
Fuzzy Sets and Systems 141 (2004) 33–46
www.elsevier.com/locate/fss

A fast genetic method for inducting descriptive fuzzy models
Luciano S%anchez∗, Jos%e Otero

Depto. Inform�atica, Universidad de Oviedo, Campus de Viesques, 33203 Gij�on, Spain

Abstract

Under certain inference mechanisms, fuzzy rule bases can be regarded as extended additive models. This
relationship can be applied to extend some statistical techniques to learn fuzzy models from data. The interest
in this parallelism is twofold: theoretical and practical. First, extended additive models can be estimated by
means of the matching pursuit algorithm, which has been related to Support Vector Machines, Boosting and
Radial Basis neural networks learning; this connection can be exploited to better understand the learning of
fuzzy models. In particular, the technique we propose here can be regarded as the counterpart to boosting
fuzzy classi6ers in the 6eld of fuzzy modeling. Second, since matching pursuit is very e7cient in time, we
can expect to obtain faster algorithms to learn fuzzy rules from data. We show that the combination of a
genetic algorithm and the back6tting process learns faster than ad hoc methods in certain datasets.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy modeling is used to model a system making use of a descriptive language based on fuzzy
logic with fuzzy predicates [22]. Most of times, fuzzy rule based systems are considered. Rule based
models can be constructed by means of di>erent system identi6cation techniques, and their quality
can be measured in terms of interpretability and accuracy.
As pointed out in [2], current tendencies in fuzzy modeling look for a good balance between in-

terpretability and accuracy. This paper can be included in this tendency. We propose a new method
for inducting descriptive fuzzy models. Our model is based on fuzzy propositions that only use pre-
speci6ed semantic values of linguistic terms. Rules combining these propositions do not necessarily
use all input variables, as the algorithm performs a rule-based feature selection. Furthermore, to
preserve linguistic interpretability, membership functions are not tuned, besides accepting that rule
consequents are weighted.
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Our method is based on the similarities that exist, under certain fuzzy reasoning methods, between
fuzzy models and extended additive models. If a fuzzy model can be regarded as an extended additive
model, matching pursuit algorithms [14] can be applied to it: this means we can obtain a sparse
solution, which results in a low number of fuzzy rules, using a fast algorithm. Moreover, there exist
connections between this family of algorithms and state of the art machine learning methods such us
support vector machines [1] and boosting [20] which would justify by themselves the comparative
study of additive and fuzzy models.

1.1. Summary

The summary of this paper is as follows: in the next section, additive models, as well as general-
ized and extended additive models, are introduced, and their relationship with boosting algorithms and
fuzzy models explained. Section 3 contains a detailed description of all steps in the learning algo-
rithm, paying special attention to the search of the intermediate models, which will be accomplished
by a genetic algorithm. Section 4 contains numerical results contrasting the performance of our
algorithm, in both the speed of the process and the accuracy of the result.

2. Additive models and boosting

2.1. Generalized additive models

Additive models were introduced in the 1980s to improve precision and interpretability of classical
nonparametric regression techniques in problems with a large number of inputs [21]. These models
estimate an additive approximation to the multivariate regression function, where each of the additive
terms is estimated using a univariate smoother.
Individual terms explain the dependence of the output variable with respect to their corresponding

input variables, thus there exists a certain degree of interpretability in the model. While this kind
of estimation avoids the curse of dimensionality, it is not able to approximate universally. Hastie
and Tibshirani addressed this issue and proposed generalized additive models [11]. With these later
models it is assumed that the mean of the output depends on a sum of terms through a nonlinear
link function, and it is permitted that the response probability distribution is any distribution in
the exponential family. Many statistical models belong to this class, including additive models for
Gaussian data and nonparametric logistic models for binary data.
More formally, let y be the output random variable we wish to model, and let x=(x1; : : : ; xn) be

the input random vector. The objective of the modeling process consists in estimating the conditional
expectation of y given x. Linear regression assumes

E(y|x) = f(x1; : : : ; xn) = �0 + �1x1 + · · ·+ �nxn (1)

and obtains �0; : : : ; �n by least squares. Additive models generalize this schema by allowing the use
of a sum of nonlinear univariate regressors

E(y|x) = f(x1; : : : ; xn) = s0 + s1(x1) + · · ·+ sn(xn); (2)
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where si are smooth functions that are estimated in a nonparametric fashion. Generalized additive
models extend additive models by not assuming a Gaussian distribution of the output, but any
probability distribution in the exponential family,

fy(t; �;
) = exp
{
t�− b(�)
a(
)

+ c(t; 
)
}

(3)

and making the additive component

f(x1; : : : ; xn) = s0 + s1(x1) + · · ·+ sn(xn) (4)

to depend on the mean of the output by means of a link function g, so that g(E(y|x))=f(x1; : : : ; xn).
The most commonly used link function in practice is the canonical link g(E(y|x))= �.

2.2. Extended additive models and matching pursuit

Additive models can be generalized furthermore. In extended additive models, the univariate re-
gressors si are replaced by functions of more than one feature. In our context, these functions usually
depend on a set of parameters � and a multiplier �,

si = �is(x; �i) (5)

thus the additive model becomes

E(y|x) = f(x1; : : : ; xn) = s0 +
n∑
i=1

�is((x1; : : : ; xn); �i): (6)

For example, in radial basis neural networks the functions s(x; �i)= exp{‖x − �i‖2} are the “basis
functions”; �i are their centers and �i are the weights that connect the input layer with the output.
In support vector machines, s(x; �) is a kernel, and �i are the support vectors. We will show later
that a fuzzy rule base can be casted in the same schema under certain mechanisms of approximate
reasoning.
Extended additive models can be learned with a generalized back6tting algorithm [9]. Given a cost

function d, that measures the di>erences between the conditional expectation and its approximation,
this algorithm consists in 6nding n pairs of values {�m; �m} minimizing each

E


d


y;

∑
k=1:::n
k �=m

�ks(x; �k) + �s(x; �)




 (7)

with respect to �; � [9]. A greedy approach, where the expectation of the output is incrementally
approximated, produces good results in practice. Let f0(x); f1(x); : : : be successive approximations
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to E(y|x); then, let us de6ne
{�m; �m} ←
argmin

�;�
E[d(y; fm−1(x) + �s(x; �))]; (8)

where {�k; �k}m−11 are 6xed at their corresponding solution values at earlier iterations.
Algorithms that learn a weighted sum of basis functions, by sequentially appending functions to an

initially empty basis, to approximate a target function in the least-squares sense, are contained in the
family of the “matching pursuit” algorithms [14]. These algorithms have been compared to support
vector machines [27] and radial basis neural networks in machine learning problems [23]. One of
the most interesting properties of matching pursuit algorithms is that they are good in keeping the
sparsity of the solution; this improves the generalization properties of the method and we will also
see in the following sections that the same property guarantees a small number of rules in the fuzzy
case that will be described later.

2.3. Fuzzy models and extended additive models

Under certain fuzzy reasoning methods, fuzzy models are extended additive models. Consider a
fuzzy rule based model comprising M weighted rules

If X is Am then Y is Bm with [wm]; (9)

where X and Y are the feature and the output vectors, respectively; Am and Bm are conjunctions
of linguistic labels, which in turn are associated to fuzzy sets, and w is a real-valued rule weight.
This notation has been used before, to extend fuzzy inference methods [25], explain fuzzy neural
networks [3] and improve linguistic modeling [16]. The semantic of (9) can also be expressed with
an alternate linguistic expression. Following the syntax used in quanti6ed fuzzy sentences [7], the
sentence

wm of Am are Bm (10)

gives the same information as rule (9), besides wm is a real value here, instead of a linguistic
modi6er. For example, the rule “If weight is HIGH then height is MEDIUM with [0.2]” can also
be written as “20% of HIGH weighted are MEDIUM heighted.” This last expression can also be
given a probabilistic interpretation [19], and is compatible with the original de6nition by Zadeh of
a conditioned �p-fuzzy granule [26]

If X is Am then Y is Bm is � (11)

with a degenerate fuzzy probability � expressed by the following possibility distribution over the
unit interval:

�(x) =

{
1 x = wm;

0 else:
(12)

Given a linguistic model comprising rules like (10) (or (11)) and an input value x, the out-
put can be computed with di>erent methods. Let us use the “6rst infer, then aggregate” fuzzy
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reasoning [6]. The inference process begins calculating the set B′ which is the result of the inference
process for every rule and the input x:

 B′(y) = I( Am(x); [ Bm(y) ∧ wm]); (13)

where I is a fuzzy inference operator, and the membership of the consequent is limited by the degree
of truth of the rule. The output f(x) of the fuzzy model is then computed as

f(x) = GM
m=1(D( B′

m
(y))); (14)

where D is a defuzzi6cation operator, and G is an operator that combines all values D( B′
m
(x; y)) to

produce the 6nal output. Let I and ∧ be the product, D the centroid and G the weighted sum. Then

f(x) =
M∑
m=1

wm ·  Am(x) · D( Bm(y)): (15)

Since wm ·D( Bm(y)) is a real value and  Am(x0) is a nonlinear function of the inputs, it is immediate
that the function f(x), for this particular choice of t-norm, aggregation and defuzzi6cation operators,
is an extended additive model.

2.3.1. Back7tting rule bases
The particularization of the back6tting algorithm to such a fuzzy model consists in identifying:

• The membership functions  Am(x) with the multivariate predictors sm(x)= s(x; �m).
• the products wm · D( Bm(y)) with the multipliers �m.
If least-squares is used as a 6tting criterion, back-6tting consists in 6nding {�m; �m} minimizing

E


y −∑

k �=m
�ks(x; �k)− �s(x; �)



2

(16)

with respect to �; �. There will be a 6nite number of values for �, each one of them pointing to one
of the fuzzy sets that can be constructed by combining linguistic terms in the input. Observe that,
after obtaining the value of �, it must be converted into a product of two constants: a con6dence wm

and the defuzzi6ed value of one of the terms in the output variable. Finally, the greedy approach is

{�m; �m} ←
argmin

�;�
E[y − fm−1(x)− �s(x; �)]2; (17)

where {�k; �k}m−11 are 6xed at their corresponding solution values at earlier iterations, as mentioned
before.

2.4. Matching pursuit in additive models and boosting

While the preceding analysis considered regression models, generalized additive models have been
used to solve classi6cation problems. In particular, the output of a committee of boosted classi6ers
[20] can be expressed nearly as shown in the preceding section.
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Fig. 1. Pseudocode of back6tting applied to a logistic extended additive model. After solving step (2) as discussed in the
text, the outline of the algorithm is nearly identical to that of Adaboost procedure.

The analogy between boosting and extended additive models is strong, because there exist sim-
ilarities in both their structure and their respective learning algorithms. The objective of a binary
classi6cation problem is to approximate the value p(y=1|x), which we will denote by p(x). The
response variable in a classi6cation problem follows the binomial distribution, and the link function
is g(p(x))= log (p(x)=(1− p(x))) [11]; therefore, the additive model is

log
p(class(x) = 1)
p(class(x) = 0)

= f(x1; : : : ; xn) = s0 + �1s1(x) + · · · (18)

and the output of the model, reversing the logistic transform,

p(x) =
ef(x)

1 + ef(x)
: (19)

If the greedy version of generalized back6tting, mentioned in the preceding section, is applied to this
model, one obtains an algorithm very similar to Adaboost. An outline of this algorithm is shown in
Fig. 1. The “smooth” operation [11], consists in estimating the values �i and �i on which the i-th
additive term depends, by means of a suitable statistical or machine learning procedure. Every step
can be understood as 6tting a new term to a weighted set of residuals of the previous submodel. This
residual is z=(y − pi−1(x))=(pi−1(x)(1 − pi−1(x))), and the weight of the residual at the element
x in the sample is pi−1(x)(1− pi−1(x)).
It is controversial to decide whether this algorithm (which eventually was renamed to “Logit-

boost” by its author) is a new boosting algorithm, based on di>erent principles than Adaboost, or,
on the contrary, Adaboost can be regarded as an approximation to the combination of the local
modeling and back6tting algorithms used in Logitboost, as claimed in [9]. Since in this paper we
apply the back6tting algorithm to learn linguistic fuzzy rules from data, we can consider that our
method can be regarded as a boosting-like algorithm applied to a committee of models (instead of
being applied to a committee of classi6ers) and in this sense it complements previous works where
either approximate or descriptive fuzzy rules were learned with fuzzy extensions of the Adaboost
algorithm [13,12].
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3. Proposed methodology

Let us revisit the greedy method introduced at the end of Section 2.3.1. Observe that the term
�ms(x; �m) is chosen to minimize the squared di>erence

E[y − fm−1(x)− �s(x; �)]2; (20)

where y − fm−1(x) is the residual of the previous model at x. Having this point in mind, let us
rewrite the procedure in algorithmic nomenclature:

residual[1..N] = Y[1..N]
rule base = emptyset
repeat

R = fit one rule (X, residual)
do i=1..N

residual [i] =
residual[i] - inference (R,X[i])

end do
rule base = rule base + R

until rule base contains enough rules

X is a vector of N examples, Y contains the desired outputs and the procedure “fit one rule”
returns the values of �m and �m that minimize the square error between �s(x; �) and the vector
“residual,” evaluated over the points given by X. Remember that we have identi6ed the membership
 Am(x) with the function s(x; �m), and the real number �m with the product of the con6dence wm and
the defuzzi6ed value of the consequent Bm, both in rule number m.
The procedure “fit one rule” is an algorithm able to 6t one single submodel to the set of data.

This means that we just need to devise an e7cient method for 6tting one fuzzy rule to a dataset,
without worrying about interferences between rules. Once a rule that models the residual is found,
the set of data is replaced by the residuals of the whole model,

y ← y −
∑
k �=m

�ksk(x) (21)

which in this case reduces to

ym = ym−1 − �m−1sm−1(x) (22)

and the process is repeated. A fuzzy rule is obtained in every iteration, and the process terminates
once the best �m is zero or the accuracy of the model is high enough, whatever come 6rst.
It is remarked that there exist similarities between this process and other learning fuzzy systems.

In particular, between back6tting and the selection stage in genetic iterative learning (GIL) [4]. In
GIL, rules are selected one at a time and iteratively added to the rule base. In short, the process
is as follows: the rule which best explains the data is found and added to the rule base. Then the
examples covered by this rule are deleted from the training sample and the process repeated until
the sample is empty. Back6tting is similar: besides examples are not removed, the value of the
objective function in them is lowered, so that every new rule will focus in the points with high
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error. It is easy to show that lowering the objective function in an example is equivalent to assign
a real valued weight to it, and to 6nd the best rule by weighted least squares. In that sense, these
methods di>er in one point: back6tting uses real valued weights, while GIL uses binary weights.

3.1. Fitting one rule

Fitting a submodel consists here in selecting one rule from the set of combined memberships of
antecedent and consequent (i.e. the set of fuzzy memberships that can be used for a set Am × Bm,
given the linguistic partitions of the features) and determining the value of wm (the truth of the rule)
that best 6ts it to the residuals.
If we know the membership of the antecedent, s(x; �m)=Am(x), the value of the product �m=wm ·

D(Bm) can be found analytically. Di>erentiating Eq. (20) and equating to 0, we obtain that the
optimum value of �m for a function s(x; �m) is

�m =
EX [Y · (fm−1 + s(x; �m))]
E2X [fm−1 + s(x; �m)]

: (23)

Given the list of linguistic labels Bi in the output, one must 6nd a pair of a real value wm ∈ [0; 1]
and a linguistic term Bi such that �m=wm ·D(Bm). Since the obtained value of �m can be negative, it
is needed that there exist linguistic labels for which D(Bm)¡0 for this algorithm to have a solution
in the general case.

3.1.1. Determining the best antecedent
The preceding discussion can be used to assign a real value of merit to every antecedent Am.

This value is the square error obtained when this antecedent is combined with its optimal value �m,
given by Eq. (23). Therefore, the procedure “fit one rule” discussed here must include a search
directed to 6nd the combination of linguistic values that give that rule the best overall error for the
current residuals.
A simple binary coded genetic algorithm is able to perform this discrete optimization part e7-

ciently. Moreover, the GA structure can be exploited to integrate the feature selection process into
the search scheme. We use a common coding scheme, based in [10]: a linguistic term is represented
with a chain of bits. There are as many bits in the chain as di>erent terms in the linguistic partition.
If a term appears in the rule, its bit has the value ‘1’, ‘0’ otherwise.
For example, let {LOW, MED, HIGH} be the linguistic labels of all features in a problem involving

three input variables. The rule

If x1 is High and x2 is Med and x3 is Low

then Yis Med,

is codi6ed with the chain 001 010 100 010. It is immediate to extend this encoding: it can represent
rules for which not all variables appear in the antecedent, and also ‘OR’ combinations of terms in
the antecedent. For example, the rule

If x1 is High and x3 is Low then Y is Med;
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is codi6ed with the chain 001 000 100 010, and the rule

If x1 is (High or Med)
and x3 is Low

then Y is Med,

will be assigned the chain 011 000 100 010.
Since we are aggregating rules with the sum, chains “001 111 100 010” and “001 000 100

010” are equivalent; the second representation will be preferred. As a general rule of thumb, “OR”
combinations of rules increase the complexity of the knowledge base and we desire to minimize
their number in the 6nal result. To promote simpler individuals, it was decided that in case of tie
when evaluating the squared error of two di>erent individuals, the one with a lower number of bits
is preferred; therefore, the search is guided towards rule banks that might not use all features.

4. Numerical results

4.1. Learning time

To assess the learning time of this method a synthetic problem was designed. It consists in
generating 100 points (x1; : : : ; xn) uniformly distributed in the interval [0; 1]n, with n varying from
1 to 15. Then, a linear model, a neural network, Wang and Mendel’s method and Back6tting were
applied to approximate the functions

sn(x1; : : : ; xn) =
n∑
i=1

xi: (24)

Results are shown in Fig. 2. The left part shows that Wang–Mendel’s method complexity is expo-
nential in the number of features, while back6tting is approximately linear, provided that the genetic
algorithm is stopped after a speci6ed number of iterations (1000, for this experiment). The right
part shows the 6nal error of all models; noise was not added, therefore it should be 0 in all cases.
In practice, since the number of samples is constant, the density of examples decreases with the
number of features and conversely the error of non linear models is expected to increase. This e>ect
is shown in the right part of the same 6gure.

4.2. Numerical accuracy

To study the accuracy of the back6tted fuzzy models we are going to compare the performance
of the method proposed here with eight fuzzy learning methods and three black box models. Fuzzy
algorithms considered are:

• Wang and Mendel [24], with selection of importance degrees by maximum (WM1), mean (WM2)
and product maximum-mean (WM3) (the original de6nition of the method is in [24]; the two other
ones are from [6]).

• Cord%on and Herrera’s method, also with maximum, mean and product maximum-mean (CH1,
CH2, CH3) [6].
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Fig. 2. Learning time in seconds (left) and train error (right) of linear regression, neural networks, Wang and Mendel and
Back6tting algorithms on the problem discussed in Section 4.1. Neuronal and linear train error curves are indistinguishable.

• TSK rules, induced by locally weighted linear squares over all possible combinations of antecedents
(WLS).
• Nozaki, Ishibuchi and Tanaka method (NIT) [15]
and black boxes are:

• Linear regression (LIN).
• Quadratic regression (QUA).
• Two layer perceptron (NN). These neural networks were trained with the conjugate gradient
algorithm. The number of elements in the hidden layer was the same for all experiments over the
same dataset. This number was designed to minimize a validation sample taken from a permutation
of the sample that was not used to measure the test error.

Ten modeling problems were used in this comparison. Eight of them are synthetic, two are real
world problems. These problems are:

• “f1”: 676 examples of the function z= x2 + y2. “f1-10”: The same function, with 10% Gaussian
noise added. “f1-20”: 20% Gaussian noise. “f1-50”: 50% noise. The dataset is taken from [5].

• “f2”: 676 examples of the function 10(x− xy)=(x− 2xy+ y). “f2-10”, “f2-20” and “f2-50” were
added 10, 20 and 50% Gaussian noise [5].

• “Building”. A real-world problem taken from [17].
• “Cable”. Another real-world modeling problem, taken from [18].
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Table 1
Comparative results between additive regression + back6tting and other approaches

WM1 WM2 WM3 CH1 CH2 CH3 NIT LIN CUA NEU WLS BFT

f1 5.65 5.73 5.57 5.82 8.90 6.93 5.63 130.5 0.00 0.17 0.09 0.55
f1-10 6.89 7.19 6.54 6.84 10.15 8.20 7.16 133.91 1.40 1.78 1.62 2.17
f1-20 11.07 10.99 11.06 11.33 13.45 12.42 10.63 135.6 5.29 6.42 5.90 6.47
f1-50 51.78 46.40 47.80 53.48 48.94 48.16 39.65 166.64 33.53 41.18 36.76 38.94
f2 0.41 0.48 0.45 0.40 0.59 0.45 0.43 1.54 1.61 1.48 0.15 0.26
f2-10 0.64 0.68 0.68 0.59 0.68 0.60 0.58 1.71 1.75 1.81 0.29 0.42
f2-20 1.27 1.16 1.17 1.29 1.15 1.17 0.97 2.04 2.09 0.90 0.76 0.91
f2-50 4.34 3.98 3.94 4.47 3.90 3.97 3.59 4.67 4.78 3.76 3.62 3.62
cable× 10−3 778 720 723 673 663 655 548 418 393 522 486 441
building× 102 1.113 1.051 1.023 0.983 1.753 1.465 0.432 0.477 - 0.276 0.246 0.299

Size 3 partitions were used in all cases. BFT method was limited to 25 fuzzy rules. The best of WM, CH, NIT and
BFT, plus the best overall model, were highlighted for every data set. f1 and f2 are synthetic data with Gaussian noise,
cable and building are real world problems.

In all our experiments we have removed the mean from the datasets, so that E(Y )= 0 and there is
a linguistic label Z for which D(Z)= 0, plus negative and positive values. Ruspini fuzzy partitions
with three terms each were used for both input and output variables.
To measure the statistical signi6cance of the di>erences between algorithms, 5x2cv experimental

framework [8] was used: 50% of points were used to train the model, that was tested against
the remaining 50%; roles of training and test sets are interchanged and the process done again.
This is repeated 5 times, for di>erent permutations of the data set, which gives 10 repetitions of
the learning algorithm for every data set. The means of the 10 test errors obtained for every pair
learning algorithm-data set are shown in Table 1. We decided to include the boxplot of the test error
(see Fig. 3) instead of the p-values of the contrast, because this graph gives a deeper insight into
the relative merits of the algorithms; we can consider that nonoverlapping boxes indicate that there
exists a statistically signi6cant di>erence between the algorithms involved.
Observe that back6tting was always among the best linguistic methods in both synthetic and real

problems. There exist a signi6cant di>erence between Wang–Mendel and Cord%on–Herrera methods
and the remaining ones, but these methods do not use weights in the rules neither non standard
reasoning. NIT has a similar performance than these two 6rst classes of methods in clean synthetic
problems, and its relative performance improves under the presence of noise, as can be observed in
the two upper rows in the 6gure. Since BFT was not statistically di>erent to black boxes neither in
synthetic nor in real problems, we can a7rm that the properties of matching pursuit algorithms are
also veri6ed in the genetic fuzzy version we have proposed in this paper.

5. Concluding remarks and future work

Not all fuzzy reasoning methods are suitable for this implementation of matching pursuit: the t-
norm must be the product, rules must be defuzzi6ed before aggregated and the aggregation



44 L. S�anchez, J. Otero / Fuzzy Sets and Systems 141 (2004) 33–46

WM1 WM2 WM3 CH1 CH2 CH3 NIT CUA NEU WLS BFT WM1 WM2 WM3 CH1 CH2 CH3 NIT CUA NEU WLS BFT

6

10

12

14

16

WM1 WM2 WM3 CH1 CH2 CH3 NIT CUA NEU WLS BFT

35

40

45

50

55

60

WM1WM2WM3 CH1 CH2 CH3 NIT LIN CUA NEU WLS BFT WM1WM2WM3 CH1 CH2 CH3 NIT LIN CUA NEU WLS BFT

1.0

1.5

2.0

WM1WM2WM3 CH1 CH2 CH3 NIT LIN CUA NEU WLS BFT

3.5

4.0

4.5

5.0

WM1WM2WM3 CH1 CH2 CH3 NIT LIN CUA NEU WLS BFT

500000

1000000

1500000

WM1 WM2 WM3 CH1 CH2 CH3 NIT LIN NEU WLS BFT

0.005

0.010

0.015

0

2

4

6

8

10

12

0

2

4

6

8

10

12

8

Fig. 3. Comparative results between additive regression + back6tting and other approaches. Size 3 partitions were used in
all cases. BFT method was limited to 25 fuzzy rules. Upper part: f1, f1-20 and f1-50 data sets. Center: f2, f2-20 and f
2-50. Lower part: cable and building data sets.

operator must be the sum. These conditions restrict the applicability of this method, which can-
not be considered as a general approach to fuzzy rules learning.
Provided that these conditions can be assumed, the use of matching pursuit and, in particular, the

greedy back6tting algorithm, produces sparse rule bases in a very short time and achieves a very
good performance without the need of tuning the membership functions of the antecedent. Up to
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our knowledge, this is the computationally most e7cient genetic fuzzy system up to date: it solves
many practical problems in a few seconds, and it is faster than many “ad-hoc” methods while being
comparable in precision to neural networks.
The work in this 6eld of research is not 6nished. It was commented in Section 2.3 that the

type of weighted rules we were inducting was a degenerate class of Quanti6ed Fuzzy Sentences.
It should be desirable to extend back6tting to cope with the general de6nition of these sentences,
because this would replace the real valued weight by a linguistic quanti6er, improving the descriptive
properties of the result. Additionally, in Section 2.4, a relationship was introduced between matching
pursuit and classi6cation systems that could be studied in depth, to check whether the application
of the LogitBoost to learn fuzzy classi6ers algorithm improves the results already obtained with the
application of AdaBoost to the same problem; our primary concern will be to reducing the number
of rules even more, to setup rule bases comprising at most 10 or 20 rules. Finally, the relation that
intuitively seems to exist between matching pursuit, support vector machines and the random set
based classi6ers based on maximum verosimility estimation [19] is not completely clear by now and
we intend to study it in detail in a near future.
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