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Abstract

Some different extensions to random sets of the most common parameters of a

random variable share a common rationale: a random set represents the imprecise

observation of a random variable, hence the generalized parameter contains the avail-

able information about the respective parameter of the imprecisely observed variable.

Following the same principles, in this paper it is proposed a new definition of the dis-

tribution function of a random set. This definition is simpler in its formulation and it

can be used in more general cases than previous proposals. The properties of the dis-

tribution function defined here are discussed: some issues about continuity, convergence

of the images of the distribution function, monotonocity and measurability are studied.

It is also stated that not all the information conveyed by the random set about the

original probability measure (the probability measure induced by the imprecisely ob-

served random variable) is kept by its distribution function.
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1. Introduction

Along with other interpretations (see, for example, [15,23]), random sets are

used to model imprecise perceptions of random quantities. In this context,
several authors have deal with the generalization of the definitions of the most

common parameters associated to random vectors. Thus, we can find in the

literature generalizations of the expected value [1,2,10], the median [5,6], the

mode [6], the variance [16–18,22], inequality indices [20] and the covariance

between two random variables [24]. Some of these definitions [1,5,6,17,18,24]

follow a similar scheme: since a random set represents the imprecise observa-

tion of a random variable, the new ‘‘generalized parameter’’ contains the

available information about the respective parameter (the reader may consult
[18] for further explanation on this approach). According to this viewpoint, we

have considered in previous papers [3,7] a set of probability measures to rep-

resent the available information about the true probability measure governing

the random outcome. We study the some important properties about this set of

probabilities in connection with the upper and lower probabilities defined by

Dempster [11]. We think these studies should not be complete without making

a deep investigation about the (imprecise) information the random set provides

about the distribution function. In this paper, we start from the initial defini-
tion given by Kruse and Meyer [18] and we propose a modification that is

simpler in the formulation and can be used in a more general case. The paper is

organized as follows. In Section 2, we give an overview of the basic notions

about random sets, needed for understanding the rest of the paper. In Section 3

we introduce the new concept, comparing it with the initial definition given by

Kruse and Meyer. Afterwards, we study whether the properties of the distri-

bution function of a probability measure are also fulfilled in this context. First,

we show that the ‘‘random set distribution function’’ does not contain all the
information that C provides about the probability measure of the vaguely

observed random vector. Then we examine whether the well known properties

of upper continuity and convergence of the images of distribution functions to

0 and 1 for divergent sequences of vectors are also satisfied in this general

environment for a suitable metric defined on Pð½0; 1�Þ. We prove that some

particular conditions are required to the images of C to satisfy this properties.

On the other hand, the ‘‘monotonicity’’ property of distribution functions is

not fulfilled in this context when set-valued arithmetic is used on Pð½0; 1�Þ.
Finally, we prove that the random set distribution function is measurable

under certain particular conditions for C. Section 4 concludes the paper.

2. Preliminary concepts

We will describe a random experiment by a probability space, ðX;A; P Þ,
where X is the set of all possible outcomes of the experiment, A is a r-algebra



I. Couso et al. / Information Sciences 159 (2004) 109–123 111
of subsets of X and the set function P , defined on A, is a probability measure.

We will represent by a measurable function, U0 : X ! X0, the observation of

some attribute of the elements in the referential set, X. When our measurement

is not totally precise, we do not know the exact value, U0ðxÞ, of the charac-
teristics for the individual x. Hence, we can define a multi-valued mapping,

C : X ! PðX0Þ, that represents the imprecise perception of the measurable

function U0: all we can observe about the point U0ðxÞ is that it belongs to the

set CðxÞ. Following the notation established by Kruse and Meyer [18], and

Meyer and Kruse [24] we will call U0 the original random variable. A multi-

valued mapping C is called a random set when it is a measurable function with

respect to some r-algebra defined on a certain subset of PðXÞ. We can find

several measurability conditions on the literature (see, for instance [14]). In this
paper, we are interested on the probability information provided by the multi-

valued mapping, so we need to consider the so-called strong measurability

condition [14].

Definition 2.1. Let us consider two measurable spaces ðX;AÞ and ðX0;A0Þ, and
a multi-valued map C : X ! PðX0Þ. Let us also consider, for each B 2 A0 the

set CB ¼ fC � X0jC \ B 6¼ ;g. We say that C is strong measurable when all the

sets C�1ðCBÞ ¼ fx 2 XjCðxÞ [ Bg, 8B 2 A0 are A measurable. In other words,
C is strong measurable when it is an A-rhfCBjB 2 A0gi measurable function.

For any measurable subset of X0, B 2 X0, the (measurable) sets C�1ðCBÞ and
½C�1ðCBcÞ�c ¼ fx 2 XjCðxÞ � Bg are respectively called the upper and lower
inverse [25] of B. From now on we will use the simpler notation B� ¼ C�1ðCBÞ
and B� ¼ ½C�1ðCBcÞ�c.

In order to summarize the information that the random set C contains about

the probability measure P � U�1
0 , Dempster [11] defined the upper and lower

probabilities of any measurable set B by the formulae:
P �ðBÞ ¼ Pfx 2 XjCðxÞ \ B 6¼ ;g=Pfx 2 XjCðxÞ 6¼ ;g
¼ PðB�jðX0Þ�Þ 8B 2 A0;

P�ðBÞ ¼ Pfx 2 XjCðxÞ � B;CðxÞ 6¼ ;g=Pfx 2 XjCðxÞ 6¼ ;g
¼ PðB�jðX0Þ�Þ 8B 2 A0:
Notice that they are well defined for the measurability condition above

mentioned. When ½ðX0Þ��c ¼ fx 2 XjCðxÞ ¼ ;g is a null set, the equalities

P �ðBÞ ¼ P ðB�Þ, and P�ðBÞ ¼ PðB�Þ, hold 8B 2 A0. Through the paper we will

assume this condition is satisfied: if C is the mathematical model to represent

the imprecise observation about the measurable function U0, CðxÞ cannot be
the empty set, for any x 2 X. At least it must contain the element UðxÞ. Under

this condition, Dempster’s upper and lower probabilities constitute upper and
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lower bounds for the value P � U�1
0 , i.e. P�ðBÞ6 P � U�1

0 ðBÞ6 P �ðBÞ, 8B 2 A0.

Hence, some authors (see [23], for instance) describe the information provided

by C about the ‘‘true’’ probability measure by the pair of dual set functions P�
and P �. However, it seems to be more precise to consider, for each event
B 2 A0, the set of possible probability values:
PCðBÞ ¼ fP � U�1ðBÞjU 2 SðCÞg;
where SðCÞ is the class of all measurable selections [14] of C:
SðCÞ ¼ fU : X ! X0jU measurable; UðxÞ 2 CðxÞ 8x 2 Xg:
It is evident that the set of probability measures ‘‘dominated’’ by P �:
MðP �Þ ¼ fQ : A0 ! ½0; 1� probabilityjP�ðBÞ6QðBÞ6 P �ðBÞ 8B 2 A0g
¼ fQ : A0 ! ½0; 1� probabilityjQðBÞ6 P �ðBÞ 8B 2 A0g
contains the class
DðCÞ ¼ fQ : A0 ! ½0; 1� probabilityjQðBÞ 2 PCðBÞ 8B 2 A0g:
On the other hand, it seems to be more operative to work withMðP �Þ and so, it

would be interesting to know whether both classes do coincide: on the one

hand, we need to know whether DðCÞ is convex. The fact is not true in the
general case, as we check in [3,7]. Some authors (see [8,9,19]) observe that the

replacement of a set of probabilities by its convex hull may lead to the loss of

relevant information. On the other hand, we need to check whether the ex-

tremes of DðCÞ coincide with those ofMðP �Þ. Some studies on that score can be

read in [3,4,7,13].

Now we have recalled these preliminary concepts, we can show the defini-

tions and results obtained in this work. In the following section, we will in-

vestigate the way to represent the information that C provides about the
distribution function of the original random variable, FU0

. Thus, we will in-

troduce the concept of ‘‘distribution function of a random set’’, comparing it

with the definition introduced by Kruse and Meyer [18]. Then we will examine

the relationships between this new information and the information provided

by the sets of probabilities DðCÞ and MðP �Þ above described. Afterwards, we

will show some interesting properties of the distribution function of a random

set.
3. The distribution function for imprecise data

Let us consider a probability space ðX;A; P Þ and a random vector U0 ¼
ðU 1

0 ; . . . ;U
k
0 Þ : X ! Rk that represents the simultaneous observation of k

quantitative attributes of the elements in the initial space, X. Let the multi-



I. Couso et al. / Information Sciences 159 (2004) 109–123 113
valued mapping C : X ! PðRkÞ model the imprecise observation of U0. The

information we have about the distribution function of U0, FU0
, is given by the

set of functions:
FðCÞ ¼ fFU : Rk ! ½0; 1�jU 2 SðCÞg:
Since every FU determines the probability measure P � U�1, FðCÞ provides all
the available information about the ‘‘original’’ probability measure, P � U�1

0 .

On the other hand, when we consider a particular vector x ¼ ðx1; . . . ; xkÞ 2 Rk,

the information that C contains about the value FU0
ðxÞ ¼ P � U�1

0 ð�1; x� is
determined by the following set of real values:
FCðxÞ ¼ fFU ðxÞjU 2 SðCÞg ¼ PCðð�1; x1� � � � � � ð�1; xk�Þ:
The last is the most precise set that contains, with complete certainty, the

unknown value FU0
ðxÞ. The multi-valued mapping, FC : Rk ! Pð½0; 1�Þ that

assigns to each x 2 Rk the value FCðxÞ will be called ‘‘the distribution function

of C’’.
This new concept is similar to the definition given by Kruse and Meyer [18],

but there exist some remarkable differences that we want to point out. Firstly,

the authors suppose that the random vector that represents the k-tuple of

characteristics of the members of the population studied, U0, is defined on a

product space ðX1 � X2;A1 �A2; P1 � P2Þ where second probability space,

ðX2;A2; P2Þ, must satisfy the following condition: for each k 2 ½0; 1�, there

exists some event A2 2 A2 that satisfies the equality P2ðA2Þ ¼ k. We think that

this condition is too much restrictive, since not every random experiment may

be described this way: let us think, for instance, on a random choice described
by a probability space ðX;A; P Þ, where X is a finite population. In this case, A
is a finite class of events, and, therefore, P can only take a finite number of

different values. Under the condition imposed by Kruse and Meyer above

mentioned, the images of FC are convex as they prove in [18]. This seems a good

property, since real intervals are determined by their extreme points. However,

in connection wit some studies about non-convex sets of probabilities (see, for

instance [8,9,19]), we can observe that the replacement of the set FCðxÞ by its

convex hull may lead us to lose important information.
On the other hand, Kruse and Meyer only consider the possibility that the

random set may be expressed as the Cartesian product of k real random sets (k
characteristics separately observed). This model is not able to represent some

usual situations, as we describe below.

Example 3.1. Let us think, for instance, about a population of rectangles

where we can only measure their area. The information we obtain about the

pair ðBðxÞ;HðxÞÞ (base and height) of a particular rectangle x from the
measurement AðxÞ (area of x) is
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CðxÞ ¼ fðb; hÞ 2 ðRþÞ2jbh ¼ AðxÞg � R2:
In general, the information we obtain about a k-tuple of characteristics ðU 1
0 ; . . . ;

Uk
0 Þ of the individuals of a population from the measurement of a non-injective

function of them, S ¼ gðU 1
0 ; . . . ;U

k
0 Þ is given by the set-valued mapping:
CðxÞ ¼ fðx1; . . . ; xkÞ 2 X1 � � � � � Xkjgðx1; . . . ; xkÞ 2 SðxÞg
� X1 � � � � � Xk;
where Xi is the set of possible values for the characteristic Ui
0, i ¼ 1; . . . ; k.

Furthermore, according to Kruse ad Meyer [18], the images of the k com-

ponents, C1; . . . ;Ck, of the random set, C, need to satisfy the following con-

ditions:

(i) If inf CiðxÞ > �1, then inf CiðxÞ 2 CiðxÞ.
(ii) If supCiðxÞ < 1, then supCiðxÞ 2 CiðxÞ.
(iii) If CiðxÞ is not a bounded set, then it must be convex.

In our opinion, these last conditions are very particular.

We can summarize by saying that our definition coincides with Kruse and

Meyer’s one under the particular hypothesis they impose. But, since we pretend

to describe the imprecise observation of a k-tuple of characteristics of elements

chosen at random from an arbitrary population, we think that no additional

conditions might be imposed to the initial space ðX;A; P Þ and the images of C.
Now we will show some interesting properties of the mapping FC. At first

sight, we could think that it is useful to replace the mapping PC mentioned in

Section 2 by the distribution function FC, since the last is defined onRk, while the

former is defined on a class of sets. However, contrary to the ‘‘classical’’ case

(precise observation described by a random vector) the distribution function

does not determine the set function PC, as we show in the following examples.

Example 3.2. Let C : X ! PðRÞ be a random set with closed interval images. In

such a case, the real valued mappings f �; f� : X ! R defined as
f�ðxÞ ¼ minCðxÞ, f �ðxÞ ¼ maxCðxÞ, 8x 2 X are Borel measurable, (see [13])

and their images are selected from the images of C. Hence the images of Ff� and
Ff � are contained in those of FC. On the basis of Lemma 3.4 later on enunciated,

we can observe that the images of the distribution function of C are given by
FCðxÞ ¼ fP ðCÞjC 2 A; ðf �Þ�1ð�1; x� � C � ðf�Þ�1ð�1; x�g 8x 2 R:
We can also see that, if the images of a multi-valued mapping C0 : X ! PðRÞ
have maximum and minimum values and they respectively coincide with the
images of f � and f�, then it has associated the same distribution function as C
(FC 	 FC0).
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Let us consider, for instance, the measurable space ðX ¼ fx1;x2g;
A ¼ PðXÞÞ provided with the uniform (discrete) probability measure, P , de-
fined on PðXÞ. Let us also consider the random sets C and C0 defined on X by
Cðx1Þ ¼ f0; 1g; Cðx2Þ ¼ f2g; C0ðx1Þ ¼ ½0; 1�; C0ðx2Þ ¼ f2g:
It is easy to check that they induce the same distribution function ðFC ¼ FC0 Þ.
However, C contains more precise information than C0 about the original

probability measure. We can observe that there are only two probability mea-

sures that are compatible with C (since C has only two measurable selections),

but there exists an infinity of probability measures that are compatible with C0.

Example 3.3. Let us now consider two random sets, C and C0, defined on ½0; 1� as
CðxÞ ¼ ½1; 3� if x6 1=2;
½2; 4� if x > 1=2;

�

C0ðxÞ ¼ ½1; 4� if x6 1=2;
½2; 3� if x > 1=2:

�

They have the same distribution function. It is the multi-valued mapping:

FC : R ! Pð½0; 1�Þ, FCðxÞ ¼ ½FX2
ðxÞ; FX1

ðxÞ�, 8x 2 R, where X1 is a random

variable that takes the values 1 and 2 with the same probability (1/2) and X2

takes the values 3 and 4 also with the same probability.

We can observe that, in general, the distribution function of a closed ran-

dom interval only depends on the marginal distributions of its extremes.

However, if we want to know all the information that the random set contains
about P � U�1

0 , we need to know the joint distribution of the extremes,

P � ðX1;X2Þ�1
. In [12] the author proves that, for a closed random interval C,

the knowledge of P�ð½a; b�Þ for all ða; bÞ 2 R2 determines P�ðAÞ and P �ðAÞ for

any Borel set A 2 bR. The same does not happen when we restrict to the class of

intervals of the type ð�1; x�, as we have shown in this example.

We deduce from the above examples that the class of probability measures

determined by the multi-valued map FC : Rk ! Pð½0; 1�Þ does not coincide in
general with the more precise set DðCÞ described in Section 2. We can also

compare the information provided by FC about the ‘‘true’’ probability measure

P � U�1
0 with the set of probabilities dominated by P �, MðP �Þ, also described in

Section 2. We can deduce from the following example that none of these two

models provides, in the general case, more precise information about P � U�1
0 .

Example 3.4. Consider the initial probability space ðX;A; PÞ, where

X ¼ fx1;x2;x3g, A ¼ PðXÞ and Pðfx1gÞ ¼ P ðfx2gÞ ¼ 0:1, P ðfx3gÞ ¼ 0:8.
Let us now consider the multi-valued map C : X ! Pðf0; 1gÞ given by
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Cðx1Þ ¼ f0g, Cðx2Þ ¼ f1g, Cðx3Þ ¼ f0; 1g. It is easy to see that the (multi-

valued) distribution function of C is given by
FCðxÞ ¼
f0g if x < 0;
f0:1; 0:9g if x 2 ½0; 1Þ;
f1g if xP 1:

8<
:

Every probability measure Q : Pðf0; 1gÞ ! ½0; 1� compatible with this infor-
mation satisfies some of the three following conditions:

• Qðf0gÞ ¼ 0:1, Qðf1gÞ ¼ 0:9.
• Qðf0gÞ ¼ 0:9, Qðf1gÞ ¼ 0:1.
• Q has three atoms, f0g, f1g and fxg, where x 2 ð0; 1Þ, and their probability

values are Qðf0gÞ ¼ 0:1 ¼ Qðf1gÞ and QðfxgÞ ¼ 0:8.

On the other hand, we see that the probability measures dominated by the
upper probability of C, P �, are those Q satisfying the conditions: Qðf0gÞ ¼ p,
Qðf1gÞ ¼ 1� p, 0:16 p6 0:9.

We observe that none of these two classes of probability measures contains

the other.

The distribution function of a random set defined on Rk preserves, in some

sense, some of the properties that characterize the distribution function of a

random vector, as we will show below. Some of these properties require the
existence of a metric. Since the distribution function of a set-valued function is

also set-valued, we need to consider a generalization of the usual metric on R to

the class of subsets of R. We will consider Hausdorff pseudo-metric on PðRÞ,
which is defined as
dHðA;BÞ ¼ max sup
a2A

inf
b2B

ja
�

� bj; sup
b2B

inf
a2A

ja� bj
�

8A;B � R:
If we consider the class of non-empty and compact sets of R, KðRnÞnf;g, the
pair ðKðRnÞnf;g; dHÞ is a complete and separable metric space.

Before showing the mentioned properties of FC, we need to give some sup-

porting results.

Proposition 3.1 [7]. Consider the probability space ðX;A; P Þ and a Polish space
ðE; sÞ. Let C : X ! PðEÞ be A-rhfCBjB 2 bEgi measurable with closed and non-
empty images. Then
P �ðAÞ ¼ max PCðAÞ and P�ðAÞ ¼ min PCðAÞ 8A 2 FðEÞ [ GðEÞ
(FðEÞ––resp. GðEÞ––denotes the class of closed––resp. open––sets in ðE; sÞ; bE

denotes the Borel r-algebra on ðE; sÞ).
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Proposition 3.2 [7]. Let us consider a probability space ðX;A; P Þ, and a normed
space ðE; k � kÞ. Let us also consider an A-rhfCBjB 2 bEgi measurable multi-
valued mapping, C : X ! PðEÞ. Suppose that CðxÞ is open and bounded, 8x 2 X
Then
P �ðAÞ ¼ max PCðAÞ and P�ðAÞ ¼ min PCðAÞ 8A 2 bE:
Lemma 3.3 [7]. Let us consider a probability space ðX;A; P Þ, and a measurable
space, ðX0;A0Þ. Let C : X ! PðX0Þ be a simple random set (a random set with a
finite number of different images). Then
P�ðAÞ ¼ max PCðAÞ and P �ðAÞ ¼ PCðAÞ 8A 2 A0:
Lemma 3.4. Let us take a probability space ðX;A; P Þ and a measurable space
ðX0;A0Þ. Let C : X ! PðX0Þ be a random set and let us consider an event A 2 A0

such that fP�ðAÞ; P �ðAÞg � PCðAÞ. Then

PCðAÞ ¼ fP ðCÞjC 2 A;A� � C � A�g:
Proof. By hypothesis, there exist two random selections of C, X1;X2 :
X ! PðX0Þ such that PX1

ðAÞ ¼ P�ðAÞ and PX2
ðAÞ ¼ PðA�Þ. Hence: A� � X�1

1 ðAÞ
with P ðX�1

1 ðAÞ n A�Þ ¼ 0, and X�1
2 ðAÞ � A� where P ðX�1

2 ðAÞ n C2Þ ¼ 0. Let us

now take an arbitrary C 2 A such that A� � C � A� and consider the random

variable XC :¼ X1ICc þ X2IC. It is a measurable selection of C. On the other

hand, it satisfies the equality P � X�1
C ðAÞ ¼ P ðCÞ. Hence P ðCÞ belongs to the set

of values PCðAÞ. h

Lemma 3.5 [25]. Consider a probability ðX;A; P Þ, a measurable space ðX0;A0Þ
and random set C : X ! PðX0Þ, with lower probability P�. Then, for a decreasing
sequence of sets fAngn2N, we have
P�ðAnÞ # P� lim
n!1

An

� �
:

The following classical result can be found in [27].

Lemma 3.6. In a Hausdorff topological space, ðE; sÞ, the following statements
are satisfied:

1. The intersection of a decreasing sequence of compact and non-empty subsets of
E, fKngn2N � KðEÞ n f;g, is also non-empty.

2. If F is closed and K is compact, then K \ F is compact.

Lemma 3.7. Let us consider a probability space ðX;A; PÞ, a Hausdorff topo-
logical space ðE; sÞ and its Borel r-algebra, bE. Let C : X ! PðEÞ be a random
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set with compact and non-empty images. Let us also consider a decreasing se-
quence of closed subsets of E, An # A. Then P �ðAnÞ # P �ðAÞ.

Proof. It is sufficient to prove that the sequence fA�
ngn2N converges to A�. On the

one hand, it is evident that A�
nþ1 � A�

n 8n 2 N. On the other hand, the equalityT1
n¼1 A

�
n ¼ A� holds by Lemma 3.6. h

We also need to prove the following lemma, to get one of the main results in

this section. On the other hand, it is important by itself, since it improves a

result given in [21].

Lemma 3.8. Let ðX;A; PÞ be a probability space and let us consider a normed
space ðE; k � kÞ. Let C : X ! PðEÞ be a random set (measurable with respect to
the Borel r-algebra) with bounded images.

1. If CðxÞ is open, for all x 2 X, then there exists a sequence of simple random
sets with compact images, fCngn2N, such that CnðxÞ � Cnþ1ðxÞ, 8x 2 X,
8n 2 N and CðxÞ ¼

S
n2N CnðxÞ, 8x 2 X.

2. If CðxÞ is closed, for all x 2 X, then there exists a sequence of simple random
sets with compact images, fCngn2N, such that, for each x 2 X, there exists
nðxÞ 2 N such that Cnþ1ðxÞ � CnðxÞ, 8x 2 X, 8nP nðxÞ and CðxÞ ¼T

nP nðxÞ CnðxÞ, 8x 2 X.
Proof. Let us consider a sequence of positive numbers converging to 0. Since

Bð0; nÞ is compact, there exists, for each n 2 N, a class of sets

fBðxn1; �nÞ; . . . ;Bðxnmn
; �nÞg such that Bð0; nÞ �

Smn
i¼1 Bðxni ; �nÞ. Let us now consider

the class of sets fEn
1; . . . ;E

n
mn
g, where En

i :¼ Bð0; nÞ \ Bðxni ; �nÞ.
Let us define, for each n 2 N, the class Cn ¼ fAn

1; . . . ;A
n
kn
g as follows:
k1 ¼ m1;

A1
i :¼ E1

i 8i ¼ 1; . . . ;m1;

Bn
i :¼ En

i \ ðBð0; n� 1ÞÞc 8i ¼ 1; . . . ;mn; nP 2;

Cn
ij :¼ En

i \ An�1
j 8i ¼ 1; . . . ;mn; j ¼ 1; . . . ;mn�1; nP 2;

Cn ¼ fAn
1; . . . ;A

n
kn
g;

:¼ fBn
1; . . . ;B

n
mn
;Cn

11; . . . ;C1mn�1
; . . . ;Cn

mn1
; . . . ;Cn

mnmn�1
g 8nP 2:
This family of sets satisfies the conditions dðAn
i Þ6 �n, i ¼ 1; . . . ; kn, n 2 N andSkn

i¼1 A
n
i ¼ Bð0; nÞ.

1. Consider, for each n 2 N, the measurable set-valued function Cn : X !
PðEÞ defined as CnðxÞ ¼

S
fi2f1;...;mngjAn

i �CðxÞg A
n
i . We observe that it has a fi-

nite number of different images (it is a simple multi-valued mapping).
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Let us now prove that, for each x 2 X, the sequence of sets fCnðxÞgn2N
is increasing: if x 2 CnðxÞ, then there exists some index in 2 f1; . . . ; kng,
such that x 2 An

in
� Bð0; nÞ. Since Bð0; nþ 1Þ ¼

Smnþ1

i¼1 Enþ1
i , we have An

in
¼Smnþ1

i¼1 ðAn
in
\ Enþ1

i Þ ¼
Smnþ1

i¼1 Cnþ1
ini

. Therefore, there exists some index
jn 2 f1; . . . ;mng such that x 2 Cnþ1

injn
2 Cnþ1. Furthermore, Cnþ1

injn
� An

in
�

CðxÞ. Thus, x 2 Cnþ1ðxÞ. On the other hand, according to the definition of

fCngn2N, it is evident that CnðxÞ � CðxÞ, 8x 2 X; n 2 N. Finally, let us

prove that, for each x 2 X we have that CðxÞ �
S

n2N CnðxÞ. For arbitrary
x 2 X and x 2 CðxÞ, since CðxÞ is open and bounded, there exist n1 2 N

such that CðxÞ � Bð0; n1Þ and � > 0 such that Bðx; �Þ � CðxÞ. Let us take

some n2 2 N so that �n < �=2, 8nP n2. Let n0 :¼ maxfn1; n2g. Under these

conditions, we know that there exists in0 2 f1; . . . ; kn0g such that
x 2 Ain0

� CðxÞ. Thus, x 2 Cn0ðxÞ.
2. Let us consider, for each n 2 N, the set-valued function Cn : X ! PðEÞ de-

fined as CnðxÞ ¼
S

fi2f1;...;mngjAn
i \CðxÞ6¼;g A

n
i . We observe that it is simple and

measurable. Following a similar scheme as in part 1, we can see that this se-

quence satisfies the required conditions. h

On the basis of the previous results, we can investigate whether the well

known properties that characterize the distribution functions of random vec-
tors are fulfilled in this general context. First we will study the limits and the

right continuity.

Proposition 3.9. Let us consider the probability space ðX;A; P Þ. Let
C : X ! PðRkÞ be a random set with closed images. Then, the following prop-
erties are fulfilled:

1. (Limits) If the images of C are bounded subsets of Rk a.s.(P ) then:
• limx!�1 dHðFCðx1; . . . ; x; . . . ; xkÞ; f0gÞ ¼ 0.

• limx1!1;...;xk!1 dHðFCðx1; . . . ; xkÞ; f1gÞ ¼ 0.

2. (Right-continuity) If the images of C are compact, then
lim
x#a

dHðFCðxÞ; FCðaÞÞ ¼ 0:
Proof. 1. Consider, for each i 2 f1; . . . ; kg the measurable set-valued function

Ci ¼ Pi � C, where Pi is the ith projection. Let us also consider the measurable

real function f �
i :¼ supCi. Under the hypotheses of this theorem, each function

f �
i is bounded a.s.(P ). So, the k-dimensional random vector f � ¼ ðf �

1 ; . . . ; f
�
k Þ is

also bounded. Hence, limx!�1 Ff � ðx1; . . . ; x; . . . ; xkÞ ¼ 0. Since Ff � ðxÞP
sup FCðxÞ 8x 2 Rk, we obtain that
lim
x!�1

dHðFCðx1; . . . ; x; . . . ; xkÞ; f0gÞ ¼ lim
x!�1

sup FCðx1; . . . ; x; . . . ; xkÞ ¼ 0:
The proof is similar to the last one.
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2. Let us take a decreasing (for the partial usual order in Rk) sequence

fxmgm2N � Rk, that converges to a vector a, xm # a. For an arbitrary m 2 N,

take an arbitrary x 2 PCðð�1; xm�Þ. We know that x ¼ P ðCÞ with C 2 A and

ð�1; xm�� � C � ð�1; xm��. Since ð�1; a�� � C \ ð�1; a�� � ð�1; a��, we
know by Proposition 3.1 and Lemma 3.4, that P ðC \ ð�1; a��Þ 2 PCðð�1; a�Þ.
On the other hand, C � ð�1; xm�� and ð�1; a�� � ð�1; xm��, so we see that

P ðC \ ðð�1; a��ÞcÞ6 P �ðð�1; xm�Þ � P �ðð�1; a�Þ. Hence we obtain that

inf y2PCðð�1;a�Þ jx� yj6 P �ðð�1; xm�Þ � P �ðð�1; a�Þ. Similarly, for an arbitrary

y 2 PCðð�1; a�Þ, we can see that infx2PCðð�1;xm�Þ jx � yj 6 P�ðð�1; xm�Þ �
P�ðð�1; a�Þ. Since limm!1 P�ðð�1; xm�Þ ¼ P�ðð�1; a�Þ (see Lemma 3.5) and

limm!1 P �ðð�1; xm�Þ ¼ P �ðð�1; a�Þ, we immediately deduce the thesis of this

result. h

We can see that FC does not necessarily fulfill the dH-right continuity

property when we do not impose the condition that C has compact images, as

we observe in the following example.

Example 3.5. Consider the probability space ð½0; 1�; b½0;1�; k½0;1�Þ, where b½0;1� is

the restriction to ½0; 1� of the Borel r-algebra induced by the usual topology on

R, and k½0;1� is the restriction of Lebesgue measure to the same interval. Con-
sider the constant set-valued mapping C : ½0; 1� ! PðRÞ defined as

CðxÞ ¼ ð0; 1Þ, 8x 2 ½0; 1�. Consider the point a ¼ 0 and a decreasing sequence of

values fxngn2N, xn > 0, 8n 2 N converging to 0. Under these conditions, we

observe that FCðxnÞ ¼ ½0; 1�, 8n 2 N. But, on the other hand FCð0Þ ¼ f0g, so
limn!1 dHðFCðxnÞ; FCð0ÞÞ ¼ 1 6¼ 0.

On the other hand, we can check that the ‘‘extended monotonicity’’ property

of distribution functions is not fulfilled in this more general case. Let us con-
sider the set-valued mapping DFC : RecðRkÞ ! PðRÞ defined as DFCða; bÞ :¼

k

i¼1ci � FCðviÞ (set-valued arithmetic), where the vis are the 2n vertices of the

rectangle determined by a and b, and ci :¼ ð�1Þr for the vertices with r max-

imum coordinates and k � r minimum coordinates, 8a; b 2 Rk such that a6 b,
where ‘‘6 ’’ is the usual partial order defined in Rk. Then, the images of DFC are

not necessarily contained in Rþ. In the ‘‘classical’’ case of random vectors

(precise observation of the characteristics), the images of FC are positive

numbers (see, for instance [26]).
It is well known in probability theory that the distribution function of a

random vector is measurable. Next, we will show that the distribution function

of a random set is also measurable, under some particular conditions.

Theorem 3.10. Let ðX;A; P Þ be a probability space and C : X ! PðRkÞ a simple
random set with bRk -measurable images. Then the set-valued mapping FC is also
measurable.
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Proof. Let us suppose that C can be expressed as C ¼ 
i¼1PnAi � ICi , where

Ci 2 A (this condition is satisfied if C is A-rhCðbRk Þi measurable) and Ai is

measurable, 8i ¼ 1; . . . ; n. Now consider the family of sets P :¼ f
Tn

i¼1 BijBi 2
fAi;Ac

i g 8i ¼ 1; . . . ; ng. Let us denote by D1; . . . ;Dr the elements of P. This
family of sets is a partition of Rk. Let us consider an arbitrary i0 2 f1; . . . ; rg
and two arbitrary elements (in case of their existence) of it x; y. If Di0 does not

have maximum and minimum or else x and y do not coincide with them, then a

simple but large proof leads us to see that FCðxÞ ¼ FCðyÞ. Thus, for each x 2 Rk

the set RðxÞ ¼ fy 2 RkjFCðyÞ ¼ FCðxÞg belongs to the set of (finite) unions and

intersections of the elements of the family: fD1; . . . ;Drg [
Sr

i¼1ffxgjx 2
fminDig;maxDig. Since the elements of this class are bRk -measurable, the

former set, RðxÞ is also measurable. We also see that FC has a finite quantity of
different images.

To see that FC is measurable, we need to prove that, for each S 2 bR, the set

fx 2 RkjFCðxÞ \ S 6¼ ;g is bRk -measurable. We have proved that FC is simple,

so it suffices to prove that for an arbitrary Borel set D 2 bR, fx 2 Rkj
FCðxÞ ¼ Dg is bRk -measurable. This is true according to the arguments in last

paragraph. h

Theorem 3.11. Let ðX;A; P Þ be a probability space. Let C : X ! PðRkÞ be a
random set with open and bounded images. Then, FC : Rn ! Pð½0; 1�Þ is mea-
surable.

Proof. By Proposition 3.2 and Lemma 3.4, we have that PCð�1; x� ¼
fP ðCÞjC 2 Ajð�1; x�� � C � ð�1; x��g. On the other hand, by Lemma 3.8,

we know that there exists an increasing (in Kuratowski sense) sequence of

simple random sets, fCngn2N, such that CðxÞ ¼
S1

n¼1 CnðxÞ, 8x 2 X. By

Lemma 3.3, we obtain that P �
n ðð�1; x�Þ ¼ max PCðð�1; x�Þ, and

Pn�ðð�1; x�Þ ¼ min PCðð�1; x�Þ, where P �
n and Pn� are respectively the upper

and lower probabilities of Cn. Hence, we have that PCnðð�1; x�Þ ¼
fP ðCÞjAn� � C � A�

ng, where An� denotes the measurable set fx 2 XjCnðxÞ �
ð�1; x�g and A�

n is fx 2 XjCnðxÞ \ ð�1; x� 6¼ ;g. Furthermore, we can easily

see that P �ðð�1; x�Þ ¼ limn!1 P ðA�
nÞ and P�ðð�1; x�Þ ¼ limn!1 P ðAn�Þ. Let us

prove now that limn!1 dHðPCðð�1; x�Þ; PCnðð�1; x�ÞÞ ¼ 0. Let us take an ar-

bitrary yn 2 FCnðxÞ. Then yn ¼ P ðCÞ, with An� � C � A�
n. We can also observe

that A� � An� � C � A�
n � A�, so PðCÞ 2 PCðAÞ and then inf z2PCðAÞ jyn � zj ¼ 0.

We can also observe that, for an arbitrary z 2 PCðAÞ, inf yn2PCn ðAÞ jz� ynj6 �ðnÞ,
where f�ðnÞgn2N converges to 0.

Thus, FC is the punctual limit (in dH or Kuratowski sense) of the sequence of

set-valued mappings fFCngn2N. On the other hand, each set-valued mapping

FCn : R
k ! Pð½0; 1�Þ is simple since Cn is. We also know that it is measurable, by

Theorem 3.10 (the images of each FCn are bRk -measurable, since they are

compact. Hence, we haven proved that FC is measurable. h
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4. Concluding remarks

Here, we have checked the measurability of FC in very particular cases. As

an open problem, we plan to prove it in a more general case. A similar proof to
that of Theorem 3.11 would not apply in a different case: in [7] we have pro-

vided some results related to the equality P � ¼ supPðCÞ under different con-
ditions for the images of C. However, in the general case we cannot get an

‘‘increasing’’ sequence of simple random sets that converges to C. So, we

should verify the measurability of FC with different techniques.
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