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Abstract When designing optical measurement systems,
it is common to use cameras, lenses and frame grabbers spe-
cially designed for metrology applications. These devices are
expensive, therefore optical metrology is not the technology
of choice in low cost applications. On the contrary to this, sur-
veillance video cameras and home oriented frame grabbers
are cheap, but imprecise. Their use introduces inaccuracies
in the measurements, that sometimes can be compensated
by software. Following this last approach, in this paper it
is proposed to use fuzzy techniques to exploit the tolerance
for imprecision of a practical metrology application (to auto-
mate the measurement of vehicle dimensions in Technical
Inspection of Vehicles in Spain, the equivalent of the Minis-
try Of Transport Test or MOT Test in UK) and to find an
economic solution. It will be shown that a genetic algorithm
(GA), guided by a fuzzy characterization of the sources of
error, can optimize the placement of the video cameras in a
station so that these mentioned sensors can be used to take
measurements within the required tolerance.
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1 Introduction

Measurement of dimensions (width, length, height, wheel-
base, ramps and other accessories) is one of the tasks to be
performed by companies authorized to carry out Technical
Inspection of Vehicles (TIV) in Spain (the equivalent of the
Ministry Of Transport Test or MOT Test in UK). The stan-
dard procedure requires two human operators which makes it
a costly process. Unfortunately, although its automatization
is not a conceptually complex problem, neither the cost of the
hardware that should be acquired, nor the alterations in the
disposition of the TIV station that would allow the automatic
measurement of dimensions, are affordable.

Since hardware cost is the main constraint, a partial auto-
matization of the measuring process, based on cheap general
purpose cameras, was considered. A prototype of such sys-
tem has been implemented in the TIV of Pruvia (Asturias,
Spain) and is shown in Fig. 1. To reduce costs, the system
consists of four cameras of the type usually found in sur-
veillance applications. Furthermore, images are taken sequen-
tially, because only one capture board, with a single channel,
was used.

In Fig. 2 the system is depicted. The computer is a standard
PC with a Pentium IV processor at 2.4 GHz, 512 GB RAM,
running Red Hat Linux 9 (Shrike). The input of a single
channel capture board (an AVerTV from AVerMedia with a
maximum resolution of 768 × 576 pixels) is connected to the
output of a multiplexer. This multiplexer is controlled by the
parallel port of the computer after a voltage level conversion.
In this way, the software can sequentially select one of the
cameras (each one a Fujitsu TCZ-260E with Computar 8 mm
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Fig. 1 Partial View of the Vehicle Measurement System
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Fig. 2 Schema of the acquisition system. A single channel capture
board is used. A multiplexer allows to select one camera at a time. The
images are not taken at the same time

lens) at a time. With this schema, the whole set of four images
can be obtained sequentially. The difference in acquisition
time makes it possible that some objects in the scene and
even the illumination could change. In fact the acquisition
delay between two consecutive images is in the range of
a few seconds due to the cable length and to the analogue
nature of the cameras (see Fig. 3 bottom images, where it is
shown how the pose of the technician that is working with
the vehicle has changed).

The cameras were not mounted in pairs as usual in ste-
reo applications (Brown et al. 2003), in fact they are some
meters apart but they are physically positioned so that all of
the points that define each measurement are in the field of
view of at least two of the cameras. This arrangement still
allows us to use stereoscopic vision techniques to find the
spatial coordinates of the points involved, but prevents the
application of classical matching algorithms (Bhat and Nayar

1998; Faugeras et al. 1993; Hoff and Ahuja 1989; Scharstein
and Szeliski 1998; Tomasi and Manduchi 1998) to pairs of
images. There are recent approaches (Santamaría et al. 2007)
that use metaheuristics and genetic algorithms to find the best
correspondences. In our case the images that form a stereo
pair of are very different between them (the cameras are spa-
ced about 10 meters apart, see Fig. 11) and the transformation
of the view taken by a camera can hardly be matched with an
image taken by another one. To our knowledge, no standard
matching technique (see Brown et al. 2003 for an exhaustive
compilation) can be applied with such extreme configura-
tion, regardless of a previous rectification of the image (see
top images in Fig. 3). Even more, due to the low-cost hard-
ware used and the diversity of available models in the market,
the acquired images do not allow to recognize automatically
some accessories of the vehicles. For example, in the bottom
images in Fig. 3 the points that define the maximum width of
the vehicle (located at the driving mirrors) are shown in both
images of a stereo pair (marked with + and white arrows).
Only a skilled trained technician can find the same points
in both images, as can be seen in Fig. 4, where the driving
mirror on the driver side is shown enlarged.

However, this is not an important problem, since a human
operator is needed to select the bounds of the vehicle that
must be measured. Even more, it is mandatory the presence
of the operator because legal issues, in order to certificate the
measurements, including the verification of the points that
define the measurement. With little extra effort, the same
operator can select these points twice (once for each view
of the point) obtaining a stereo pair effectively and complete
both tasks (measurement and certification) at the same time
and more efficiently.

The main problem with this semi-automatic procedure
arises from the fact that the accuracy of the measurement
is very sensitive to errors in the selection of the points on the
computer screen. Furthermore, we have observed that the
average error is strongly correlated with the relative situa-
tion of each camera with the other cameras, and the relative
situation of all the cameras with the vehicle position. This
problem is common to many stereo procedures (Duda and
Hart 1973), and has been previously studied from a theoreti-
cal point of view. The relationship between image resolution
and the precision in depth measurement was carried out in
McVey and Lee (1982) and Verri and Torre (1986), where the
effect of camera positioning and relative orientation of image
planes is studied separately. An in-depth analysis of the error
in stereo setup is performed in Blostein and Huang (1987),
including the analytical derivation of probability distribu-
tions of the errors in the three directions of the tridimensional
space. Since an ideal model of the camera was employed (no
distortions or electronic noise were considered), the results
are an upper bound of any stereo measurement setup. More
recently, in Mason and Grünt (1995), expert knowledge was
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Fig. 3 Whole set of vehicle images used by the system. Two conse-
cutive images are taken as a stereo pair. Each stereo pair shares an
image with the previous and the next one: the four images shown form
three stereo pairs. As can be seen, using standard matching techniques
in order to find corresponding points when measuring the maximum

width of the vehicle its impossible. In the bottom images the points that
define the distance between the driving mirrors are marked. In Fig. 4 a
detail of the driver side driving mirror on the bottom right image (the
area surrounded by a rectangle) is shown

Fig. 4 Detail of the portion surrounded by a rectangle in the bottom
right image in Fig. 3. As can be seen it is impossible to automatically
detect the driving mirror, only a well trained human eye can do that and
there is a inherent lack of precision in the measurement process

incorporated to obtain the relationship between the camera
position and the measurement precision. Furthermore, the
most valuable contribution related to our work is (Olague
and Mohr 2002), in where a multicellular genetic algorithm
is used to discover the position of a multi-camera measure-
ment setup, in a problem that bears some relationships with
ours.

Unfortunately, these works were not directly applicable to
our problem:

– All of these studies are based on a model of the camera
as a simple pin-hole. We need a more complex model,
where the imperfection of the lenses is taken into account,

because we use general purpose cameras, where the dis-
tortion should not be neglected. In other words, previous
works are restricted to the use of high quality sensors.

– In these papers, the position of the cameras was left uncons-
trained. In our case (see Figs. 1 and 3, where the actual TIV
station is shown) it is clear that cameras can not be placed
anywhere: their location must be compatible with other
activities at the plant, and walls, doors and machinery also
restrict the feasible positions of the sensors.

Given the restrictions of the system being designed, we
begin this paper by studying the sources of error related to
the use of cheap elements (see Sect. 2, “Sources of error
in the measurement”). In the following sections, the major
contributions of this paper are explained. In Sect. 3, “Fuzzy
characterization of the error in the measurement”, we justify
the use of a fuzzy characterization of all sources of error,
including the human error when marking points (that turned
out to be the most important source of imprecision) and build
a quality index, which depends on the position of the cameras.
Fuzzy sets were regarded as coverage functions of random
sets, and that decision allowed us to introduce concepts of
fuzzy statistics in our quality index. In Sect. 4, “Camera posi-
tioning optimization”, a genetic algorithm was used to find
the most favorable position of the cameras in terms of an
upper bound of the quality index defined in Sect. 3. In the
same section, the measured accuracy is also compared to that
reached with a manual positioning of the cameras. Lastly, in
Sect. 5, conclusions about this study are drawn.
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2 Sources of error in the measurement

According to our experience, and to other works found in
the literature, we have identified four sources of error in the
optical measurement procedure: incorrect camera calibra-
tion, distortion of the lenses, quantization error, and human
errors due to stereo pair determination. We are aware that
two of these (distortion of the lenses, and quantization error,
which will be discussed in Sect. 2.3) can be immediately
reduced with a higher investment in hardware. Moreover,
the camera calibration could also be partly automated, and
the human errors reduced, if the number of cameras is dou-
bled. In this case the determination of the stereo pairs could
then be done by means of the matching algorithms mentio-
ned in the introduction [see Brown et al. (2003) for details]
using a standard stereo configuration where the cameras are
placed in pairs. Since our objective was to develop a low cost
application, these approaches were not followed given that
they imply more investment in hardware (doubling the num-
ber of cameras and using a multiple channel frame grabber
with greater resolution). Even more, as we will explain later
in Sect. 3, if the cameras are closer, the uncertainty volume
that contains a tridimensional point obtained from the bidi-
mensional projection in the images, is larger (as can be seen
in Fig. 8).

2.1 Camera calibration

In Brown et al. (2003) camera calibration is defined as “Cali-
bration is the process of determining camera system exter-
nal geometry (the relative positions and orientations of each
camera) and internal geometry (focal lengths, optical cen-
ters, and lens distortions)” , in other words, it is the pro-
cess of searching for the camera parameters that let us know
with accuracy the points of the image where every visible
point of the scene is projected (see Fig. 5). There are seve-
ral approaches to realize effective camera calibration, we
refer the reader to Faugeras and Luong (2001), Hartley and
Zisserman (2000) and Olague and Dunn (2006).

Some of these parameters (like the focal length) are given
by the manufacturer of the camera. Other parameters (like
lens distortion) are not fully known and other parameters
(like focus or zoom if available) can be changed by the user
and interact with the former. In practice a model of the camera
must be made from a set of points whose three-dimensional
coordinates and image coordinates are known. Once a model
is available, reverse calculation can be applied to know to
which point in the scene space a given point in the image
plane corresponds.

It is usual to establish the relation between the space
coordinates and the image coordinates by eleven parame-
ters, known as DLT (Direct Linear Transform) parameters

(x,y,z)

(Xi,Yi)

(x’,y’,z’)

Image plane

3D coordinates

Camera lenses

Image center

2D coordinates

Camera axis

Fig. 5 Transformation from a point in the scene space O to a point in
the image plane i . Each camera defines a line in the scene space, then
at least two cameras are needed to calculate the point coordinates

by the creators of this method (Abdel-Aziz and Karara 1971;
Marzan and Karara 1975), known as “resection” in other
works (Olague and Dunn 2006). This model has been pro-
gressively improved by other researchers, see Hatze (1988)
or Hinrichs and McLean (1995) for details. We are aware that
other calibration methods exist (Faugeras and Luong 2001),
we choose this because it is well known in Computer Vision
community and serves as a testbed for the purposes of this
paper. In this model, the relationship between the tridimen-
sional coordinates and the coordinates in the image plane are
given by the set of equations that follows:

x + δx = L1 X + L2Y + L3 Z + L4

L9 X + L10Y + L11 Z + 1
(1)

y + δy = L5 X + L6Y + L7 Z + L8

L9 X + L10Y + L11 Z + 1

where X , Y , Z are the tridimensional coordinates of a point
in the space and x , y are the bidimensional coordinates in the
image coordinate system. The quantities δx and δy are the
nonlinear errors in x and y directions. The parameters Li ,
for i in 1 . . . 11 are the eleven DLT parameters that must be
estimated from a set of points from which the tridimensio-
nal coordinates and the corresponding bidimensional coor-
dinates are known.

The target of the calibration process is to obtain the ele-
ven parameters for every camera. This process is applied to
a set of tridimensional coordinates and the corresponding
bidimensional coordinates in the camera being calibrated.
For each pair of three and bidimensional coordinates, Eq. (2)
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holds:

[
X Y Z 1 0 0 0 0
0 0 0 0 X Y Z 1

−x X −xY −x Z
−y X −yY −y Z

]

⎡
⎢⎢⎢⎢⎣

L1

L2

. . .

L10

L11

⎤
⎥⎥⎥⎥⎦ =

[
x
y

]
(2)

Since there are 11 unknowns, at least 11 equations are
needed. In practice, the minimum is 12, because from each
pair of coordinates, two equations are needed. This leads to an
overdetermined system that can be solved using least squares.
The minimum number of points with known tridimensional
and bidimensional coordinates needed to perform the calibra-
tion of a single camera is six (of course, one randomly cho-
sen equation can be discarded, because of this, some authors
claim that only 5.5 points are needed Olague and Dunn 2006).
In practice, more points are needed to avoid the influence of
individual errors (Chen et al. 1994). For instance, a number
of 12–20 points is suggested in Shapiro (1978).

The DLT model, as shown in Eq. (2) allows us to simulate
the process of image acquisition. But, as the model can be
inverted, it also permits to simulate the process of measu-
rement. Equation (3) serves us to obtain the tridimensional
coordinates from the bidimensional data. Since data from
a single camera provides us with three unknowns and two
equations, at least two cameras are needed. Each camera is
associated to the following equations:

[
L1 − x L9 L2 − x L10 L3 − x L11

L5 − x L9 L6 − x L10 L7 − x L11

] ⎡
⎣ X

Y
Z

⎤
⎦

=
[

L4 − x
L8 − y

]
(3)

and therefore an overdetermined system is obtained. It is easy
to follow that from the two bidimensional coordinates of the
projections of the same tridimensional point in two cameras,
the tridimensional coordinates of the point can be found, as
shown in Fig. 5. Although, from a theoretical point of view,
there are no errors in this approach, some facts that lead to
a lack of accuracy in the measurements must be taken into
account when it is applied in practice. The set of parame-
ters L1 . . . L11 that characterizes a camera is not invariant in
time: it may be affected by changes in temperature, and the
position of the cameras can be slightly modified by vibra-
tions produced by the use of heavy machinery in the plant,
which can not be regarded as completely rigid for the ranges
of values involved. This means that the cameras should be
recalibrated from time to time.

2.2 Distortion of the lenses

The lenses used in the system are not specially designed
and manufactured to be used in metrology systems, so their

defects have some influence on the accuracy of the measu-
rements when the calibration points do not cover the whole
plant due to the non-linearity of the true underlying model.
There are several models to keep track of the effects of dis-
tortion and decentering of the lenses. They depend on more
than eleven parameters (Hatze 1988; Hinrichs and McLean
1995) estimated from the views (from several cameras) of
points whose tridimensional coordinates are known. It is
common practice to use even more points than those sug-
gested in Shapiro (1978). The minimum needed to obtain an
acceptable error is 30 points, as pointed out in Hatze (1988).

In our case we chose to overcome the asymmetries intro-
duced by the lenses by spreading the calibration points over
the plant. A white cube made of wire (which can be seen
in the right part of Fig. 1) was repeatedly placed across the
plant and measured, to obtain a grid of calibration points. We
could not find a set of DLT parameters uniformly valid for
the problem, neither did we find that any of the mentioned
models improved the quality of the measurement in a signi-
ficant quantity. Instead, we divided the plant into four spatial
volumes, each one of which was associated to a set of DLT
parameters following an approach similar to the one in Kwon
and Lindley (2000). When the prototype was put in produc-
tion, each measurement was calculated four times, one for
each set of parameters, and the spatial coordinates obtained
by averaging the results, with a weight inversely proportional
to the distances between the point being measured and the
centers of these volumes.

2.3 Quantization errors

Both the camera CCD and the frame grabber have a limited
resolution. This fact adds quantization errors to the images.
There are many papers that discuss the effect of quantization
in computer vision problems in general, see Kamgar-Parsi
(1989) or Wong (1991) as an example or Olague Hernández
(2005) in the context of corner detection. The effect of the
quantization error in stereoscopic problems is studied as well
in Rodríguez and Aggarwal 1990) and Sect. III of Blostein
and Huang (1987). In our problem, the resolution is limited
by the camera CCD. We have found that a limited resolution
in the image is correlated with some human errors in the
stereo part determination, thus the effect of the quantization
will be incorporated in the quality index that will be discussed
later, in Sect. 3.

2.4 Errors due to stereo pair determination

All equations in Sect. 2.1 assume that the coordinates of a
point in the image planes of two cameras are known. But it
may happen that the coordinates of this point can not be
exactly measured: there may be a rounding error, due to
the limited resolution of the camera, or the point may be
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Fig. 6 Effect of the error made
by the operator on the
measurement error. Camera in
the initial position (left) and
with one meter displacement
(right). The arrangement of the
cameras affects the robustness
of the measurement. The same
error in a pair selection gives a
greater error of the measurement
if cameras are not arranged in
the optimum positions
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indistinguishable from its neighborhood. In these cases, an
error may appear.

Applying Eq. (3) to both cameras (named “a” and “b”)
involved in the measurement of a dimension of interest, the
system of Eq. (4) is obtained:⎡
⎢⎢⎣

La
1 − x La

9 La
2 − x La

10 La
3 − x La

11
La

5 − x La
9 La

6 − x La
10 La

7 − x La
11

Lb
1 − x Lb

9 Lb
2 − x Lb

10 Lb
3 − x Lb

11
Lb

5 − x Lb
9 Lb

6 − x Lb
10 Lb

7 − x Lb
11

⎤
⎥⎥⎦

⎡
⎣ X

Y
Z

⎤
⎦

=

⎡
⎢⎢⎣

La
4 − xa + δxa

La
8 − ya + δya

Lb
4 − xb + δxb

Lb
8 − yb + δyb

⎤
⎥⎥⎦ (4)

The error in pair determinations is added to the bidimensional
coordinates in the image acquired by cameras “a” and “b”. If
this error is zero, Eq. (4) represents two lines, as in Fig. 5, and
their intersection gives us the tridimensional coordinates of
the point. But, if this error is not zero, the result might be far
from the true coordinates, depending on the angle between
these lines.

As an example of the relevance of this kind of error, in
Fig. 6 we have plotted the sum of the measurement errors in
a vehicle, as a function of the inaccuracy in the matching of
pairs made by the human operators. Axis x and y represent
the number of pixels the operator fails in those directions.
Axis z represents the modulus of the difference between the
tridimensional coordinate obtained, and the real one. The
left part of the figure shows the errors under the optimal
camera positioning. In the right part, one of the cameras was
displaced one meter to the right. As a consequence of this,
the aggregate error increased from 47.2 to 70.7 cm. This
means that, under identical human errors when selecting a
stereo pair, the accuracy of some measurements could differ
by more than 23 cm., depending on the arrangement of the
cameras.

3 Fuzzy characterization of the measurement error

In the last section it was made clear that the positioning of
the cameras was correlated with the average error, which in

turn depended on the inaccuracy in the matching of pairs
made by the operator. In this section we propose a method to
characterize the error of the operator, so that we can assign a
merit value to each arrangement of the cameras, and design
an optimization algorithm that finds the optimal disposition.

3.1 Dispersion error and observation error

Let us suppose that an operator is asked to obtain the tri-
dimensional coordinates of a given point, to annotate them,
and then to repeat the same measurement again, a certain
number of times. We do not expect to get a list with identical
numbers, but a distribution of values with some dispersion,
because not all the points he selects in the computer will be
the same. Moreover, if a different operator reproduces the
experiment, we expect a different distribution, because of
different subjective perceptions of the images, skills using
the pointing device, etc.

This dispersion in the values is one of the sources of uncer-
tainty in our model. Let us assume it has a random nature, and
that it depends on the human operator. For a worker named
“A”, his error in the selections can be represented by means
of a bidimensional random variable X A. If ω is an instance
of the random experiment “select a pair of points”, X A(ω) is
defined as a vector (ex , ey) that joins the point of the image
that should have been selected with that point of the image
that was actually selected. We will say that the probability
distribution of X A models the dispersion error of the operator
“A”.

A second source of error is a consequence of dealing with
quantized images. Values (ex , ey) are not directly observable;
we can only determine a small volume (not smaller than one
pixel) that contains them. This is inherent to our procedure,
because

– the cursor used to select the points on the screen has an
appreciable area if compared to the tolerance in the mea-
surement, and

– the image is digital, and pixels do not have null size
(remember that low resolution surveillance cameras are
being used).
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Inexact selections

Operator C

Pointer size
Exact point

Operator BOperator A

Fig. 7 Operators make errors when selecting the points for the stereo
pair. If the probability of selecting one point, given the real position of
the measurement, is known, a random set can be defined. The images
of this random set are squares of the same size of the pointer used to

select the point. The one point coverage function of this random set is
taken as a fuzzy membership function, which models the typical error
made by an operator. Dark zones in the figure mean “low membership”

Since this error prevents us from knowing the true coordi-
nates selected, and following the usual nomenclature in fuzzy
statistics, we will name it observation error.

3.2 Random sets and fuzzy based modeling

The observation error adds to the dispersion error mentio-
ned before, but it is not of a random nature. The customary
solution (Couso et al. 2004) consists in extending the random
variable based characterization to a random sets based one,
and to replace the variable X A, with a random set �A, that
contains it:

X A : X A(ω) ∈ �A(ω) ∀ω. (5)

That is to say, if the random variable X A represents the dif-
ference between the true selection of the operator and the
selection that the operator should have made, then the ran-
dom set �A represents the smallest square we can assure that
contains this difference, provided that we do not know the
exact point that the operator intended to select, but one pixel
in the camera image that encloses the selection.

The one point coverage function of �A will be unders-
tood as a fuzzy membership function (Goodman 1985). For
a fuzzy set X A, this membership is

XA(x, y) = p{ω : (x, y) ∈ �A(ω)} (6)

that joins dispersion and observation errors made by the
operator “A” in his measurements.

If we knew that all measurements were to be carried out
by operator “A”, we could proceed to optimize the position of
the cameras with respect to XA. But other operators will have
different distributions of error (see Fig. 7). If the experiment
is repeated with operators “B”, and “C”, etc. the fuzzy sets

XB , XC and so on will be obtained. We are interested in
optimizing the worst case, therefore we define a compound
model that aggregates all errors in the selection of a point in
a set X , defined as

X (x, y) = max(XA(x, y),XB(x, y), . . .) (7)

that will be estimated from a sample of the measurements
made by every operator (Sánchez 1998; Cressie 1993).

3.3 Effect of the fuzzy error over the measurements

Once the error of a measurement has been characterized, it
is necessary to study how the error made on a pair of measu-
rements X and X ′, taken on two different projections of the
same scene, affects the tridimensional measurement.

To propagate the fuzzy error, we will divide all fuzzy sets
into their α-cuts, as shown schematically in Fig. 8. We can
think of an α-cut of X as being an interval that covers the
actual projection of the point being measured with a degree
of truth 1 −α. Therefore, the geometric place of all points in
the space whose projections are compatible with this interval
contains the actual point with truth 1 − α. After having done
the same with the set X ′, the intersection of both surfaces
(the dashed polygon in Fig. 8) will contain the tridimensio-
nal coordinates with certainty 1 − α. Note that every α-cut
projects in a cone, and that the intersection of two of these
cones is a tridimensional volume and not a planar surface as
depicted in Fig. 8, which has been simplified.

It is easy to follow that volumes originated by nested cuts
are also nested in a such way that when α varies from 0 to
1 a fuzzy set C defined over R3 it is obtained. The fuzzy
set C models the point coordinates of the point that has been
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Uncertainty volume

maximum z

minimum x
maximum x

X

Right cameraLeft camera

Right imageLeft image

Selection alfa cut Selection alfa cut

minimum z

Z

Fig. 8 Maximum and minimum x and z coordinates for a given α-cut
of the input, for one dimension measurements, schematic determination.
As can be seen, the closer the cameras are in x , the larger the uncertainty
volume is in z

selected by the operator, as well as the imprecision associated
to his selection.

3.4 Assignment of a merit value to the position
of the cameras

Properties of the sets C vary as a function of the cameras’
arrangement. If it is assumed that there is no bias in the
measurements [this is, E(Xi ) = (0, 0) for every operator
i = A, B . . .] then the optimum arrangement of the cameras,
for a given measurement, will be the one that makes the set
C more specific. As the catalog of all standard measurements
that can be performed on a vehicle is known, it makes sense to
pose an optimization problem in which a given arrangement
of the cameras will be related to the mean non-specificity of
the sets C obtained when simulating all the possible measu-
rements that will be taken.

In this work the definition of non-specificity used is that
in Klir and Folger (1988),

U (C) =
∫

log ||Cα|| dα. (8)

Therefore, the merit of an arrangement is the mean value
of the estimation of Eq. (8) in the simulation of every mea-
surement in the catalog, given a prototype vehicle.

Camera
Positioning

Imaging
Process

Individual

Measurement
Process

Genetic
Operators

Initialization

Fig. 9 Camera positioning optimization process

4 Optimization of the configuration of the cameras

Equation 8 assigns a numeric value to an arrangement of the
cameras, for a given measurement over the vehicle. Conse-
quently, constrained numerical optimization of this
index over the set of all valid camera positions will produce
the optimal disposition of the cameras for that measurement.
A Genetic Algorithm will be used to perform this task. We
found that GAs are well suited for this problem, as it is imme-
diate to check that the function we wish to optimize is not
continuous (consider, for instance, the corners of the plant),
and it may have many different local minima (for example, it
is clear that some different positions are equivalent between
them, and they will produce the same objective value).

The whole optimization process that we propose is out-
lined in Fig. 9. In the following subsections, we will detail
the representation, genetic operators and fitness function that
will be used. Let us summarize for now the evaluation of an
individual, that codifies a given arrangement of the cameras:

1. The process of the image acquisition is simulated, and
synthetic images are generated. These images carry out
information about the imperfections of the video sensors,
as described in the preceding sections.

2. Using these synthetic images, the process of measure-
ment, including a model of the human error, is recreated.
A certain number of measurements are made, following
the catalog of measurements in the standard procedure.

3. The result of Eq. 8, is evaluated for all of these mea-
surements, and its mean value defines the fitness of the
individual.

4.1 Representation

All the cameras used in the plant have the same lenses and the
same CCD, so they only differ in their physical position and
orientation. These are the only parameters that can be chan-
ged in the optimization process. In this way, each individual
of the population will consist of the three angles and the three
coordinates of the four cameras, that is, 24 real parameters.
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Fig. 10 Graphical
interpretations of the crossover
operators used in this work. Top
arithmetic. Bottom BLX-α
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b
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Exploitation
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c2

c1

Exploitation
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c2min− Iα
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Since each camera is mounted on a wall in the installation,
one of the coordinates is fixed, and equals the distance from
the coordinate origin to that wall, in x or y direction, depen-
ding on the orientation. That leaves us with 20 parameters,
which have been codified with a standard floating-point based
representation (Herrera and Lozano 1998).

4.2 Crossover

We have tested two different crossover operators well sui-
ted to the floating point-based representation: the arithmetic
crossover (Michalewicz 1992) and the BLX-α crossover
(Eshelman and Schaffer 1993).

Arithmetic crossover between two individuals a and b is
defined as follows: first, a coefficient α is randomly generated
such that α ∈ (−c, c) (in the experiments performed we
take c = 0.25). Second, we emit the offspring: a − α ∗
(a − b) and b + α ∗ (a − b). In the left part of Fig. 10, we
show graphically how this crossover operator works, with
individuals comprising two genes. Note that the results are
a subset of all possible lineal combinations of the original
individuals. Because of this, exploration and exploitation is
reduced to the straight line defined by the individuals.

By contrast, BLX-α crossover pays more attention to the
exploration of the space of solutions. For example, let two
chromosomes, comprising n genes each, be C1 = (c1

1, c1
2,

. . . , c1
n) and C2 = (c2

1, c2
2, . . . , c2

n). The offspring of the
BLX-α crossover comprises Hk = (h1

1, h1
2, . . . , h1

n) and
Hk = (h2

1, h2
2, . . . , h2

n), where hk
i , with i = 1 . . . n and

k = 1, 2, are randomly chosen from [cmin − Iα, cmax + Iα],
and where cmax = max{c1

i , c2
i }, cmin = min{c1

i , c2
i } and I =

cmax − cmin.
In the right part of Fig. 10 it is shown how this opera-

tor works. Note that, in this case, exploration and exploita-
tion are not constrained to the straight line defined by the
individuals, but they are extended to the rectangular areas
shaded with a different pattern in the same figure. Our experi-
ments do not contradict results in Herrera (2002), and we also
found that the BLX-α crossover operator was able to discover

more efficient solutions to our problem than the arithmetic
crossover.

4.3 Mutation

In this work we use the mutation operator proposed in
Michalewicz (1992), because it performs a uniform search
in the space of solutions at the beginning of the execution
and becomes more local as the algorithm goes on. Let T
be the total number of generations and t the actual genera-
tion. Given a chromosome of generation t, Ct = (c1, c2, . . . ,

ck, . . . , cn), where one of its genes ck , with range in [cki , ckd ],
is selected to be mutated, the chromosome obtained after the
mutation is ct+1 = (c1, . . . , c′

k, . . . cn), where

c′
k =

{
ck + �(t, ckd − ck) if p = 0
ck − �(t, ck − cki ) if p = 1

(9)

where p is a random number from 0, 1 and

�(t, y) = y
(

1 − r (1− t
T )b

)
(10)

gives a value in the interval [0, y] , so that the probability
that �(t, y) is near to zero increases with t .

In Eq. 10, r is a random number in the interval [0, 1] and
b is a number chosen by the user that specifies the degree
of dependency between that probability and the number of
generations.

4.4 Fitness

The fitness function is oriented to solve a constrained optimi-
zation problem. Observe that (a) the average non-specificity
of the error should be minimal, and (b) the positions of the
camera should be feasible. The second criterion, in turn, splits
in two: (1) the whole volume of the vehicle must be visible
from all cameras and (2) the camera must be on a wall or
column, never on a door.

There is an obvious ranking of objectives, thus we do not
need to resort to multiobjective genetic algorithms. Since we
will be using a steady state GA, with tournament based selec-
tion, it is only necessary to define a lexicographic ordering:
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one impossible arrangement is always worse than a valid one,
and solutions where some measurements are not possible are
worse than solutions where every part of the vehicle is visible.

4.4.1 Average non-specificity

Calculation of the first fitness component is done by simu-
lating the determination of the tridimensional coordinates
of the control points. First, using a projective model, the
images of the pair of cameras needed to take the measurement
are obtained. Then, the bidimensional coordinates of every
control point in the image are distorted, by adding to them the
fuzzy set that models the error made by the operator. Then,
for three α-cuts (0.25, 0.50 and 0.75) the maximum and mini-
mum values for the tridimensional coordinates are obtained
(see Fig. 8) and the non-specificity of the fuzzy extension of
the measurement is estimated. The final value is the mean
of these non-specificities for every point of control. In our
experiments it was supposed that Xi are gaussians, and that
the side of the square needed to define �i is known.

4.4.2 Visibility of the control volume

The second component of the fitness measures the percentage
of the control volume visible from the cameras. To estimate
it, we count the number of hidden measurement points in the
control volume. Each hidden point contributes to the error
with an amount proportional to its distance to the visible
measurement point closer to it.

4.4.3 Valid positions of the cameras

The last component of the fitness is null when the camera can
be physically attached to the wall at the given position, and
depends on the distance to the nearest feasible mount other-
wise. In practice, this situation occurs when the coordinates
are on a door (the distance to its frame would be computed)
or when the coordinates are outside the plant (the distance to
the center of the nearest wall would be evaluated).

4.5 Numerical results

In Fig. 11, a schematic representation of the plant is shown,
including the most relevant magnitudes and the places where
cameras can be attached.

The error of the human operators has been modeled by
means of fuzzy memberships corresponding to coverage
functions of random sets whose images are squares, with a
side measuring two pixels, and whose centers follow a bidi-
mensional normal distribution with covariance matrix 4 · I .
The measurement pattern is a prism of 1.5×1.5×3.0 m (see
Fig. 1).

x

y

z

5 m

5 m4 m

3 m

12 m

13 m

Fig. 11 Simplified model of the plant, used in the experiments. The
axis names and the set of feasible positions for camera mountings are
shown

Table 1 Genetic algorithm parameters

Population size 100

Tournament size 5

Mutation probability 0.01

Number of generations 5000

Table 2 Coordinates of the cameras installed in the initial physical
position, selected using the expert’s criteria

Camera x y z

1 −600 1000 −250

2 −100 1100 −75

3 100 1100 −75

4 600 1000 −250

The parameters of the genetic algorithm are shown in
Table 1, the stopping criteria was a maximum number of
generations. Experiments with arithmetic and blx-α crosso-
ver were performed.

If the cameras are initially installed in the positions shown
in Table 2, with the angles shown in Table 3, the mean error
of the system is 14 cm. When the configuration is optimized
following the approach presented in this paper, the error falls
to 6.5 cm. using arithmetic crossover and 5 cm using blx-α
crossover. The coordinates of the physical positions of the
cameras using arithmetic crossover are shown in Table 4,
with the angles shown in Table 5. The coordinates of the
physical positions of the cameras using arithmetic crossover
are shown in Table 6, with the angles shown in Table 7.

In Fig. 12, the original placement, the optimized one using
arithmetic crossover and the optimized one using blx-α, are
shown. The optimized physical position of a camera obtained
using arithmetic crossover is represented by numbers sur-
rounded by a square, where the number denotes the number
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Table 3 Camera angles for camera positions given in Table 2

Camera α β γ

1 0.19635 −1.5708 −1.2566

2 0 1.5708 −1.2566

3 0 1.5708 −1.2566

4 0.3927 1.5708 −1.2566

Table 4 Coordinates of the cameras installed in the optimized physical
positions following the proposed approach and arithmetic crossover

Camera x y z

1 −600 −117.56 −107.08

2 587.1 1100 −2.47

3 −42.13 1100 −83.14

4 600 −163.08 77.94

Table 5 Camera angles for camera positions given in Table 4

Camera α β γ

1 −0.42376 0.498069 −0.181525

2 0.265457 −0.0755015 −0.0166876

3 −1.45492 2.74395 0.815273

4 0.012051 2.09327 −0.220714

Table 6 Coordinates of the cameras installed in the optimized physical
positions following the proposed approach and blx-α crossover

Camera x y z

1 −600 −127.97 −78.34

2 −270.96 1100 −262.75

3 583.4 1100 278.41

4 600 −114.35 −109.35

Table 7 Camera angles for camera positions given in Table 6

Camera α β γ

1 0.4472 −0.4350 −0.4999

2 −0.5279 −0.9901 0.2864

3 1.8574 0.8398 0.4538

4 0.7186 0.0192 −1.5429

of the camera, as shown in Table 4. The optimized physical
position of a camera obtained using blx-α crossover is repre-
sented by numbers surrounded by a circle, where the number
denotes the number of the camera, as shown in Table 6. Came-
ras installed in the places suggested by the expert manner are
represented by numbers surrounded by a hexagon, and the
numbering matches that shown in Table 2.

2

3

1

3
2

4

1

1

4
4

2

3

Initial placement

Arthimetic crossover placement

Blx-a crossover placement

Fig. 12 Schematic representation of the physical positions of the
cameras, original and optimized

It must be highlighted that the cameras are rearranged in
a more uniform manner around the plant, and this was an
expected result; but they are also arranged in height: this
was not obvious. Once the optimization process has revealed
it, it also seems a logical conclusion: when we first placed
cameras by hand, we intuitively tried to separate them as
much as possible, but we positioned all of them at a constant
height. The genetic search discovered that this separation
could have been higher if their heights were different.

Another interesting aspect of the camera placement obtai-
ned by the algorithm is that it is such that the object being
measured appears in an orientation so that the longest dimen-
sion is aligned with the image axis with more resolution, as
can be seen in Fig. 13. Again, it is obvious that this decreases
the measurement error, since the resolution increases in that
direction.

As stated before, two types of crossover were tested. In
Fig. 14, the corresponding boxplots of 30 runs of the algo-
rithm using blx-α (left) and arithmetic crossover (right) is
shown. As can be seen, there is a significant difference bet-
ween both types of crossover, and the obvious choice is blx-α.

Finally, the stochastic nature of the genetic algorithm is
shown in Fig. 15. In this figure the positions of the cameras
obtained from 500 runs of the algorithm are shown. As can
be seen, there is some degree of dispersion of the results,
sometimes the positions are not valid being positioned on the
doors of the installation (represented as squares) but there is
also some aggregation of camera positions in some places
of the installation that agree with the preceding comments:
the optimal placement of the cameras is such that they are
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Fig. 13 Synthetic images of the
measurement pattern obtained
with the cameras placed as
suggested by the algorithm.
Observe that the orientation of
the major axis is parallel to the
image axis with more resolution

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450

12
10

8
6

4

arithmetic

Fig. 14 Boxplot of measurement error obtained from 30 runs of the
algorithm using blx-α and arithmetic crossover. As can be seen, there
are significant differences in the results and blx-α seems to be the one
with less error

at different heights and spread around the plant as much as
possible.

5 Concluding remarks and future work

In the work described in this paper, fuzzy sets have been used
to model an experiment in which two sources of imprecision
are present: one of them is due to the randomness of the
human operator behavior. The other depends on the inaccu-
racy in the observation of the results of the experiment.

Fuzzy sets were used to design a model of either source of
error. Every selection in an image was associated a fuzzy set,
that assigned a decreasing confidence to its neighborhood.
When determining the spatial coordinates of one point, the
information provided by the fuzzy sets was used to build
a new fuzzy set associated to them. This last fuzzy set is
more specific when the camera is correctly positioned, thus a
genetic algorithm was used to find the positions for which the
specificities are maximum, assuring that the positions of all
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Fig. 15 Different camera locations obtained from 500 runs of the algorithm. The stochastic nature of the GA is shown, along with some aggregation
of solutions in some places of the installation
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cameras are valid, and the control volume can be seen from all
of them. This produces a measurement system with increa-
sed robustness against user errors. The optimized placement
gave a measurement system with a valid average tolerance,
while using cheap video equipment that in principle was not
designed to do this task.

In future works, we intend to improve the accuracy of the
measurements by means of a revamped interface. In the new
system, when the operator has finished selecting the points
that are to be matched, geometric transformations will be
applied to the images so that the operator’s selection can
be fine tuned by the computer. The tuning will consist in
genetically maximizing the local matching between the set
of transformed images in the neighborhood of these points
(Santamaría et al. 2007). Afterward, the results will be pre-
sented to the operator so that he validates the tuned points (or
decides to reject the changes). The main problem with this
approach is the time needed to find the best matching. In this
sense, we find promising a new definition of the fuzzy simila-
rity defined in Tolt and Kalaykov (2006), which we intend to
combine with the genetic search in order to reduce the elap-
sed time between the initial selection of the points and their
validation by the operator. We are also interested in knowing
whether the best position of the cameras in the improved
system coincides with that of the former system. Finally an
improvement of the approach presented here consists in the
combination of the model in Olague and Mohr (2002) with
the fuzzy analysis presented here.

References

Abdel-Aziz Y, Karara H (1971) Direct linear transformation from com-
parator coordinates into object space coordinates in close-range
photogrammetry. In: Proceedings of the ASP Symposium on Close
Range Photogrammetry. Fall Church, VA: American Society of
Photogrammetry, pp 1–18

Bhat DN, Nayar SK (1998) Ordinal measures for image correspon-
dence. IEEE Trans Pattern Anal Mach Intell 20:415–423

Blostein SD, Huang TS (1987) Error analysis in stereo determination
of 3D point positions. IEEE Trans Pattern Anal Mach Intell 9:
752–765

Brown MZ, Burschka D, Hager GD (2003) Advances in computational
stereo. IEEE Trans Pattern Anal Mach Intell 25:993–1008

Chen L, Armstrong CW, Raftopoulos DD (1994) An investigation on
the accuracy of three-dimensional space reconstruction using the
direct linear transformation technique. J Biomech 27:493–500

Couso I, Sánchez L, Gil P (2004) Imprecise distribution functions asso-
ciated to a random set. Inf Sci 159:109–123

Cressie NAC (1993) Statistics for Spatial Data. Wiley, London
Duda R, Hart P (1973) Pattern classification and scene analysis. Wiley,

New York
Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms

and interval schemata. In: Foundations of genetic algorithms.2.
Morgan Kaufmann Publishers, Inc., San Mateo, pp 187–202

Faugeras O, Hotz B, Matthieu H, Vieville T, Zhang Z, Fua P, Theron E,
Moll L, Berry G, Vuillemin J, Bertin P, Proy C (1993) Real time

correlation-based stereo: algorithm, implementations and applica-
tions INRIA Technical Report 2013

Faugeras O, Luong QT (2001) The Geometry of Multiple Images. The
MIT Press, Cambridge

Goodman N (1985) Uncertainty Models for Knowledge-based
Systems. North-Holland, Amsterdam

Hartley R, Zisserman A (2000) Multiple View Geometry in Computer
Vision. Cambridge University Press, Cambridge

Hatze H (1988) High-precision three-dimensional photogrammetric
calibration and object space reconstruction using a modified DLT-
approach. J Biomech 21:533–538

Herrera F, Lozano M (1998) Tackling real-coded genetic algorithms:
Operators and tools for the behavioural analysis. Artif Intell Rev
12:265–319

Herrera F, Lozano M, Pérez E, Sánchez AM, Villar P (2002) Multiple
crossover per couple with selection of the two best offspring: an
experimental study with the BLX-α crossover operator for real-
coded genetic algorithms. In: Advances in artificial intelligence—
IBERAMIA 2002: 8th Ibero–American Conference on AI LNCS
2527/2002, pp 392–401

Hinrichs RN, McLean SP (1995) NLT and extrapolated DLT: 3D cine-
matography alternatives for enlarging the volume of calibration.
J Biomech 28:1219–1224

Hoff W, Ahuja N (1989) Surfaces from stereo: integrating feature mat-
ching, disparity estimation, and contour detection. IEEE Trans
Pattern Anal Mach Intell 11:121–136

Kamgar-Parsi B (1989) Evaluation of quantization error in computer
vision. IEEE Trans Pattern Anal Mach Intell 11:929–940

Klir G, Folger T (1988) Fuzzy sets, uncertainty, and information.
Prentice Hall

Kwon YH, Lindley S (2000) Applicability of 4 localized-calibration
methods on underwater motion analysis. In: XVIII International
Symposium on Biomechanics in Sports

Marzan GT, Karara HM (1975) A computer program for direct linear
transformation solution of the collinearity condition, and some
applications of it. In: Proceedings of the symposium on close-range
photogrammetric systems. Falls Church, VA: American Society of
Photogrammetry, pp 87:109

Mason SO, Grünt A (1995) Automatic sensor placement for accurate
dimensional inspection. Comput Vis Image Underst 61:454–467

McVey ES, Lee JW (1982) Some accuracy and resolution aspects of
computer vision distance measurements. IEEE Trans Pattern Anal
Mach Intell 4:646–649

Michalewicz Z (1992) Genetic algorithms + data structures = evolution
programs. Springer, Heidelberg

Olague G, Mohr R (2002) Optimal Camera Placement for Accurate
Reconstruction. Pattern Recognit 35:927–944

Olague G (2002) Automated photogrammetric network design using
genetic algorithms. Photogramm Eng Remote Sens 68:423–431

Olague G, Hernández B (2005) A new accurate and flexible model-
based multi-corner detector for measurement and recognition.
Patter Recognit Lett 26:27–41

Olague G, Dunn E (2006) Development of a practical photogrammetric
network design using evolutionary computing. Photogramm Rec
117:22–38

Rodríguez JJ, Aggarwal JK (1990) Stochastic analysis of stereo quan-
tization error. IEEE Trans Pattern Anal Mach Intell 12:467–470

Sánchez L (1998) A random sets-based method for identifying fuzzy
models. Fuzzy Sets Syst 3:343–354

Santamaría J, Cordón O, Damas S, Alemán I, Botella M (2007) A scatter
search-based technique for pair-wise 3D range image registration
in forensic anthropology. Soft Comput 9:819–828

Scharstein D, Szeliski R (1998) Stereo matching with non-linear diffu-
sion. Int’l J Comput Vis 28:155–174

Shapiro R (1978) Direct linear transformation method for three-
dimensional cinematography. Res Quart 49:197–205

123



764 J. Otero et al.

Tolt G, Kalaykov I (2006) Measures based on fuzzy similarity for stereo
matching of color images. Soft Comput 10:1117–1126

Tomasi C, Manduchi R (1998) Stereo matching as a nearest-neighbor
problem. IEEE Trans Pattern Anal Mach Intell 20:333–340

Verri A, Torre V (1986) Absolute depth estimates in stereopsis. J Opt
Soc Am 3:297–299

Wong PW (1991) On quantization errors in computer vision. IEEE
Trans Pattern Anal Mach Intell 13:951–956

123


	Fuzzy-genetic optimization of the parameters of a low cost systemfor the optical measurement of several dimensions of vehicles
	Abstract 
	Introduction
	Sources of error in the measurement
	Camera calibration
	Distortion of the lenses
	Quantization errors
	Errors due to stereo pair determination
	Fuzzy characterization of the measurement error
	Dispersion error and observation error
	Random sets and fuzzy based modeling
	Effect of the fuzzy error over the measurements
	Assignment of a merit value to the positionof the cameras
	Optimization of the configuration of the cameras
	Representation
	Crossover
	Mutation
	Fitness
	Average non-specificity
	Visibility of the control volume
	Valid positions of the cameras
	Numerical results
	Concluding remarks and future work
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


