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In previous studies, we have shown that an Adaboost-based fitness can be successfully com-
bined with a Genetic Algorithm to iteratively learn fuzzy rules from examples in classification
problems. Unfortunately, some restrictive constraints in the implementation of the logical con-
nectives and the inference method were assumed. Alas, the knowledge bases Adaboost pro-
duces are only compatible with an inference based on the maximum sum of votes scheme, and
they can only use the t-norm product to model the “and” operator. This design is not optimal
in terms of linguistic interpretability. Using the sum to aggregate votes allows many rules to
be combined, when the class of an example is being decided. Because it can be difficult to
isolate the contribution of individual rules to the knowledge base, fuzzy rules produced by
Adaboost may be difficult to understand linguistically. In this point of view, single-winner
inference would be a better choice, but it implies dropping some nontrivial hypotheses. In this
work we introduce our first results in the search for a boosting-based genetic method able to
learn weighted fuzzy rules that are compatible with this last inference method. © 2007 Wiley
Periodicals, Inc.

1. INTRODUCTION

The first application of a boosting algorithm to learn fuzzy rules combined a
search algorithm with a fitness function taken from Real Adaboost to incremen-
tally learn descriptive fuzzy rules from examples in classification problems.1 There
are subsequent works in which approximate rules are also learned.2 A comprehen-
sive description of the use of boosting in fuzzy classifiers is given in Ref. 3.

In other publications,4,5 following the work of Friedman et al.,6 Adaboost is
regarded as a forward stepwise estimation of the statistical parameters defining a
logit transform of a Generalized Additive Model, and this property is used to extend
this last estimation to learn fuzzy models in regression problems. A similar statis-
tical interpretation was used later to improve the fuzzy Adaboost algorithm, again
in classification problems. Adaboost was considered as the application of the same
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forward stepwise procedure, a so-called matching pursuit in signal theory related
works,7,8 and an instance of the matching pursuit algorithm was successfully used
to extend the LogitBoost algorithm to learn descriptive fuzzy rules in classifica-
tion problems,9 solving some difficulties the AdaBoost algorithm poses in multi-
class problems.

Although all these methods are fast and produce accurate classifiers and
models, they all share a common problem: their output has a low degree of inter-
pretability. This is rooted in their own definition. Fuzzy systems can only be
compared to Generalized Additive models when the sum of votes scheme10 is
adopted. But the use of the sum to aggregate rules allows the existence of rules
that have no linguistic meaning by themselves, only when combined with other,
overlapping ones. In other words, one cannot isolate the contribution of a
single rule to the fuzzy classifier; they can be thought of as weights in a neural
network.

A better inference method, in terms of linguistic interpretability, is the “sin-
gle winner.”11 This last mechanism is compatible with the idea of a fuzzy rule
being an imprecise assertion, which states that all patterns in a given fuzzy region
belong to the same class. But the single-winner inference does not combine the
votes of the rules with the arithmetic sum, but with the maximum operator. Appar-
ently, this prevents us from using the analogy between fuzzy classifiers and addi-
tive models on which fuzzy Adaboost depends. Conversely, we will show later in
this article that this problem can be reformulated so that a matching pursuit, with a
prefitting stage, can be used to solve it.

The structure of this article is as follows: in the next section, fuzzy classifiers
are introduced and we explain how boosting can be applied to induce them from
data. Then, we explain how single-winner inference can be expressed in terms of
additive models, and a new algorithm is proposed. We finish with an empirical
evaluation of the new algorithm and some preliminary numerical results.

2. BOOSTING FUZZY CLASSIFIERS

2.1. Notation

At this point we introduce the basic notation employed throughout the arti-
cle. Let X be the feature space, and let x be a feature vector x � ~x1, . . . , xn ! � X.
Let p be the number of classes. The training set is a sample of m classified exam-
ples ~x i , yi !, where x i � X, 1 � yi � p, 1 � i � m.

The antecedents of all fuzzy rules in the classifier form a fuzzy partition A
of the feature space A � $A j %j�1. . .N , with A j � EP ~X!, where EP ~X! stands for
“fuzzy parts of X.” In the remaining part of this article, we will assume that the
training examples will be indexed by the letter i , the rules by j, the features by
f, and the classes by k; the ranges of these variables are 1 � i � m, 1 � j � N,
1 � f � n, and 1 � k � p. For example, if we write “for all x i ” we mean x i , 1 �
i � m; from now on, this range will not be explicitly stated unless its absence
leads to confusion.
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2.1.1. Linguistic Interpretation of Fuzzy Classifiers

We will define a fuzzy rule-based classifier by means of a fuzzy relationship
defined on A � $1, . . . , p% . Values of this relationship describe the degrees of com-
patibility between the fuzzy subsets of the feature space collected in A and each
one of the classes. In other words, for every antecedent A j we may have up to p
numbers between 0 and 1 that represent our degree of knowledge about the asser-
tion “All elements in the fuzzy set A j belong to class number k.” Values near 1
mean “high confidence” and values near 0 mean “absence of knowledge about the
assertion.”

In practical cases, we work with antecedents A j that can be decomposed in a
Cartesian product of fuzzy sets defined over each feature, A j � A1

j � A2
j � {{{�

An
j ; thus the rules are

if x1 is A1
j and . . . and xn is An

j

then truth~c1! � s1
j and . . . and truth~cp !� sp

j

We can restrict the definition further by defining n linguistic variables ~one lin-
guistic variable for every feature! and requiring that all terms sets Af

j in the ante-
cedents are associated with one linguistic term in its corresponding linguistic
variable. In this case, we obtain a fuzzy-rule-based descriptive classifier. If we do
not apply the latter restriction, we obtain an approximate classifier. This work deals
with descriptive classifiers.

2.1.2. Fuzzy Inference

Fuzzy reasoning methods define how rules are combined and how to infer
from a given input to the corresponding output.

An instance x is assigned to the class

arg maxk ∨
j

A j~x! ∧ sk
j ~1!

where “∧” and “∨” can be implemented by different operators. “∧” is always a
t-norm, usually the minimum or the product. In this work, we have chosen to use
the product.

Selecting an implementation of the “∨” operator is not immediate. Fuzzy Ada-
boost relies on the use of the “maximum voting scheme,”11 because the assign-
ment of confidence degrees to fuzzy rules derived from Adaboost is only meaningful
when the outputs of all rules are added to produce the output of the classifier ~see
Ref. 3!. It was mentioned in the Introduction that this scheme may be criticized
because of interpretability reasons. Consequently, in this article we are not inter-
ested in defining “∨” by means of the sum operation but instead use the maximum
operator.10 Observe that, in this case, all terms sk

j in rule number j except the max-
imum one can be removed without affecting the output of the classifier, which will
be formed by rules as follows:
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if x1 is A1
j and . . . and xn is An

j

then truth~cq~ j ! ! � sq~ j !
j

where q~ j !� arg maxk sk
j. There is an alternate linguistic expression for this rule:

if x1 is A1
j and . . . and xn is An

j

then class � q~ j ! with weight @sq~ j !
j #

2.2. Learning Fuzzy Rules

The learning algorithm that will be introduced in this article is based on the
similarities that exist between estimating additive models and boosting rules.6,9 In
the following sections, the concepts needed to understand these similarities are
summarized.

The statistical problem solved when learning a classifier is “estimate
P~class~x!� ck !.” When additive models are used to solve it, it is reformulated by
means of p random variables

yk~x! � �1 if class~x!� ck

0 otherwise
~2!

that allow us to transform the classification problem into a regression one, that of
estimating the conditional expectations E~ yk 6x!� P~class~x!� ck!, which is solved
as shown in the next subsection.

2.2.1. Additive Models

Additive models were introduced in the 1980s to improve precision and inter-
pretability of classical nonparametric regression techniques in problems with a
large number of inputs. These models estimate an additive approximation to the
multivariate regression function, where each of the additive terms is estimated
using a univariate smoother.

Let E~ y 6x!� p~class~x!�1! be the output random variable we wish to model,
and let x � ~x1, . . . , xn ! be the input random vector. The objective of the modeling
process consists of estimating the conditional expectation of y given x.

Linear regression assumes

E~ y 6x! � b0 � b1 x1 � {{{� bn xn ~3!

and obtains b0, . . . ,bn by least squares. Additive models generalize this schema
by allowing the use of a sum of nonlinear univariate regressors

E~ y 6x! � u0 � u1~x1!� {{{� un~xn ! ~4!

where ui are smooth functions that are estimated in a nonparametric fashion.
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Generalized additive models extend additive models by not assuming a Gauss-
ian distribution of the output, but any probability distribution in the exponential
family and making the additive component to depend on the mean of the output by
means of a link function g, so that

g~E~ y 6x!! � u0 � u1~x1!� {{{� un~xn ! ~5!

Additive models can be generalized furthermore. In extended additive mod-
els, the n univariate regressors ui are replaced by N functions rj of more than one
feature. In our context, these functions usually depend on a set of parameters g
and a multiplier b,

rj � bj r~x;gj ! ~6!

Thus the additive model becomes

g~E~ y 6x!! � r0 �(
j�1

N

bj r~x;gj ! ~7!

Generalized additive models embody many machine-learning algorithms. For exam-
ple, in radial basis neural networks the functions r~x,gj !� exp $7x � gj72 % are the
“basis functions,” gj are their centers, and bj are the weights that connect the input
layer with the output. In support vector machines, r~x,gj ! is a kernel and gj are the
support vectors. In our case, we will propose a model where r~x,gj ! is an expres-
sion that contains the membership A j of the antecedent of the j th fuzzy rule, gj

identifies the linguistic terms that participate in the rule, and bj is the weight of the
rule ~that we have called sq~ j !

j before!. The precise expression will be made clear
later.

2.2.2. Backfitting and the Logitboost Algorithm

Extended additive models are usually estimated by maximum likelihood. The
numerical techniques involved can be very different, but they all share a common
objective: given a cost function d that measures the differences between the con-
ditional expectation and its approximation, the learning algorithm consists of find-
ing N pairs of values $bj ,gj % minimizing each

E�d�y, (
a�1. . . N

j�a

ba r~x;ga!� br~x;g!�� ~8!

with respect to b,g.6 We are interested in a greedy learning algorithm that finds
$b1,g1% first, then $b2,g2 % , and so on.

Algorithms that learn a weighted sum of basis functions by sequentially
appending functions to an initially empty basis to approximate a target function in
the least-squares sense are contained in the family of the matching pursuit algo-
rithms.7 These algorithms have been compared to those used to learn support vec-
tor machines12 and radial basis neural networks in machine-learning problems,8

and also to Genetic Iterative Learning of fuzzy rules.3
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One of the most interesting properties of matching pursuit algorithms is that
they are good in keeping the sparsity of the solution; this explains the good gener-
alization properties of the methods listed before. We will also see in the following
sections that the same property guarantees a small number of rules in the fuzzy
case that will be described later.

As we mentioned in the preceding section, the objective of a binary classifi-
cation problem is to approximate the value E~ y 6x!� p~class~x!� 1!, which we
will abbreviate by p~x!. The response variable in a classification problem follows
the binomial distribution, whose corresponding extended additive model is13

log
p~class~x! � 1!

p~class~x!� 0!
� g~E~ y 6x!!� r0 � b1 r~x,g1!� {{{ ~9!

and the output of the model, reversing the logistic transform,

p~x! �
e g~E~ y 6x!!

1 � e g~E~ y 6x!! ~10!

If the greedy version of generalized backfitting ~the “matching pursuit” algo-
rithm!, also mentioned in the preceding subsection, is applied to this model, the
Logitboost algorithm is obtained.6 At each iteration, an adjusted dependent vari-
able is fitted by weighted least squares. The adjusted variable that arises from the
binomial distribution is

z � g~E~ y 6x!0 !�
1y�1 � p~x!

p~x!~1 � p~x!!
~11!

This response depends on the values p~x!, defined by means of Equation ~10!.
g~E~ y 6x!0 ! is the output of the additive model in the previous iteration, as defined
in Equation ~9!. When the method is particularized to learn fuzzy rules, g~E~ y 6x!0 !
is the output of the fuzzy rule base before the new rule is added, and the values sk

j

and the membership function A j are chosen to minimize

fitness~A j ! �(
i

n

p~x i !~1 � p~x i !!�sk
j{A j~x i !�

d~x i !� p~x i !

p~x i !~1 � p~x i !!
�2

~12!

and are searched by means of a genetic algorithm. An outline of the adaptation of
this method to learn fuzzy rules, as described in Ref. 9, is shown in Figure 1.

3. PROPOSED ALGORITHM

3.1. Definition of the Weak Learners

Let us recall Equation ~1!. We mentioned that an instance x is assigned to the
class

arg maxk ∨
j

A j~x! ∧ sk
j ~13!
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where “∧” and “∨” could be implemented by different operators. In fuzzy boost-
ing, this last expression became

arg maxk(
j

A j~x!{sk
j ~14!

and that allowed us to use the fuzzy memberships A j in antecedents as weak learn-
ers and obtain the weights of the rules sk

j by means of a boosting algorithm, as
shown in Figure 1.

To use single-winner inference, we want to use the max operator instead of
the sum. We have to obtain the weights sk

j of the expression that follows:

arg maxk �max
j

A j~x!{sk
j� ~15!

which is not a sum of terms and therefore not an additive model; thus boosting
makes no sense here. But, we can define a function

I ~x, j ! � �1 if j � arg max A j~x!{sk
j

0 elsewhere
~16!

~in words, I ~x, j !� 1 if the rule number j is the winner when classifying the input
x, and 0 if not! and rewrite Equation ~15! as

Figure 1. Outline of the basic version of backfitting applied to a logistic extended additive
model or Logitboost. For two classes problems the second loop is not needed, as pj1~x!� 1 �
pj2~x!. The knowledge base that this algorithm produces requires the “sum of votes” inference.
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arg maxk(
j

I ~x, j !{A j~x!{sk
j ~17!

The rewritten expression is related to Equation ~7! as follows. Observe that the
products

r~x,gj ! � I ~x, j !{A j~x! ~18!

can be regarded as weak learners, and their weights sk
j determined by backfitting.

Therefore, we have transformed the initial problem into another that can be solved
after estimating the function I. In the next subsection, we propose an iterative algo-
rithm to complete the task.

3.2. Recurrent Estimation of the Function I

Let us suppose for the time being that we have an initial rule base, compris-
ing N �1 rules, to which we want to add a new fuzzy rule. The additive model we
want to solve is

g~E~ yk 6x!! �(
j

I ~x, j !{A j~x!{sk
j ~19!

We know the values of I ~x i , j ! for all the rules in the initial base, at the points
in the training set I ~x i , j !�1 if the rule number j was the winner in the example i ,
0 otherwise. Now we want to improve the base by adding the N th rule. It is clear
that some of these values of I will change from 1 to 0 after the new rule is added
~otherwise, the new rule would not win at any example in the training set and it
would be useless to add it to the base!. But I participates in the definition of the
weak learners; therefore all values sk

j must be recalculated every time a rule is
added. Clearly, a prefitting version of the matching pursuit algorithm8 is manda-
tory for this problem: the consequents of all the rules in the initial base are affected
after a new rule is added to it.

If all the values I ~x i , j ! and A j~x i ! were known, the least squares election
of sk

j would be a standard problem of linear regression that can be solved by
means of a pseudoinverse. Let us suppose that the initial rule base is empty and
define fi0k � 0, pi0k � 1/2, and dik � 1 if class~xi ! � k and 0 otherwise. The
adjusted dependent variable is

zik � 0 �
dik � 1/2

1/2~1 � 1/2!
~20!

and, given a set of N membership functions A j , the N{p values sk
j can be found by

minimizing

fitness~A1, . . . , AN ! � �zik �(
j

I ~x i , j !{A j~x i !{sk
j�2

~21!

In matrix form, let S � @skj # , Z � @uki # , and F � @fji # , where skj � sk
j , uki � zik ,

and fji � fi1k . Then, the least squares solution of S is
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S � ZF t~F{F t !�1 ~22!

We can use a search algorithm ~a genetic algorithm, in this case! to find the set of
values of A j and I that minimize Equation ~21!, but the simultaneous search of A j

and I would not be efficient. We propose to use instead the recurrent algorithm
shown in Figure 2 to do the task. In the next section we will explain where this
function is called from and give an outline of the complete procedure.

Notice that the values of sk
j are randomly generated first to obtain an initial

guess of I; then sk
j are calculated by means of Equation ~22!. I is estimated again; if

old and new values are the same, the procedure stops. Otherwise, the process is
repeated. In practical simulations we have observed that a smoothing term a, as
shown in Figure 2, improves the speed of convergence.

3.3. Scheme of the Algorithm

An outline of the algorithm is shown in Figure 3. Fitness values computed
by the function “AddOneRule” are optimized by a Genetic Algorithm, which is
launched once every time a new rule is added to the base. The algorithm is incre-
mental, because antecedents of rules do not change between iterations, but their
weights can be modified by the mentioned function.

Binary coded genetic algorithms are a natural choice for this problem, and we
have experimentally checked that the rules that the GA finds are close to the opti-
mal ones. We use a coding scheme based on Ref. 14. Let us codify a linguistic

Figure 2. The procedure AddOneRule takes as inputs a fuzzy classifier of size N and the ante-
cedent of a fuzzy rule. Its output consists of a new fuzzy classifier, of size N � 1, and a numer-
ical fitness value that measures the merit of the new rule. Adding one rule to the base implies
recalculating the importance of all consequents.
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term with a “1” bit in a chain of so many bits as different terms in the linguistic
partition. For example, let $Low, Med, High% be the linguistic labels of all fea-
tures in a problem involving three input variables and two classes. The antecedent

x1 is High and x2 is Med and x3 is Low

is codified with the chain 001 010 100. We could use this encoding to represent
rules for which not all variables appear in the antecedent and “OR” combinations
of terms in the antecedent. For example, the antecedent of the rule

If x1 is High and x3 is Low then . . .

is codified with the chain 001 000 100, and

If x1 is (High or Med) and x3 is Low then . . .

will be assigned the chain 011 000 100. With this structure, the GA is also exploited
to integrate a rule-wise feature selection process into the search scheme.

4. PRELIMINARY BENCHMARK RESULTS

The data sets used in this article to test the accuracy of the proposed algo-
rithm are taken from the UCI Repository of Machine Learning Databases and
Domain Theories,15 from the literature,16 or are synthetic.3 The following data sets
are used:

• PIMA ~Pima Indians Diabetes Database!: two classes problem. The patient shows signs
of diabetes according to World Health Organization criteria or not. Eight numerical
attributes ~related to blood pressure, number of pregnancies, age, etc.!. The number of
instances are 768, many attributes have missing values and these have been encoded
with the numerical value 0.

• Cancer ~Wisconsin Breast Cancer!: the so-called original data set in Ref. 15. Two classes
problem, malignant or benign, nine integer attributes ~cell size, cell shape, etc.! from 1
to 10, 699 instances.

Figure 3. Outline of the backfitting algorithm applied to a logistic extended additive model
under single-winner inference, or Max-Fuzzy Logitboost.
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• Gauss: two classes problem, proposed in Ref. 16. Four thousand points taken from two
overlapping bidimensional Gaussian distributions ~centered in ~0,0! and ~2,0!!with dif-
ferent covariance matrix ~I and 4I !.

• Glass ~Glass Identification Database!: six classes problem, the type of glass. Ten attributes
~different oxide content, refractive index!, all numerical.

• Gauss-5: synthetic five classes problem proposed in Ref. 3, comprising 50, 100, 150,
200, and 250 samples from five bidimensional Gaussian distributions with centers in
~0,0!, ~�1,�1!, ~�1,1!, ~1,�1!, ~1,1!, and unity covariances matrix.

Four statistical methods were evaluated: linear ~LIN! and quadratic dis-
criminant analysis ~QUA!, kernel estimation of densities ~KER!, and k-nearest
neighbors ~KNN!. In addition, neural networks ~NEU! and six fuzzy descriptive
rule-based methods were compared to Max-Fuzzy Logitboost ~AMM!. These meth-
ods are Wang and Mendel’s ~WM!,17 Ishibuchi’s ~ISH!,18 Pal and Mandal’s ~PM!,19

Iterative Genetic Learning ~GIL!,20 Random Sets Based ~KRE!,21 and Fuzzy
Descriptive Adaboost ~ADB!.3

To compare the accuracy of two learning algorithms, Dietterich22 analyzed
five statistical tests and stated that 5x2cv t-test has low type I error and good power.
In subsequent works, Alpaydin23 proposed a new test called 5x2cv-f that improves
both type I error and power. We have adopted this last test in all our experiments.
We have also decided to give a graphical view of the relevance of the differences
between the different methods by means of boxplots ~see Figure 4!. Every boxplot
summarizes ~median, interquartile range, and outliers! the 10 test results produced
by the 5x2cv-f experimental design and allow us to judge the significance of the
differences in the mean error rates of the different algorithms being compared.

The genetic algorithm mentioned in Figure 3 is of the steady-state type, with
10 subpopulations of size 100, each evolving in parallel. The value of the smooth-
ing parameter a in Figure 2 ~see Section 3.2! is 0.75 for all experiments. Every
rule is obtained from the best individual after 5000 evaluations of the objective
function. Special care was taken to select the minimum number of rules that pro-
duce a meaningful classification for all data sets in order to keep the rule bases
linguistically understandable. We decided to stop the learning in either Adaboost
and Max-Fuzzy Logitboost when knowledge bases are of the following sizes:

• 7 rules for Pima ~3 linguistic labels in all input variables!
• 4 rules for Cancer ~2 labels!
• 5 rules for Gauss ~5 labels!
• 10 rules for Glass ~3 labels!
• 10 rules for Gauss5 ~3 labels!.

Observe that the numerical values of the error could be further lowered if the num-
ber of rules had been allowed to increase. As a reference, the reader can compare
the results here with those in Refs. 21 and 3 for the same data sets.

After examining the boxplots in Figure 4 ~see also the values in Table I and
the rule base in Figure 5!, we can conclude that the extra linguistic quality has
little cost in accuracy; differences are never statistically significant ~after applying
the 5x2cv-f test, with 95% confidence!, and, in fact, this method improves Fuzzy
Adaboost in multiclass problems, as expected ~this is one of the advantages of
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Logitboost over Adaboost, according to its author6 !. Therefore, Max-Fuzzy Log-
itboost is the preferred learning algorithm when linguistic quality is the primary
concern. Unfortunately, the learning time of the proposed method is much longer
that that needed by fuzzy Adaboost ~between 6 and 10 times, in our implementa-
tion! and ranks between 15 and 30 min on a personal computer ~Intel Pentium III,
500 MHz! for each problem contained in the proposed benchmark.

5. CONCLUDING REMARKS

The advantages of boosting methods when learning fuzzy classifiers are two:
as far as we know, the size of the rule base can be made very small and the learning
is very fast ~between seconds and minutes for the problems used in this article!.

Figure 4. Boxplots with a comparison between linear and quadratic discriminant analysis,
three-layer perceptron, k-nearest neighbors, kernel estimation of densities, and fuzzy rule-based
classifiers ~Wang and Mendel’s, Ishibuchi, Pal and Mandal, Genetic Iterative Learning, Ran-
dom Set based, Fuzzy Adaboost, and Max-Fuzzy Logitboost!. The three graphics in the upper
part are, from left to right, Pima, Cancer, and Gauss. The lower part shows the results of Glass
and Gauss5.
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But there are also drawbacks: the inference is not standard and the quality of the
rule base is low, because the interaction between rules is very high.

The high interaction between rules in Adaboost and Logitboost is a conse-
quence of the “sum of votes” inference scheme. The preferred inference method,
in terms of linguistic interpretability, is the “single winner” one. This last mecha-
nism is compatible with the idea of a fuzzy rule being an imprecise assertion,
which states that all patterns in a given fuzzy region belong to the same class. But
the single-winner inference does not combine the votes of the rules with the arith-
metic sum, but the maximum operator, and this makes the application of boosting
algorithms difficult. We have solved the problem by the introduction of an inter-
mediate function in the definition of the weak learner and a recurrent algorithm to
estimate it. The final algorithm produces fuzzy rule bases of high descriptive qual-
ity while preserving a good accuracy. A drawback of this new procedure is related
to its computational complexity, which is higher than that of fuzzy Adaboost and
Logitboost.
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Table I. Mean values of the experiments shown in Figure 4.

LIN QUA NEU KNN KER WM ISH PM GIL KRE ABD AMM

Pima 0.227 0.251 0.234 0.270 0.313 0.287 0.301 0.464 0.269 0.308 0.255 0.257
Cancer 0.044 0.051 0.035 0.048 0.099 0.039 0.096 0.145 0.099 0.221 0.038 0.039
Gauss 0.239 0.190 0.194 0.216 0.191 0.329 0.322 0.306 0.205 0.215 0.206 0.200
Glass 0.404 — 0.389 0.354 0.621 0.453 0.503 0.647 0.363 0.606 0.522 0.388
Gauss5 0.318 0.317 0.321 0.343 0.332 0.410 0.345 0.974 0.338 0.321 0.344 0.337

Figure 5. Example of rule base obtained by means of Max-Fuzzy Logitboost for the problem
“Cancer,” mentioned in the text.
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