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Abstract Until recently, local governments in Spain were

using machines with rolling cylinders for verifying taxi-

meters. However, the condition of the tires can lead to errors

in the process and the mechanical construction of the test

equipment is not compatible with certain vehicles. Thus, a

new measurement device needs to be designed. In our

opinion, the verification of a taximeter will not be reliable

unless measurements taken on an actual taxi run are used.

GPS sensors are intuitively well suited for this process,

because they provide the position and the speed with

independence of those car devices that are under test. But

there are legal problems that make difficult the use of GPS-

based sensors: GPS coordinate measurements do not match

exactly real coordinates and, generally speaking, we are not

given absolute tolerances. We can not know whether the

maximum error is always lower than, for example, 7 m.

However, we might know that 50% of the measurements lie

on a circle with a radius of 7 m, centered on the real posi-

tion. In this paper we describe a practical application where

these legal problems have been solved with soft computing

based technologies. In particular, we propose to character-

ize the uncertainty in the GPS with fuzzy techniques, so that

we can reuse certain recent algorithms, formerly intended

for being used in genetic fuzzy systems, to this new context.

Specifically, we propose a new method for computing an

upper bound of the length of the trajectory, taking into

account the vagueness of the GPS data. This bound will be

computed using a modified multiobjective evolutionary

algorithm, which can optimize a fuzzy valued function. The

accuracy of the measurements will be improved further by

combining it with restrictions based on the dynamic

behavior of the vehicles.

Keywords Fuzzy systems � Genetic algorithms �
Vague data � Fuzzy fitness function � GPS � Metrology

1 Introduction

From an engineering point of view, measuring the length of a

path covered by a vehicle using the global positioning system

(GPS) may seem an easy task using position data, speed data

or both. Nevertheless, if these measurements are to be used

for legal purposes, the situation is different. The measure-

ments provided by a GPS receiver have a vague nature, and

there might be large deviations between the actual position

and the sensed coordinates of the vehicle. These deviations

are infrequent, although they are possible, and this fact can

invalidate the use of GPS in some applications.

This kind of behavior (i.e., an instrument having high

accuracy most of the time, but also a chance of its accuracy

being unacceptable) is not an exclusive property of GPS.

Many other sensors used for legal purposes (for example,

the radar) show this problem, albeit to a lesser degree.

However, these sensors are routinely used because, in

practical circumstances, if the probability of a measure

being not allowable is very low, the evidence it provides

is admissible. In other words, if we are able to provide an
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estimation of the length of a path which is conservative

enough, so that the probability of the estimation being

shorter than the actual length is negligible, we can use

GPSs for legal purposes. Besides, the statistical model of a

GPS is different from that of a radar in that it contains

some different confidence intervals for the position of the

receiver, given at different levels. If we honor the accuracy

given by the lowest levels, then the measurements will be

too coarse and, if we use the highest levels, the probability

of the estimation being wrong will be too high. Therefore,

we want to simultaneously process all these confidence

intervals and find a balance between the accuracy of the

measurement and its probability of being valid.

As we will detail later, such a family of confidence

intervals matches some recent interpretations of a fuzzy set

(Couso et al. 2001). These interpretations are being

actively used in another Soft Computing field, that of

learning of fuzzy rules from low quality data with genetic

algorithms (Sánchez and Couso 2007) [in short, low quality

data-based genetic fuzzy systems (GFS) or LQ-GFS] or in

industrial applications (Otero et al. 2008). In this paper, we

will model each measurement of the GPS, along with its

family of confidence intervals, with a fuzzy set. Then, we

will compute an upper bound of the length of the path. This

will be derived from the membership function of the fuzzy

estimation of the length. Previously, we will pre-process

the data in order to remove outliers and redundant samples.

This preprocessing will be based on certain heuristic rules

which will be explained later, and involves the use of a

genetic algorithm. Since the objective function is fuzzy-

valued, we will use a specially crafted multicriteria genetic

algorithm (GA), which is able to optimize fuzzy-valued

fitness functions. Again, this genetic algorithm will be

taken from the LQ-GFS field, where such kind of GAs are

used to solve the aforementioned problem, finding fuzzy

rules from imprecise data. In this respect, this paper fol-

lows the guidelines given in (Sánchez and Couso 2007),

and applies the algorithms defined in (Sánchez et al. 2006;

Casillas et al. 2001) and (Sánchez and Couso 2007) to a

new research field. Plain fuzzy logic has been applied

successfully to some problems that bear some relationship

with this paper, in the area of multisensor fusion we refer

the reader to Guixing et al. (2006). An example of

improving the precision of GPS raw data with the aid of

fuzzy logic can be found in Mosavi et al. (2002). Examples

of the use of fuzzy logic in the context of navigation of

different vehicles can be found in Zhao et al. (2007) and

Naranjo et al. (2007).

The structure of this work is as follows. In the next

section, we describe the problem to be solved. Then, in

Sect. 3 how GPS measurements are obtained is detailed.

We also explain the imprecise nature of GPS measure-

ments, and how they can be interpreted as fuzzy data.

The description of the proposal is set out in Sect. 4, where

the filtering process and the issues regarding LUB com-

putation are detailed. Deterministic (Sect. 4.2) and

randomized (Sect. 4.3) algorithms for computing the LUB

are given in the same section. In Sect. 5 details about the

genetic algorithm used to filter the data are given. In Sect. 6

numerical results are shown. Finally, conclusions and

future work are presented.

2 Problem statement

Taxi fares in Spain are regulated by local governments.

Each time the fares are changed, the taximeters must be

calibrated again and verified. One of the tasks to be per-

formed in the Spanish VTSS is the testing and verifying of

the taximeters in the taxicabs. The fares depend on two

variables: the speed of the taxi during the service, and the

length of trajectory covered during the service.

Since 1990, the Metrology and Models group at

Oviedo University has been responsible for the design of

the equipment and devices needed for the verification of

taxis in Asturias, Spain. Currently, the verification of the

taximeters is being carried out by means of a machine

with rollers. The drive wheels are placed on the rollers,

whose speed is regularly sampled. The test lasts a few

minutes, while the driver must be assisted by a VTSS

technician.

Once the test is over, the fare in the taximeter is com-

pared to the fare in the machine with rollers. If the fare

showed in the taximeter display is not 10% higher than the

one calculated by the machine with rollers, then the taxi-

meter may be used.

The total distance in the simulated run is computed by

multiplying the circumference of the roller by the number

of turns, and the linear speed is estimated from the angular

speed of the rollers. However, the rollers have a relatively

small radius, and the tire deforms differently over the

rollers than over a flat surface. The difference between the

actual and the theoretical radius means that tires appear to

be smaller than they are for the system. Moreover, this

error depends on the tire condition and the weight of the

vehicle, making the whole test unreliable.

We intend to introduce a new portable system, that uses

a GPS sensor to sample the position and the speed of the

taxi at regular intervals. The new test would imply a sig-

nificant saving for the VTSS station, because the technician

is no longer needed and the cabin where the rollers are

installed would be freed for other uses. Because of cost

reasons, we also want to use cheap, consumer grade GPS.

Price matters, because each station must acquire between

10 and 20 devices; otherwise the queueing time needed

would not be acceptable.
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Unfortunately, there are legal problems that complicate

the use of GPS measurements. It is well known that data

collected by a consumer grade, nondifferential GPS, is

imprecise at submeter level. GPS manufacturers usually

report the accuracy of a receiver in terms of a CEP value

(see Sect. 3 for details), but with no reference to the

number of satellites used, their relative positions, iono-

spheric influence or multipath; these sources of error must

be taken into account to calculate the tolerance of the

measurements in a given fix.

Unless we are able to bound the tolerance in our estima-

tion of the length of the trajectory and the speed of the

vehicle, we will not be able to legally reject a taximeter. This

is the same problem that happens, for instance, when speed

penalties are applied by a highway radar: we can not penalize

a vehicle whose speed is higher than the limit unless we also

know (a) the tolerance of the radar, and (b) that the measured

speed surpasses the limit by more than that tolerance. In any

other case, we must assume that the driver (and, conversely,

the taxi owner) has not committed an offence.

Therefore, it is difficult to homologate a GPS-based

device, because we can not assess its absolute accuracy,

e.g., the tolerance may be 5% for a certain route and 7% for

a different route. If we knew that the tolerance is always

under 10% (which is the legal limit) we could homologate

the device, but we can not assert that. Thus, in this paper,

we propose a device that not only produces an estimation

of the length of the trajectory, but it also computes an upper

bound of this length. In this way, once the taxi has finished

the run, we can know whether the tolerance of the mea-

surement has been under the legal limit or not, and repeat

the test if needed.

2.1 Legal constraints and statistical decisions

Let us suppose we have a measurement device which,

given a taximeter with an unknown error e; produces an

estimation be of its error. We will assume that the device is

unbiased, i. e. Eðbe � eÞ ¼ 0: Therefore, we could define

the trivial decision rule that follows:

D0ðbeÞ ¼
Accept If be� 0

Reject otherwise:

�

ð1Þ

However, any measurement device will have a tolerance �:

this means that be � �� e� be þ � with a very high proba-

bility and, conversely, that the probability pðjbe � ej[ �Þ is

near zero. This tolerance has legal implications. Suppose,

for instance, that we reject a taximeter because we estimate

that its error is be ¼ 5%, and the tolerance of our device is

� ¼ 7%, which is higher than this error. The taxi owner

could argue that there is a chance that the true error of the

taximeter is less than or equal to 0, and have our rejection

revoked. In short, we can not reject a taxi unless the

estimation of the error is higher than the tolerance, thus we

are sure that the taximeter is incorrect with a high

probability.

In Spain, to prevent taxi users from fraud, the charged

fare must be less than 10% higher than the true fare, and

therefore we can not homologate a device with a tolerance

higher than this value. It is remarked that the tolerance of a

GPS device depends on many factors (geometry or con-

stellation of the satellites, shape of the trajectory, speed,

etc.). As we have mentioned in the preceding section, we

can not certify that all measurements taken with a certain

GPS device will be more accurate than 10%. However, we

will show in this paper that we can determine whether the

tolerance of a particular measurement has been within the

legal margins. This is the main objective of this paper.

We have also mentioned that the legal problem is sim-

ilar to that of using a radar for measuring the speed of a

vehicle. But, the legal assumption of innocence, that most

drivers would be glad to accept if accused of surpassing the

speed limit, benefits the taxi owner.

The legal decision rule is

DðbeÞ ¼ Accept If be� 10

Reject otherwise

�

ð2Þ

which, from a statistical point of view, is not fair. Let pðxÞ
be the probability of the error of a taximeter being x:

On the one hand, we can reject a correct taximeter with

a probability

PðReject j e� 0Þ ¼ pðbe [ 10 \ e� 0Þ
pðe� 0Þ : ð3Þ

On the other, we will pass an incorrect taximeter with

probability

PðAccept j e [ 0Þ ¼ pðbe� 10 \ e [ 0Þ
pðe [ 0Þ : ð4Þ

For D to be fair, we need both errors to be the same.

However, they are not. If the tolerance of the device is

lower than 10%, then pðbe [ 10 \ e� 0Þ is near zero, thus

PðReject j e� 0Þ is negligible, but PðAccept j e [ 0Þ�
pð0\e\10� �Þ=pðe [ 0Þ; which is rather high. Accord-

ing to our own experience, Spanish taxi drivers calibrate

their taximeters to obtain their maximum legal advantage,

i.e., it is by far more frequent that a taxi has an error near

10 than an error lower than 0.

2.2 Lower upper bound of a trajectory

In order to obtain the highest number of valid measure-

ments (i.e., those for which the tolerance is lower than

10%), we are interested in knowing the shortest trajectory

whose length is known to be longer than the actual path,

given a set of imprecise coordinates of the vehicle.
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Therefore, in this work, it is proposed to calculate the lower

upper bound (from now on called LUB) of all possible

trajectories that are compatible with the measurements

given by the GPS.

Due to the imprecise nature of input data, a new method

for establishing the LUB is presented. In doing so, input

data is represented as fuzzy data. This data is filtered in

order to produce the smallest subset of coordinates that

induces a multipolygonal that covers the input data as

much as possible. Finally, that filtered data is fed to a

deterministic algorithm for computing the upper bound of

the length of the trajectory.

The filtering process is the most complex part of the

procedure. It involves solving a multicriteria optimization

problem, for which we will use the genetic algorithm

NSGA-II (Deb et al. 2000; Deb and Goel 1993).

3 The vague nature of the GPS measurements

The term global positioning system (GPS) (Hofmann-

Wellenhof and Collins 2004) refers to a set of devices

(satellites and receiver) working together to get a fix (the

position) of the receiver. The receiver can receive some

signals from the satellites and compute a set of measure-

ments: longitude, latitude, altitude, number of satellites in

use, time, etc. Each signal received from a satellite contains

information about the time that the signal takes to travel

from the satellite to the receiver.

Using signals from four satellites, a GPS receiver can

compute the three 3D coordinates and data for time cor-

rection (Mohinder et al. 2007). If more satellites are in

view, they can be used to improve accuracy. For example

the four best positioned can be selected to compute position

and time. Another way to improve accuracy is overdeter-

mining the equation system (Lachapelle and Ryan 2000),

trying to minimize the errors due to perturbations of the

satellites signals when crossing the atmosphere, satellite

ephemeris deviation, satellite clock errors, receiver errors

and multipath (Hofmann-Wellenhof and Collins 2004). As

a rule of thumb, the higher the number of satellites the

better the accuracy. But even with a high number of sat-

ellites in use (12–16) the geometry or constellation of the

satellites must be taken into account to estimate the fix

accuracy. This is done using DOP (dilution of precision), a

measurement of the probability of the effects of the con-

stellation on the fix accuracy (Langley 1999), a higher

value of DOP indicates a weaker geometry of satellites.

DOP has four components: PDOP (3D or spherical DOP),

HDOP (latitude and longitude DOP), VDOP (vertical

DOP) and TDOP (time DOP).

Under certain conditions, GPS measurement errors fol-

low a bidimensional Gaussian distribution. When many

satellites are available, that distribution can be regarded as

circular (van Diggelen 2007). Because of this, consumer

grade GPS receivers give an indication of their precision

through a magnitude called Circular Error Probable (in

following CEP): the radius within which 50% of the hor-

izontal position solution will fall and it is centered at the

true position.

CEP can be computed from the standard errors of the

estimated coordinates with Eq. 5 (Langley 1991; Strang

and Borre 1997).

CEP ¼ 0:56rx þ 0:62ry ð5Þ

The CEP at 95% probability is also known as R95 and can

be obtained multiplying by 2.08 the 50% probability CEP.

In Fig. 1 a real example showing how the CEP could

vary between consecutive measurements can be seen.

Consumer grade GPS do not send information related to

the standard errors. HDOP values are available from the

standard National Marine Electronics Association (NMEA)

protocol used in most of the GPS receivers and this mag-

nitude accounts for the impact of constellation geometry in

horizontal accuracy. Thus, an empirical estimation of CEP/

HDOP relationship must be carried out (Dussault et al.

2001; Cressie 1991). From the definition of CEP, this is

easily done from a sample of GPS coordinates taken in a

given location. For each HDOP value, the subset of GPS

obtained under that value is extracted from the whole data.

Then the smallest circle that covers 50% of the points is the

CEP at that probability. The procedure for the 95% CEP is

analogous.

3.1 A fuzzy representation of GPS data

In the context of imprecise probabilities, a fuzzy set could

be seen as a set of tolerances. Each tolerance is assigned a

confidence rate, and the lower the tolerance the lower the
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Fig. 1 Real GPS measurements, the CEP value changes from one

measurement to another
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confidence rate (Goodman and Nguyen 1985). In particu-

lar, given an incomplete set of confidence intervals of a

random variable, it is possible to generate a random fuzzy

variable for which a-cuts are confidence intervals of rate

ð1� aÞ (Couso et al. 2001). We will use this representation

and perform a multi-level calculation of the LUB.

In the case of the measurements obtained from a GPS

unit, two confidence intervals are given at 50% and at 95%.

Using the procedure explained in this section, a value of

CEP could be calculated for each probability value. It can

easily be seen that the higher the probability value the

higher the CEP value. The physical meaning of this fact is

simple for the GPS measurements: the higher the confi-

dence rate needed for determining the real position from

which the GPS measurement was taken, the higher the CEP

value.

4 Calculation of a LUB using fuzzy data

The GPS measurements are sampled at equally spaced time

intervals. Each measurement is a fuzzy set, as stated

before, whose a-cuts are circles centered on the GPS

coordinates. Therefore, each circle is a confidence interval

for the true coordinates of the taxi when the measurement

was taken. In Fig. 2 some simulated GPS measurements

and trajectories are shown. The position where the mea-

surement was taken is in the real trajectory—continuous

line—and it can be inside or outside the respective circle of

radius CEP. The trajectory using the GPS coordinates is

drawn using a dashed line. A trajectory totally compatible

with the GPS measurements is also drawn as a dotted line.

Notice that the lengths of these trajectories are different,

but all of them are compatible with the measurements of

the GPS. Thus, to know the accuracy of the measurement,

we want to compute the lower upper bound of the lengths

of all the paths which have all of their vertexes inside the

circles (for each confidence level). This bound is the largest

trajectory compatible with the GPS measurements.

Observe that the LUB is infinite unless we introduce some

constraints. The main assumption in this paper is that

changes in the direction of the vehicle between two samples

are small, thus we can approximate the trajectory between

two consecutive samples by a straight line.

We will define a polygonal chain that covers the fuzzy

data, by finding the outside tangents to the CEP for each a-

cut, and then computing the cross points of the corre-

sponding tangents between two consecutive fuzzy points

(see Fig. 3). Observe that

(1) The longest segment contained in each polygon of

four sides, a quadrilateral, is one of its diagonals.

(2) The longest path contained in two adjacent quadri-

laterals always comprises two of these diagonals.

(3) The longest path contained in three adjacent quadri-

laterals is also composed of diagonals, but they might

not be the longest diagonals of each quadrilateral.

This means that the LUB is defined by a list of vertexes,

but it is not immediate to find out which vertexes from the

polygonal chain should be chosen to define the path. Later

in this section it is explained how we solve this problem,

however let us first introduce first some preprocessing

algorithms that will improve the accuracy of the final

measurement.

4.1 Preprocessing the data

The accuracy of the measurements can be improved if

some collinear points are joined, and some of the worst

GPS fixes are discarded. If the sampling rate is high

enough, our hypothesis (straight trajectory between sam-

ples) still holds after performing these two changes, and we

can safely preprocess the data before computing the esti-

mation of the length and the LUB.

Given a level value a; the fuzzy input data is represented

as a circle centered on the coordinates, and whose radius is

the CEP at probability ð1� aÞ: We have mentioned that,

True Trajectory

Possible Trajectory

Through GPS centers

Fig. 2 Simulated example where the differences between the true

trajectory and the trajectory through the GPS coordinates are shown

Fig. 3 Simulated example showing how a polygonal that covers the

fuzzy input data from GPS could be built
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for each a-cut value, the data comprises a set of circles, and

also that the two outside tangents of two consecutive cir-

cles, and the cross points of the tangents to every three

consecutive circles define a polygonal chain. The objective

of the preprocessing is to obtain a reduced polygonal chain

of fuzzy sets which still contains the LUB for each level a:
If crisp data were used, polygonal chain simplification has

been studied in (Estkowski and Mitchell 2002; Hershberger

and Snoeyink 1992; Buzer 2009; Drysdale et al. 2008;

Chen et al. 2005; Gudmundsson et al. 2007). For fuzzy

data, to our knowledge, the most similar work in the

available literature is that presented in (Anile et al. 2000),

where fuzzy data from a geographical data base are used to

reconstruct 3D images by means of fuzzy B-splines (de

Boor 1972). Further to the approach in this paper are (Li

and Chen 1999; Quddus et al. 2006).

Our process of computing the LUB is a three step pro-

cedure: the first step is filtering by collinearity, then

filtering by a multiobjective algorithm, and finally using a

deterministic algorithm for determining the largest polyline

in a polygonal chain; this is done for each a-cut. These

filtering stages are described in the subsections that follow,

and the deterministic algorithm is explained in Sect. 4.2.

4.1.1 Filtering by collinearity

For each a-cut a polygonal chain is obtained, as explained

before. If for three consecutive circles, both pairs of outside

tangents are parallel, then the quadrilateral defined by the

first two circles is contained in the quadrilateral defined by

the first and third circles, and the intermediate circle could

be filtered. Further removals of points are limited by the

sampling rate, i.e., if too many points are filtered out, we

can not assume the trajectory is straight between the first

and the last one.

4.1.2 Filtering spurious data

Spurious data are input points where the error is abnor-

mally high. We can remove those points where the fix was

not accurate enough, provided that we do not discard a

significant number of points, i.e., a fraction 1� a of the

vertexes of the reduced polygonal must be in the unfiltered

path, for each level a: In Fig. 4 the process is illustrated for

a given a-value.

Filtering points reduces the area of the polygonal chain,

so the LUB will be smaller too, and this is not a desired

effect. We do not want to filter representative points.

Maximizing the percentage of covered data, while filtering

the outliers, are objectives that counteract one another. We

will use a multicriteria genetic algorithm to optimize the

filtering, as we will explain in Sect. 5.

4.1.3 Dynamic behavior of the vehicle

The filtering process can be further improved if we assume

that the vehicle has inertia and some trajectories contained

in the polygonal chain are not feasible (Chen et al. 2005).

For example, think of a vehicle moving at a certain speed.

There exists a maximum angle the vehicle could turn

without risking its security. Moreover, for each speed value

there exists a maximum angle, lower than that given due to

security reasons, which is comfortable for the vehicle

passengers.

Therefore, we can introduce a second hypothesis in our

analysis: driving a taxi must be comfortable. The maximum

angle of turn is a function of the speed of the vehicle: the

greater the speed, the shorter the maximum angle of turn.

In determining the angle of turn at each point, the one

before and the one after fuzzy points are used. For an a-cut

value the fuzzy points are circles. By means of the tangents

the polygonal chain for the three fuzzy points could be

defined. The largest trajectory included in such polygonal

chain is one of the four possible polylines that goes through

the vertexes of the polygonal chain. Once the largest tra-

jectory for this three points polygonal chain has been

found, if the angle that the segments of the largest trajec-

tory define is larger than the maximum angle of turn at

current speed, the trajectory is not considered as a candi-

date for its length being the LUB.

4.2 Deterministic longest path estimation

Once the data are preprocessed, we evaluate its LUB with a

deterministic algorithm, that we explain in this section.

For each a-cut of the chain, we get a polygonal set

constructed with trapezoids, as can be seen in Fig. 5. The

motion direction is indicated by a thin dashed arrow. Each

trapezoid vertex is denoted with a pair of integers, those at

Fig. 4 The simplifying process over a synthetic example: filtering a

point reduces the area of the polygonal chain, but the remaining

points must resemble the trajectory
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the left of the arrow have zero at first, those at the right

have one at first. The other number is the step in the motion

sequence. The longest path at each step i goes through ð0; iÞ
vertex or ð1; iÞ vertex. The set of vertexes that defines the

longest path, can be computed by exhaustive exploration of

all possible combinations, but this is very expensive in

terms of computational cost and proved impracticable in a

realistic trajectory with 100 points, for instance. This

problem has been studied in the area of Computational

Geometry and is related with Longest Path with Forbidden

Pairs (Berman and Schnitger 1992), that is NPO PB-

complete.

Due to this fact and given that in a realistic trajectory the

changes of direction and the changes in distance between

left and right vertex are limited due to the dynamics of the

taxi, the geometry of the road and GPS behavior, we use a

heuristic that is linear in time with the number of vertexes.

The heuristic is based on the selection of convex vertexes:

when a vehicle turns, the longest path goes through the

exterior of the trajectory curvature. The convexity of a

vertex is analyzed using the straight lines that rely on

previous and following vertexes. The possible relative

positions of the central vertex can be seen in Fig. 6, where

convex vertexes are marked with a small circle and the

lines that pass through vertexes ð0; i� 1Þ; ð0; iþ 1Þ and

ð1; i� 1Þ; ð1; iþ 1Þ are drawn. From left to right and top to

bottom, if both vertexes are between the lines, both are

concave. If only one is outside the lines, it must be convex.

If both are outside the lines, both may be convex (left) or

one may be concave and the other is convex. In both cases,

if the farthest one from the nearest line is chosen, then it is

convex. The heuristic is as follows: the first segment of the

longest path goes from a convex vertex in step 1 to the

vertex at step 0 that gives the maximum segment length.

From step 1 to the one before the last, the path goes

through:

• If there is only a convex vertex, through this vertex.

• If there are two convex vertexes, through the farthest

one.

• If there are no convex vertexes, through the farthest

one.

The last segment ends in the farthest vertex from the

previous one.

In Fig. 5 the path computed with this heuristic is marked

with a thick dashed line. The first segment goes from ð1; 0Þ to
ð0; 1Þ because ð0; 1Þ it is convex and the distance to ð0; 0Þ is

shorter. Then the longest path continues to ð1; 2Þ because it is

the only convex. The same happens with ð0; 3Þ and ð0; 4Þ:
Finally, the path ends in ð1; 5Þ because it is farther from

ð0; 4Þ than ð0; 5ÞÞ:

4.3 Randomized longest path estimation

There is an alternate implementation for the method pro-

posed in the preceding section. Let us suppose that we

superimpose a grid on the chain of circles (see Fig. 7) and

compute the whole set of lengths obtained by the selection

of one point of the grid from each fix. In order to compute

the maximum length from the obtained trajectories, a

backtracking algorithm is impracticable due to the high

number of points present in real trajectories. However, we

can uniformly sample a number of trajectories and compute

a Montecarlo estimate of the probability distribution of the

lengths that arise. The mean value of this distribution

would be our estimation of the length, and we can also

produce a confidence interval for the mean, from which to

calculate our tolerance.

To build a sample trajectory, we have implemented the

procedure that follows: for each fix, with a probability 0.95,

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)
(0,0)

(0,1)

(0,2)

(0,4)

(0,3) (0,5)

(1,0)
X

Y

Fig. 5 Example of longest path estimation following the algorithm

explained in Sect. 4.2
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(0,i−1)
(0,i)
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(1,i)
(1,i+1)

(0,i−1)

(0,i)

(0,i−1)
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(0,i+1)

(0,i−1)
(0,i)
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(0,i+1)
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(1,i)

(1,i+1)

Fig. 6 Possible relative positions of vertexes and lines between prior

and next vertexes. This is useful in the determination of convex and

nonconvex vertexes
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a point of the grid which is inside the CEP at that level is

randomly selected (thus with a probability 0.05 the point is

selected from outside the corresponding CEP). The length

of the polygonal that joins all these points is stored and the

whole procedure repeated a high number of times. The

sample distribution of these lengths is finally used to

compute the sample mean (which is an estimator of the

length that the taximeter should have produced) and a

confidence interval for it.

Unfortunately, there are some issues with this method.

In particular, the range of the sample distribution of the

lengths is bounded by the maximum sample length, which

in general is not the maximum length of a compatible path.

As a matter of fact, the maximum of the sample would be a

more reliable estimator of the LUB for our purposes. Since

there are not clear improvements neither in speed nor in

accuracy with respect to the method in the preceding sec-

tion, Montecarlo analysis is not considered in this work.

4.4 Predetermined trajectories and maps

A trivial improvement of the accuracy could be obtained if

we restricted ourselves to a known route, and adjust the

GPS coordinates so that each position is replaced by its

nearest point in the center of the road. However, this

method has been rejected by the experts in the certification

agency that will homologate the device. The reason given

was that all the measurements have to be reproducible.

There will be points with known latitude and longitude

where the certification agency will position the devices and

check that the tolerance of the measurements is within the

range. This kind of certification is not compatible with

dynamic changes in the coordinates, because the nearest

point of the road may well be out of the circle defined by

the CEP, making the determination of the LUB useless.

However, nothing prevents using the map as a con-

straint, i.e., we know that the car is in the intersection

between the road and the confidence interval produced by

the GPS. The coordinates of the whole road and not only its

center are needed, though. This method has not been

implemented either as we have not measured the width of

the road, nor do we have access to a cartography of the

route with legal validity. This last point is important,

because any error in the maps would void all the mea-

surements taken with the devices. Nevertheless, observe

that, even if we decided to include this information in the

future, it would not alter the computations we present in

this paper.

5 Genetic filtering of the fuzzy data

In this section the details of the codification and operators

used in the genetic algorithm which has been used to filter

the data are given. A multiobjective genetic algorithm has

been used in the filtering process. Specifically, the multi-

objective genetic algorithm used in this work is the well

known NSGA-II (Deb et al. 2000; Deb and Goel 1993).

This algorithm is outlined in Fig. 8.

5.1 Codification of an individual

Each individual is a subset of the chain of fuzzy points,

codified as an array of booleans. That is to say: input data is

a series of timely ordered fuzzy points. Each one of the

fuzzy input points has a boolean value associated for each

individual. When the boolean value for a fuzzy point is set

to true then that fuzzy point is included by the individual.

When the boolean value for a fuzzy point is set to false that

fuzzy point is filtered out.

To generate an individual, a probability threshold p is

given, and each fuzzy point in the vector of input fuzzy

data is included with probability p: The origin and the end

of the taxicab run must always be included.

Fig. 7 Discretization of GPS measurements and exhaustive explora-

tion of the lengths of all the trajectories obtained from all the possible

combinations of discretized points. Only a fraction of the possible

trajectories is shown

Fig. 8 Pseudocode of the NSGA-II algorithm
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5.2 Multiobjective fuzzy fitness function

Observe that both the area of the polygonal chain and the

percentage of covered fuzzy data by the polygonal chain

are fuzzy functions. We want to mimimize the area of the

defined polygonal chain and to maximize the percentage of

covered fuzzy data. Following (Sánchez and Couso 2007),

we will not defuzzify the objectives, but use a fuzzy valued

fitness function to assess the quality of the filtering.

For a genetic algorithm being able to solve a fuzzy

valued optimization, we can define a total order between

the fuzzy values of the fitness function (Abbasbandy and

Asady 2006; Mitchell 2006; Tran and Duckstein 2002;

Sheen 2006; Sun and Wu 2006). In particular, we need to

sort fuzzy numbers, which some authors think is incon-

sistent with most definitions of total order between fuzzy

sets (Yeh and Deng 2004; Wang et al. 2005). The use of a

weaker (partial) order can also be made compatible with a

tournament-based selection in conventional genetic algo-

rithms. In this context, in (Jahanshahloo et al. 2004; Wang

et al. 2005) an interval representation is used, and in

(Ganesan and Veeramani 2006) another partial order rela-

tion is proposed, restricted to trapezoid membership

functions. This last solution can not be applied to our

problem, either, as there is neither knowledge nor restric-

tions about the membership functions type and certainty

distributions. Also, different approaches for evaluating the

Pareto dominance using fuzzy fitness functions have been

proposed. In the use of fuzzy rules (Youssef et al. 2000) for

determining the dominance of one individual with regard to

another is proposed. Similar works are documented in

(Trebi-Ollennu and White 1997; Kiyota et al. 2000). In this

work we have decided to use our own implementation of

the NSGA-2 algorithm for fuzzy data, which is described in

Sánchez and Couso (2007), Sánchez and Couso et al.

(2009). We have used an imprecise probabilities based

ranking, in combination with the definitions of nondomi-

nated sorting and crowding distance explained therein.

5.3 Genetic operators

The definitions of the crossover and mutation must reduce

the number of vertexes in the population.

• Crossover. Given two parents A and B; the offspring are

two new chains C and D such that A \ B � C and

A \ B � D; a vertex v 2 A� B has a probability pþ of

being in C; and a vertex in B� A has a probability p�

of being in C; where p� is much lower than pþ: D set is

constructed in the same way.

• Mutation. This operator is defined as the random

removing of a point of the chain, different from the first

or last one. It is important to notice that neither the first

nor the last fuzzy points will be included in the genetic

operations because both trajectory ends must be

included for all individuals.

6 Experiments and results

In this section the results of the experiments that support

the claims in Sect. 2 are shown. Therefore, the experiments

are designed to:

(1) Evaluate the accuracy of the proposed method in a

realistic scenario using synthetic data.

(2) Compare both methods in real situations.

Because of this, two batches of experiments were

performed:

(1) Simulated GPS data acquisition from synthetic data:

the run of the vehicle is simulated and the GPS

measuring process is also simulated adding random

noise to mimick the properties of a GPS sensor.

Under these controlled conditions the percentage of

error between the LUB and the known length of the

path is estimated.

(2) Compared performace in real world situations: a real

circuit is measured with a certified ISO-9002 odometer

and the reported length is compared with that obtained

with the proposed method. The run with the same

length is measured using the same vehicle and the roller

machine, in order to compare the obtained results.

In the following sections these experiments are detailed.

6.1 Synthetic data

It was decided to evaluate our algorithm in a realistic path

that covers the situations usually found when the VTSS test

of a taxi is carried out. Since we need to know the true

length of the path, these datasets must be synthetic. The

data includes several turns, accelerations and decelerations

and changes in CEP. GPS longitude/latitude coordinates

were translated to Universal Transverse Mercator northing/

easting coordinates in order to make distance calculations

between GPS fixes easier (Snyder 1982). With this system,

points on the Earth’s surface are projected onto an equally

spaced planar metric grid, therefore the distance between

fixes is the usual Euclidean one.

The trajectory is sampled once each second. At each

location, a random value ranging from 4 to 8 m is taken as

the CEP at 95% probability, being suitable values for a

consumer grade GPS receiver. The uncertainty in the GPS

measurements is simulated using the following procedure:

with a probability of 0.95, a point is selected whose
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distance to the real one is shorter than the CEP, and with

probability of 0.05 an outlier is introduced. Part of the

generated data is shown in Fig. 9. GPS measurements are

represented with circles (actually ellipsoids in Fig. 9, due

to scalling issues) with a radius equal to 95% CEP and the

original trajectory with a continuous line. As can be seen,

95% of the circles intersect the trajectory, but none of their

centers are in the actual trajectory.

We perform three experiments in order to test if the

tolerance computed from the LUB is lower than the legal

margin or not.

If the true length of the trajectory is known, the toler-

ance is

� ¼ ðLUB� lengthÞ=length: ð6Þ

The synthetic trajectories generated for this batch of

experiments were:

• A first 120 points dataset, with smooth turns, similar to

a conventional road.

• A second 120 points dataset, with stronger turns, also

similar to a conventional road.

• A third 200 points dataset, similar to test circuit, with a

mixture of strong and smooth turns in all possible

directions.

Several tests were also carried out to assess the genetic

filtering. This was launched with the parameters shown in

Table 1. Firstly, and for both trajectories, ten runs of each of

the multiobjective algorithm were done, without restrictions

based on the dynamic behavior of the vehicle. Finally, a

second set of ten runs were done with the multiobjective

algorithm using the same parameters but assuming that the

angular velocity of the vehicle had a speed dependent bound.

6.1.1 Case study I

The true length of the first trajectory is 3,228.6 m. The

distance through the GPS fixes is 3,238.5 m. Taximeters

which mark more than 3,228.6 ? 10% = 3,551.4 will be

rejected. Observe that, in practical circumstances we do not

know the actual length of the path and we will reject those

taxis that charge more than 3,238.5 ? 10% = 3,562.4.

The mean LUB for this trajectory (first row in Table 2)

is 3,499.5. Then, the expected tolerance is 0.084 (0.081, if

we used the measured values to compute the tolerance).

This result means that taximeters charging more than

3,551.4 can be safely rejected.

If we filter the data taking into account the dynamics of

the vehicle, (see Table 3) the expected tolerance is 0.005

(0.002 if we used the measured length) which is much

lower than the legal margin.

6.1.2 Case study II

The length of the second trajectory is 2,741.3 m. This

trajectory has stronger turns than the first, and we will see

that the LUB will be less tight, given the deterministic

procedure explained in Sect. 4.2. The distance through the
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Fig. 9 Example of GPS generated data along with the true trajectory.

As can be seen, some of the fixes CEP do not intersect the true

trajectory. The majority of the points of the trajectory are inside the

CEP at 95%

Table 1 Parameters used for NSGA-II algorithm

Parameter Value

Number of generations 1,000

Number of individuals 100

Number of iopulations 1

Minimum percentage of fuzzy points covered by each

individual

0.85

Probability p? for genetic crossover 0.5

Probability p- for genetic crossover 0.1

Crossover probability 0.7

Mutation probability 0.1

Table 2 Results from 10 runs of NSGA-II without dynamic analysis

Dataset True

length

Measured

length

LUB estimation

standard deviation

LUB

estimation

mean

1 3,228.57 3,238.521 16.95 3,499.48

2 2,741.30 2,696.487 43.55 3,192.51

3 9,337.78 9,364.49 43.55 9,404.68

Table 3 Results from 10 runs of NSGA-II with dynamic analysis

Dataset True

length

Measured

length

LUB estimation

standard deviation

LUB

estimation

mean

1 3,228.57 3,238.521 0.52 3,243.45

2 2,741.30 2,696.487 10.88 2,798.01

3 9,337.78 9,364.49 10.88 9,353.85
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GPS fixes is 2,696.5 m. If we repeat the analysis done in

the preceding case (see second row of Table 2) we obtain

that the mean LUB is 3,127.0 m. The expected tolerance is

0.141 (0.160), thus we can not reject a taximeter on the

basis of a test carried out on this route.

The use of dynamic restrictions in the genetic filtering

causes a significant improvement of the tolerance, which is

now 0.021 (0.038,) thus we could legally reject taxis that

charge more than 2,741.3 ? 10% = 3,015.4 (2,966.2) using

the same input data.

Observe that, given these results, we recommend that

the VTSS station choose circuits with smooth turns, since

they will surely produce a low rate of null verifications. In

general terms, the use of convoluted paths is not advised

with the system we propose here.

6.1.3 Case study III

The length of the third trajectory is 9,337.78 m. As stated

before, this trajectory resembles a test circuit and has a

mixture of stronger and smooth turns.

The distance through the GPS fixes is 9,364.49 m. If we

repeat the analysis done in the preceding case (see third

row of Table 2) we obtain that the mean LUB is

9,404.68 m. The expected tolerance is 0.007 (0.004).

Again, the use of dynamic restrictions in the genetic

filtering causes a significant improvement of the tolerance,

which is now 0.0011 (0.0017).

In this case, any taximeter that charges more than

9,337.78 ? 10% = 10,271.56 can be legally rejected.

Note that the computed LUB is under the measured

length but over the real length: when GPS measurements

are accurate, the LUB is tighter.

6.2 Real-world measurements

For taximeter verification, the taxi owner is sent on a run.

He/she must carry the target taximeter, the GPS and the

datalogger device. Once the taxi comes back to the VTSS,

the GPS measurements are loaded into the computer where

LUB computing will be carried out. Only bi-dimensional

measurements are to be taken into account as the losses of

information using this representation are not significant:

the trajectories range between 3 and 5 km, and the differ-

ences in altitude are a few meters. Each measurement

includes the coordinates, the calculated CEP value for the

desired a-cuts and the HDOP. The prototype which is

currently under development is shown in Figs. 10 and 11.

Fig. 10 First version of the prototype of the data logger that is being

developed for the verification of taximeters. An evolution of this

device is shown in Fig. 11

Fig. 11 Left evolution of the

prototype shown in Fig. 10

inside a commercial

enclosure.The design is based

on low cost automotive

microcontrollers and a

consumer-grade GPS receiver.

Right the same prototype, with

the enclosure opened showing

the pcbs of the device
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The device was entirely designed at the Metrology and

Models group at Oviedo University. It uses three Atmel

AVR microcontrollers, and collects NMEA data from a

San Jose Navigation FV-M5 GPS module. It incorporates a

flash memory chip (Atmel dataflash) to store data, as well

as a USB connection to program the controllers, send or

receive data from a PC. Moreover, the device’s got an LCD

display and a bubble keyboard to control its operation.

In this section we have used a circuit surrounding the

Campus de Viesques’ buildings (Gijón, Asturias, Spain).

The length of the circuit was measured using an ISO-9002

certified odometer. In Fig. 12, a picture of the circuit can

be seen. The circuit comprises two long and two short

straight paths, and four sections with sharp turns. The

measured length was 1,093 m.

A direct comparison of the rolling machine against the

other methods is not possible, so an indirect procedure was

employed. We equipped a car with an odometer, that

reported the distance travelled. Then we placed the same

car in the rolling machine, and travelled 1,093 m, accord-

ing to the same instrument. Lastly, we read the

measurement produced by the rolling machine. This pro-

cedure was repeated 10 times.

In Fig. 13, the route recorded by the GPS in the analysed

laps can be seen. There are large differences between the

centers of the measurements between successive laps,

especially in the left part of the circuit. This uncontrollable

behavior results in a variation of the measured length of the

same path, as shown in Table 4. This table collects the

mean and standard deviations of the obtained measure-

ments, using each method discussed in the paper: NSGA-II

dynamical filtering, raw GPS coordinates, and cylinders. It

is remarked that the variability of the results in the cylin-

ders does not take into account the variability induced by

changes in pressure of the tires or their wear. As can be

seen, the variability of the proposed method and the roller

machine are comparable and much lower than that obtained

using unfiltered GPS data. Moreover, the obtained LUB is

effectively an upper bound of the actual length and can be

used to take the decision of when the test must be repeated

or not. The p-values obtained from nonparametric Wilco-

xon test are shown in Table 5. As can be seen, the

differences between NSGA-II and the other methods are

statistically significant at 0.05 level, even after Bonferroni

adjustment (Hsu 1996) for a number of comparisons n ¼ 3:

In this case, the differences are significant if the obtained p-

value is less than a=n ¼ 0:0167:

7 Conclusions

There are legal issues concerning the use of GPS devices

for verifying taximeters. However, in our opinion a GPS is

the measuring device that best balances cost and accuracy

for a VTSS.

To homologate a GPS for this application, we need to

guarantee that the tolerance of the measurements is lower

than the legal 10% margin. We can not assert that this

tolerance holds in absolute terms, but in this paper we have

defined how to compute the upper bound of any trajectory

Fig. 12 Aerial picture of the circuit used in the tests. In the left of the

image, a portion of the road is shown between the building and an

area covered with trees, where GPS measurements are difficult

Fig. 13 Path registered by the GPS, ten laps of the circuit depicted in

the preceding figure. There are large differences between the laps,

mostly in the left part of the circuit

Table 4 Mean and standard deviation of the 10 measurements of the

real path using NSGA-II filtering, unfiltered GPS coordinates and

equivalent rolling cylinder machine run

NSGA-II GPS Rolling Mach.

Mean 1,121.494 1,103.635 1,106.667

Standard deviation 7.665415 16.49395 5.532274

The measured length using a certified odometer was 1,093 m

Table 5 p-Values of Wilcoxon test between each of the tested

methods

NSGA-II GPS Rolling Mach.

NSGA-II – 0.0057 0.0001

GPS – – 0.9205

The differences in bold are statistically significant at 0.05 level, even

after Bonferroni adjustment (adjusted a ¼ 0:05=3 ¼ 0:0167)
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length compatible with GPS data, which effectively is a

computation of the upper tolerance of the device, for a

particular route. These calculations must be repeated each

time a taxi is verified, because the obtained margins depend

on the GPS signal reception, the satellite configuration and

the shape of the path. We have also found that the stronger

the turns in the calibration trajectory, the less accurate the

measurement is. Therefore, we recommend to avoid con-

voluted paths in the GPS-based verification of taximeters.
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