order
to improve the efficiency of the algorithm

is used to store the sum of the kernel function centered at that
velocity for all points in the array), we can restrict ourselves
to velocities for which the difference in the first component is
smaller than d (see Fig. 7). The mode will be the pair (u, v) for
which the value of the third field is maximum. The value of
the maximal density is also a measure of the reliability of the
estimation: the bigger the value of the maximal is, the more
reliable the estimation is. This can be seen in Fig. 8, where
the density of neighbors obtained (in x axis) versus the error
of an experiment (in y axis) is shown. Clearly, as the value of
the density grows, the error decreases. The test sequence used
was “MysineC-16,” taken from the ones used in [7]. In this
sequence a bidimensional sinusoidal pattern moves at (1, 1)
pixels per frame.

Observe that the 3D formulation is immediate. There are
three unknowns in the 3D OFC, therefore we need at least
three equations to compute the velocity of a point of the re-
constructed 3D solid. In Sect. 3.1, we computed all the pairs
of OFC that can be found in a 2D neighborhood of a pixel.
Now we will compute all the possible triplets of equations that
can be found in a 3D neighborhood of a point of the recon-
structed solid. Then, for each point of the reconstructed solid,
we have a 3D distribution of velocities, whose mode must be
determined. Velocities are stored now in an array with four
rows that are sorted using a similar criteria as in the 2D al-
gorithm (see Fig. 9). After the sorting stage, a kernel like the
one in Eq. (8) is applied to the 3D data (x and x0 will be 3D
vectors in this case). Only the data belonging to the search

190 J. Otero et al.: 3D motion estimation using 3D OFC

interval (u − d, u + d) has to be used to compute the density
estimation of each velocity, exactly as before.

4 Results

The 2D version of the algorithm is compared to other algo-
rithms first, and the 3D version will be used to solve a synthetic
problem later. The objective of the 2D comparison is to de-
termine whether the mode is indeed a more robust estimator
than other approaches. The synthetic problem is introduced to
determine if the estimation of the velocities of the bubbles is
precise enough for the practical application.

4.1 Comparative results, 2D algorithm

In order to perform a quantitative comparison with other al-
gorithms, we adopt the metric defined in [20]; other measures
(for example, [7]) would serve as well. In short, the error over
an image is the sum of errors of all pixel, and the error on
a pixel is the Euclidean distance between estimated and real
velocities.

The test sequences used in these series of test where
“Translating tree,” “Diverging tree,” “Yosemite flight thru,”
“Rotating sphere,” “Diverging office,” and “Street.” The first
three are used in [7]. The sequences are semi-synthetic, real
images manipulated to give the illusion of movement in the
scene or by the camera. The last three ones were proposed
in [4] as an alternative to perform the same task. We chose
these sequences to perform the same analysis published in [7].
The source code used in the test of Anandan’s algorithm is the
same as used in [7]. To test the algorithms in [21] and [18],
we used our own implementation. In Table 1, numerical val-
ues of the error are compared to those algorithms from [3,18,
21]. The neighborhood size was 5 × 5 for both Anandan’s al-
gorithm and our approach. For the other approaches the size
of the neighborhood was 15 × 15. The size of the neighbor-
hoods was chosen in order to provide the algorithms with a
sufficient amount of data (comparable to the quantity used in
our approach) to perform the estimation as proposed in [18]
and [21]. The estimator presented here performs better than
Anandan’s algorithm in the case of the “Translating tree,” “Di-
verging tree” and “Diverging office” sequences. In the case of
“Rotating sphere” our approach performs better than OFC’s
parameter clustering. In the case of “Yosemite flight through”
and “Street,” Anandan’s algorithm performs slightly better.
The k-neighbor approach is slightly worse than the kernel es-
timator, but it is also more computationally efficient.

4.2 Quantitative results, 3D synthetic data

It was mentioned that, in order to know the attainable precision
when estimating 3D motion with one only camera, we had to
build a synthetic problem for which the true motion is known.
This lets us test our algorithm prior to the full implementation
of the system in the future.

In Fig. 10, three synthetic images are shown. The top and
center parts of the image are simulated photographs of a single
bubble at different heights, moving from the lower left corner

Fig. 10. Example of image reconstruction from the synthetic 2D data.
An image at z = 5, t = 1 is reconstructed with the model in Eq. (4)
from the whole set of 2D images

to the upper right corner and toward the observer; the velocity
of all the points of the image is (1, 1, 1). The bottom part of
the figure is reconstructed from the sequence of images from
which the two previous ones were taken, assuming that the
hypotheses in Eq. (4) concerning linear change in the move-
ment are true. The bubble in that figure moves with velocity
(1, 1, 1).

In Fig. 11, the error histogram for the component in the z
direction obtained from the reconstructed 3D data is shown.
The total error in the image was 0.15 × 104, that means a
percent error of 15% for an image size of 100 × 100.

The obtained error is good enough for the purpose in the
factory process and brings important information regarding
the amount of heat needed by the process. Real precision will

J. Otero et al.: 3D motion estimation using 3D OFC 191

Fig. 11. Histogram of the error in the optical flow computation from
sequence in Fig. 10. Note the peaks due to imprecision of the model

Table 1. The error obtained (divided by 104) in the test by kernel
estimator and variable kernel, compared to Anandan’s algorithm [3],
OFC’s slope intercept parameter clustering [18] and intersections
over central pixel OFC clustering [21]

Sequence Schunck OFC par. Anandan Kernel Var kernel
clustering

Trans. tree 6.7663 4.4438 3.9809 2.3039 2.4032
Div. tree 3.5310 2.8188 1.5067 1.4246 1.5195
Yosemite 16.090 15.580 10.154 10.985 11.287
Rot. Sph. 1.8011 1.0137 2.4696 0.6612 0.7408
Office 5.1679 3.8374 2.1625 1.9104 2.1828
Street 5.8890 4.7729 1.8539 2.1046 2.4034

be lower, since noise was not present in synthetic data (see
Fig. 4), but these results suggest us that the method is useful
for practical purposes.

5 Concluding remarks

Due to the particular conditions of the process discussed here
(one single camera, absence of references), it was not pos-
sible to apply common 3D motion estimation procedures to
determine the velocities of bubbles in melted glass. Since the
camera can focus at different depths in the fluid but cannot
take two simultaneous photographs of the fluid, our algorithm
had to cope with sequences of images taken at both different
times and depth. This restriction was solved when some lin-
earity constraints were assumed and a method for estimating
all needed partial derivatives comprising the OFCs was de-
veloped. This provided us with the data needed to state and
solve a problem formulated in terms of OFC equations with
three unknowns. The result is a new algorithm for estimating
3D optical flow, based on robust gradient techniques. The pre-
cision of this method, while being inherently inferior to that
of stereo procedures, was high enough for it to be applied in
practice.

References

1. Adiv G (1989) Determining three-dimensional motion struc-
ture from optic flow generated by several moving objects. IEEE
Trans Pattern Anal Mach Intell 11(5):477–489

2. Ahuja N, Abbott AL (1993) Active stereo: integrating disparity,
vergence, focus, aperture, and calibration for surface estimation.
IEEE Trans Pattern Anal Mach Intell 15(10):1007–1029

3. P Anandan (1985) A computational framework an an algorithm
for the measurement of visual motion. Int J Comput Vision
2:283–310

4. McCane B, Galvin B, Novins K (1998) On the evaluation of
optical flow algorithms. Computer Science Department, Uni-
versity of Otago, New Zealand

5. Ancona N, Poggio T (1993) Optical flow from 1D correlation:
application to a simple time-to-crash detector. Massachusetts
Institute of Technology, Artificial Intelligence Laboratory and
Center for Biological and Computational Learning

6. Battiti R, Amaldi E, Koch C (1991) Computing optical flow
across multiple scales: an adaptive coarse-to-fine strategy. Int J
Comput Vision 6(2):133–145

7. Barron JL, Fleet DJ, Beauchemin SS (1995) Performance of
optical flow techniques. Int J Comput Vision 1(12):43–77

8. Beauchemin SS, Barron JL (1996) The computation of optical
flow. ACM Comput Surv 3(27):433–467

9. Ben-Tzvi D, Del Bimbo A, Nesi P (1993) Optical flow from
constraint lines parametrization. Pattern Recogn 26(10):1549–
1561

10. Weinstein M, Castleman KR (1971) Reconstructing 3D speci-
mens from 2D section images. Proc SPIE 26:131–138

11. Duncan JH, Chou T-C (1992) On the detection of motion and
the computation of optical flow. IEEE Trans Pattern Anal Mach
Intell March 14(3):346–352

12. Enkelmann W (1986) Investigations of multigrid algorithms for
the estimation of optical flow fields in image sequences. In: Pro-
ceedings of workshop on motion, representation and analysis,
Charleston, S.C., 7–9 May 1986. IEEE Computer Society Press,
Los Angeles, Calif.

13. Heeger DJ (1988) Optical flow using spatiotemporal filters. Int
J Comput Vision 1:279–302

14. Berthold K P Horn, Schunk BG (1980) Determining optical
flow. A.I. Memo 572. Massachusetts Institute of Technology,
Artificial Intelligence Laboratory

15. Koenderink JJ, van Doorn AJ (1987) Facts on optic flow. Bio-
logical Cybern 56:247–254

16. Murray DW, Buxton BF (1990) Experiments in the machine
interpretation of visual motion. MIT Press, Cambridge, Mass.

17. Nagel HH (1983) Displacement vectors derived from second-
order intensity variations. Comput Vision Graph Image Process
21(1):85–117

18. Nesi P (1995) Real-time motion estimation. Department of Sys-
tems and Informatics, Faculty of Engineering, University of Flo-
rence

19. Otero J, Cancelas JA, Gonzalez RC (1998) Optical flow calcu-
lation using look-up tables. In: Ollero A (ed) IFAC workshop
on intelligent components for vehicles, Seville, Spain, 23–24
March 1998. Pergamon, New York

20. Otte M, Nagel HH (1994) Optical flow estimation: advances
and comparisons. In: Eklundh J-O (ed) European conference on
computer vision, Stockholm, Sweden, 2–6 May 1994. Springer,
Berlin Heidelberg New York

21. Shunck BG (1989) Image flow segmentation and estimation by
constraint line and clustering. IEEE Trans Pattern Anal Mach
Intell 11(10):1010–1027

22. Silverman BW (1986) Density estimation for statistics and data
analysis. Chapman and Hall, London

23. Wang W, Duncan JH (1996) Recovering the three-dimensional
motion and structure of multiple moving objects from binocular
image flows. Comput Vision Image Understanding 63(3):430–
446

