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Until recently, local governments in Spain were using machines with rolling cylinders for testing

and verification of taximeters. However, the tyres condition can lead to errors in the process and the

mechanical construction of the test equipment is not compatible with certain vehicles. Thus, a new

measurement device should be designed.

In our opinion, the verification of a taximeter will not be reliable unless measurements taken on an

actual taxi run are used. Global positioning system (GPS) sensors are intuitively well suited for this

process, because they provide the position and the speed with independence from those car devices that

are under test. Nevertheless, since GPS measurements are inherently imprecise, GPS-based sensors are

difficult to homologate. In this paper we will show how these legal problems can be solved. We propose

a method for computing an upper bound of the length of the trajectory, taking into account the

vagueness of the GPS data. The uncertainty in the GPS data will be modelled by fuzzy techniques.

The upper bound will be computed using a multiobjective evolutionary algorithm. The accuracy of the

measurements will be improved further by combining it with restrictions based on the dynamic

behavior of the vehicles.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Taxi fares in Spain are revised once a year, and the taximeters
must be recalibrated and verified by a Technical Inspection (TI)
through a certified station. The tariff depends on two variables: the
speed of the taxi and the distance travelled. In particular, while the
speed of the taxi is lower than a threshold, the user is being charged
for the elapsed time. Otherwise, he/she is charged for the distance.

Since 1990, the Metrology and Models group at Oviedo
University has been responsible for the design of the equipment
and devices needed for the verification of taxis in Asturias, Spain.
Currently, the verification of the taximeters is being carried out
using of a machine with rollers. The drive wheels are placed on
the rollers, whose speed is regularly sampled. The test lasts a few
minutes, while the driver must be assisted by a TI technician. The
total distance in the simulated run is computed by multiplying the
circumference of the roller by the number of turns, and the linear
speed is estimated from the angular speed of the rollers.

However, the use of a machine with rollers presents some
drawbacks:
1.
 The rollers have a relatively small radius, and the tyres do not
deform the same over the rollers than over a flat surface. The
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difference between the actual and the theoretical radius means
that tyres appear to be smaller than they are for the system.
Moreover, this error depends on the tyres condition and the
weight of the vehicle.
2.
 A TI employee can only verify one taximeter at a time, and this
task lasts between 15 and 30 min. The price charged for the
test could be reduced if an unattended procedure is devised,
for which this employee would not be needed.
3.
 Problems have been detected when verifying a taximeter in a
car with electronic driving aids (such as ESP, TCS, etc.). In these
cars, the signals that feed the taximeter are taken from the
electronic control unit. But, when the car is placed in the
rollers, two wheels are moving and the other two are locked.
For certain brands of vehicles, the electronic control unit is not
prepared for such an abnormal driving condition, and the unit
does not produce information about the speed of the moving
wheels.

The third problem is the most daunting, because it means that
the verification of certain vehicles is not possible. In these cases,
length and time fares are verified in two different tests.
A chronometer is used for verifying the time fare, and the
distance fare is being checked through an actual run of the cab, in
a circuit with a known length. Nevertheless, not all TI stations
own this kind of facilities. Moreover, we have concerns with this
procedure, because the speed of the taxi is metered with the
instruments of the vehicle being tested.
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In this situation, ITVASA, the company responsible of the TI in
Asturias, Spain, asked the Metrology and Models group at Oviedo
University for the design and development of a system capable of
the verification of taximeters task with the following require-
ments: (a) the measures should not depend on the condition of
the tyres of the vehicle, (b) it should be possible to verify the time
fare and the length fare in an unique test, (c) the test should be
unattended, (d) the accuracy of the device should comply with the
regulations and (e) any vehicle could be tested, even those with
electronic aids.

We have introduced a new portable system that fulfills all
these requirements. Our system uses a global positioning system
(GPS) receiver to sample the position and the speed of the taxi at
regular intervals. The new test is less expensive, because the
technician is no longer needed and the cabin where the rollers are
installed would be freed for other uses. Due to cost reasons, we
also want to use a cheap, consumer grade, GPS. We are aware that
higher quality GPS receivers are more accurate, however, each
station must acquire between 10 and 20 devices (otherwise the
queuing time would not be acceptable) and the cost of deploying
the new solution has to be amortized in a few years.

Additionally, there are legal problems that difficult the use of
GPS measurements. It is well known that GPS data are inherently
imprecise. Moreover, the tolerance is neither a prior knowledge
nor constant, but it varies with each measurement. Unless we are
able to bound the tolerance in our estimation of the length of the
trajectory and the speed of the vehicle, we will not be able to
legally reject a taximeter. This is the same problem that happens,
for instance, when speed penalties are applied by a highway
radar: we cannot penalize a vehicle whose speed is higher than
the limit unless we also know (a) the tolerance of the radar and
(b) that the measured speed surpasses the limit by more than
that tolerance. In any other case, we must assume that the driver
(and, conversely, the taxi owner) has not committed an offence.

Therefore, it is difficult to homologate a GPS-based device,
because we cannot assess its absolute accuracy, e.g. the tolerance
may be 5% for a certain route and 11% for a different route.
To solve this problem, in this paper we propose a device that not
only produces an estimation of the length of the trajectory, but it
also computes an upper bound of this length. In other words, our
system accounts the uncertainty of the measures, detects those
cases where the accuracy of the test is not well under 10% and
invalidates the test, if needed. This way, our system guaranties a
minimum accuracy and therefore it can be homologated.
1.1. Legal constraints and statistical decisions

Let us suppose we have a measurement device which, given a
taximeter with an unknown error e, produces an estimation be of
its error. We will assume that the device is unbiased,
i.e. Eðbe� eÞ ¼ 0. Therefore, we could define the trivial decision
rule that follows:

D0ðbeÞ ¼ Accept if bep0;

Reject otherwise:

(
(1)

However, any measurement device will have a tolerance �: this
means that be� �pepbeþ � with a very high probability and,
conversely, that the probability pðjbe� ej4�Þ is near zero. This
tolerance has legal implications. Suppose, for instance, that we
reject a taximeter because we estimate that its error is be ¼ 5%, and
the tolerance of our device is � ¼ 7%, which is higher than this
error. The taxi owner could argue that there is a chance that
the true error of the taximeter is less than or equal to 0, and have
our rejection revoked. In short, we cannot reject a taxi unless the
estimation of the error is higher than the tolerance, thus we are
sure that the taximeter is incorrect with a high probability.

In Spain, the maximum deviation between the charged fare
and the true fare must not be higher than 10%, and therefore we
cannot homologate a device with a tolerance higher than this
value. It is remarked that the tolerance of a GPS device depends on
many factors (geometry or constellation of the satellites, shape of
the trajectory, speed, etc.) As we have mentioned in the preceding
section, we cannot certify that all measurements taken with the
certain GPS device will be more accurate than 10%. However, we
will show in this paper that we can determine whether the
tolerance of a particular measure has been within the legal
margins. This is the main objective of this paper.

We have also mentioned that the legal problem is similar to
that of using a radar for measuring the speed of a vehicle. But, the
legal assumption of innocence, that most drivers would be glad to
accept if accused of surpassing the speed limit, benefits the taxi
owner.

The legal decision rule is

DðbeÞ ¼ Accept if bep10;

Reject otherwise

(
(2)

which, from a statistical point of view, is not fair. Let pðxÞ be the
probability of the error of a taximeter being x. On the one hand,
we can reject a correct taximeter with a probability

PðReject j ep0Þ ¼
pðbe410 \ ep0Þ

pðep0Þ
. (3)

On the other hand, we will pass an incorrect taximeter with
probability

PðAccept j e40Þ ¼
pðbep10 \ e40Þ

pðe40Þ
. (4)

For D to be fair, we need that both errors are the same. However,
they are not. If the tolerance of the device is lower than 10%, then
pðbe410 \ ep0Þ is near zero, thus PðRejectjep0Þ is negligible, but
PðAcceptje40ÞXpð0oeo10� �Þ=pðe40Þ, which is rather high.
According to our own experience, Spanish taxi drivers calibrate
their taximeters to obtain their maximum legal advantage, i.e. it is
by far more frequent that a taxi has an error near 10 than an error
lower than 0.
1.2. Lower upper bound of a trajectory

In order to obtain the highest number of valid measurements
(i.e. those for which the tolerance is lower than 10%) we are
interested in knowing the shortest trajectory whose length is
known to be longer than the actual path, given a set of imprecise
coordinates of the vehicle. Therefore, in this work, it is proposed to
calculate the lower upper bound (from now on called LUB) of all
possible trajectories that are compatible with the measurements
given by the GPS.

Due to the imprecise nature of input data, a new method for
establishing the LUB is presented. In doing so, input data are
represented as fuzzy data. These data are filtered in order to
produce the smallest subset of coordinates that induces a
multipolygonal that covers the input data as much as possible.
Finally, that filtered data are fed to a deterministic algorithm for
computing the upper bound of length of the trajectory.

The filtering process is the most complex part of the procedure.
It involves solving a multicriteria optimization problem, for which
we will use the genetic algorithm NSGA-II (Deb et al., 2000; Deb
and Goel, 2001).
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1.3. Summary

The structure of this work is as follows. In the next section, we
describe how GPS measurements are obtained. We also explain
the imprecise nature of GPS measurements, and how they can be
interpreted as fuzzy data. Then, a description of the proposal
is set out in Section 3, where the filtering process and the
issues regarding LUB computation are detailed. Deterministic
(Section 3.2) and randomized (Section 3.3) algorithms for
computing the LUB are given in the same section. In Section 4
details about the genetic algorithm used to filter the data are
given. In Section 5 numerical results are shown. Finally, conclu-
sions and future work are presented.
722000 722050 722100
Easting

Fig. 1. Real GPS measurements, the CEP value changes from one measurement to

another.
2. The vague nature of the GPS measurements

The term GPS (Hofmann-Wellenhof et al., 2004) refers to a set
of devices (satellites and receiver) working together to get a fix
(the position) of the receiver. The receiver can receive some
signals from the satellites and compute a set of measurements:
longitude, latitude, altitude, number of satellites in use, time, etc.
Each signal received from a satellite contains information about
the time that the signal takes from the satellite to the receiver.

So it can be thought that using signals from four satellites
(three for geographical coordinates and one for time correction)
could be enough to achieve a fix. A fix computed with that
information, however, is very inaccurate: there are some errors in
GPS technology that make it necessary to receive signals from
more than four satellites. Some of the sources of these errors are:
perturbations of the satellites signals when crossing the atmo-
sphere, satellite ephemerids deviation, satellite clock errors,
receiver errors and multipath (signals are not received directly
from the satellite).

As a rule of thumb, the higher the number of satellites the
better the accuracy. But even with a high number of satellites in
use (12–16) the geometry or constellation of the satellites must be
taken into account to estimate the fix accuracy. This is done using
DOP (dilution of precision), a measurement of the probability of
the effects of the constellation on the fix accuracy (Langley, 1999);
a higher value of DOP indicates a weaker geometry of satellites.
DOP has four components: PDOP (3D or spherical DOP), HDOP
(latitude and longitude DOP), VDOP (vertical DOP) and TDOP
(time DOP).

Under certain conditions, GPS measurement errors follow a
bidimensional Gaussian distribution. When many satellites are
available that distribution can be regarded as circular (van
Diggelen, 2007). Because of this, consumer grade GPS gives an
indication of their precision through a magnitude called circular
error probable (CEP). Given a probability threshold, the CEP
indicates the radius of a circle. This circle is approximately
centered on the position where the receiver was when it
registered the measurement. If the threshold is 50% the CEP can
be calculated from the standard errors of the estimated coordi-
nates with (Langley, 1991; Strang and Borre, 1997)

CEP ¼ 0:56sx þ 0:62sy, (5)

where sx and sy are the horizontal components of the standard
deviations of the measurements. The CEP at 95% probability is also
known as R95 and can be obtained multiplying by 2.08 the 50%
probability CEP. In Fig. 1, a real example showing how the CEP
could vary between consecutive measurements is displayed.

Consumer grade GPS does not send information related to the
standard errors. HDOP values are available from the standard
NMEA protocol used in most of the GPS receivers and this
magnitude accounts for the impact of constellation geometry in
horizontal accuracy. Thus, an empirical estimation of CEP/HDOP
relationship must be carried out (Dussault et al., 2001; Cressie,
1991). From the definition of CEP, this is easily done from a sample
of GPS coordinates taken in a given location. For each HDOP value,
the subset of GPS obtained under that value is extracted from the
whole data. Then the smallest circle that covers 50% of the points
is the CEP at that probability. The procedure for the 95% CEP is
analogous.

2.1. A fuzzy representation of GPS data

In the context of imprecise probabilities, a fuzzy set could be
seen as a set of tolerances. Each tolerance is assigned a confidence
rate, and the lower the tolerance the lower the confidence rate
(Goodman and Nguyen, 1985). In particular, given an incomplete
set of confidence intervals of a random variable, it is possible to
generate a random fuzzy variable for which a-cuts are confidence
intervals of rate ð1� aÞ (Couso et al., 2001). We will use this
representation and perform a multilevel calculation of the LUB.

In the case of the measurements obtained from a GPS unit, two
confidence intervals are given at 50% and at 95%. Using the
procedure explained in this section, a value of CEP could be
calculated for each probability value (Manning and Harvey, 1994).
It can easily be seen that the higher the probability value the
higher the CEP value. The physical meaning of this fact is simple
for the GPS measurements: the higher the confidence rate needed
for determining the real position from which the GPS measure-
ment was taken, the higher the CEP value.
3. Calculation of a LUB using fuzzy data

The GPS measurements are sampled at equally spaced time
intervals. Each measurement is a fuzzy set, as stated before,
whose a-cuts are circles centered on the GPS coordinates.
Therefore, each circle is a confidence interval for the true
coordinates of the taxi when the measurement was taken. In
Fig. 2 some simulated GPS measurements and trajectories are
shown. The position where the measurement was taken is on the
real trajectory—continuous line—and it can be inside or outside
the respective circle of radius CEP. The trajectory using the GPS
coordinates is drawn using a dashed line. A trajectory totally
compatible with the GPS measurements is also drawn as a dotted
line. Notice that the lengths of these trajectories are different, but
all of them are compatible with the measurements of the GPS.
Thus, to know the accuracy of the measure, we want to compute
the LUB of the lengths of all the paths which have all of their
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Fig. 2. Simulated example where the differences between the true trajectory and

the trajectory through the GPS coordinates are shown.

Fig. 3. Simulated example showing how a polygonal that covers the fuzzy input

data from GPS could be built.
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vertexes inside the circles (for each confidence level). This bound
is the largest trajectory compatible with the GPS measurements.
Observe that the LUB is infinite unless we introduce some
constrains. The main assumption in this paper is that changes in

the direction of the vehicle between two samples are small, thus we
can approximate the trajectory between two consecutive samples
by an straight line.

We will define a polygonal chain that covers the fuzzy data, by
finding the outside tangents to the CEP for each a-cut, and then
computing the cross points of the corresponding tangents
between two consecutive fuzzy points (see Fig. 3). Observe that
1.
 The longest segment contained in each polygon of four
sides—a quadrilateral—is one of its diagonals.
2.
 The longest path contained in two adjacent quadrilaterals
always comprises two of these diagonals.
3.
 The longest path contained in three adjacent quadrilaterals is
also composed of diagonals, but they might not be the longest
diagonals of each quadrilateral.

The LUB is defined by a subset of the list of vertexes. Later in this
section we explain how to obtain this subset. We introduce first
some preprocessing algorithms that will improve the accuracy of
the final measurement.
Fig. 4. The simplifying process over a synthetic example: filtering a point reduces

the area of the polygonal chain, but the remaining points must resemble the

trajectory.
3.1. Preprocessing the data

The accuracy of the measure can be improved if some collinear
points are joined, and some of the worst GPS fixes are discarded.
In case the sampling rate is high enough, our hypothesis (straight
trajectory between samples) still holds after performing these two
changes, and we can safely preprocess the data before computing
the estimation of the length and the LUB.
Given an level value a, the fuzzy input data are represented as
a circle centered on the coordinates, and whose radius is the CEP
at probability ð1� aÞ. We have mentioned that, for each a-cut
value, the data comprise a set of circles, and also that the two
outside tangents of two consecutive circles, and the cross points of
the tangents to every three consecutive circles define a polygonal
chain. The objective of the preprocessing is to obtain a reduced
polygonal chain of fuzzy sets which still contains the LUB for each
level a. If crisp data were used, polygonal chain simplification has
been studied in Estkowski and Mitchell (2002) and Hershberger
and Snoeyink (1992). For fuzzy data, to our knowledge, the most
similar work in the available literature is that presented in Anile
et al. (2000), where fuzzy data from a geographical data base
are used to reconstruct 3D images by means of fuzzy B-splines
(de Boor, 1972).

Our process of computing the LUB is a three step procedure:
the first step is filtering by collinearity, then filtering by a
multiobjective algorithm, and finally using a deterministic
algorithm for determining the largest polyline in a polygonal
chain; this is done for each a-cut. These filtering stages are
described in the subsections that follow, and the deterministic
algorithm is explained in Section 3.2.
3.1.1. Filtering by collinearity

For each a-cut a polygonal chain is obtained, as explained
before. If for three consecutive circles, both pairs of outside
tangents are parallel, then the quadrilateral defined by the first
two circles is contained in the quadrilateral defined by the first
and third circles, and the intermediate circle could be filtered.
Further removals of points are limited by the sampling rate, i.e. if
too many points are filtered out, we cannot assume the trajectory
is straight between the first and the last one.
3.1.2. Filtering spurious data

Spurious data are input points where the error is abnormally
high. We can remove those points where the fix was not accurate
enough, provided that we do not discard a significant number of
points, i.e. a fraction 1� a of the vertices of the reduced polygonal
must be in the unfiltered path, for each level a. In Fig. 4 the
process is illustrated for a given a-value.

Filtering points reduce the area of the polygonal chain, so the
LUB will be smaller too, and this is not a desired effect. We do not
want to filter representative points. Maximizing the percentage of
covered data, while filtering the outliers, are objectives that
counteract one another. We will use a multicriteria genetic
algorithm to optimize the filtering, as we will explain in Section 4.
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Fig. 6. Possible relative positions of vertexes and lines between prior and next

vertexes. This is useful in the determination of convex and non convex vertexes.
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3.1.3. Dynamic behavior of the vehicle

The filtering process can be further improved if we assume that
the vehicle has inertia and some trajectories contained in the
polygonal chain are not feasible. For example, think of a vehicle
moving at a certain speed. There exists a maximum angle the
vehicle could turn without risking its security. Moreover, for each
speed value there exists a maximum angle, lower than that given
by security reasons, which is comfortable for the vehicle
passengers.

Therefore, we can introduce a second hypothesis in our
analysis: driving a taxi must be comfortable. The maximum angle
of turn is a function of the speed of the vehicle: the larger the
speed, the shorter the maximum angle of turn. In determining the
angle of turn at each point, the one before and one after fuzzy
points are used. For an a-cut value the fuzzy points are circles. By
means of the tangents the polygonal chain for the three fuzzy
points could be defined. The largest trajectory included in such
polygonal chain is one of the four possible polylines that goes
through the vertexes of the polygonal chain. Once the largest
trajectory for this three points polygonal chain has been found,
if the angle that the segments of the largest trajectory define
is larger than the maximum angle of turn at current speed, the
trajectory is not considered as a candidate for its length being
the LUB.

3.2. Deterministic longest path estimation

Once the data are preprocessed, we evaluate its LUB with a
deterministic algorithm, that we explain in this section.

For each a-cut of the chain, we get a polygonal set constructed
with trapezoids, as can be seen in Fig. 5. The motion direction is
indicated by a thin dashed arrow. Each trapezoid vertex is denoted
with a pair of integers, those at the left of the arrow are zero at
first, those at the right have one at first. The other number is the
step in the motion sequence. The longest path at each step i goes
through ð0; iÞ vertex or ð1; iÞ vertex. The set of vertexes that defines
the longest path, can be computed by exhaustive exploration of all
possible combinations, but this is very expensive in terms of
computational cost and proved impracticable in a realistic
trajectory with 100 points, for instance. This problem has been
studied in the area of Computational geometry and is related with
longest path with forbidden pairs (Berman and Schnitger, 1992),
that is NPO PB-complete.

Because of this and given that in a realistic trajectory the
changes of direction and the changes in distance between left
and right vertex are limited due to the dynamics of the taxi, the
(1,1)

(1,2)

(1,3)

(1,4)

(1,5)
(0,0)

(0,1)

(0,2)

(0,4)

(0,3) (0,5)

(1,0)
X

Y

Fig. 5. Example of longest path estimation following the algorithm explained in

Section 3.2.
geometry of the road and GPS behavior, we use a heuristic that is
linear in time with the number of vertex. The heuristic is based on
the selection of convex vertexes: when a vehicle turns, the longest
path goes through the exterior of the trajectory curvature.
The convexity of a vertex is analyzed using the straight lines that
rely on previous and following vertexes, the possible relative
positions of the central vertex can be seen in Fig. 6, where convex
vertexes are marked with a small circle and the lines that pass
through vertexes ð0; i� 1Þ, ð0; iþ 1Þ and ð1; i� 1Þ, ð1; iþ 1Þ are
drawn. From left to right and top to bottom, if both vertexes are
between the lines, both are concave. If only one is outside the
lines, it must be convex. If both are outside the lines, both may be
convex (left) or one may be concave and the other is convex. In
both cases, if the farthest one from the nearest line is chosen, then
it is convex.

The heuristic is as follows: the first segment of the longest path
goes from a convex vertex in step 1 to the vertex at step 0 that
gives the maximum segment length. From step 1 to the one before
the last, the path goes through:
�
 If there is only a convex vertex, through this vertex.

�
 If there are two convex vertexes, through the farthest one.

�
 If there are no convex vertex, through the farthest one.

The last segment ends in the farthest vertex from the previous
one.

In Fig. 5 the path computed with this heuristic is marked with
a thick dashed line. The first segment goes from ð1;0Þ to ð0;1Þ
because ð0;1Þ it is convex and the distance to ð0;0Þ is shorter. Then
the longest path continues to ð1;2Þ because it is the only convex.
The same happens with ð0;3Þ and ð0;4Þ. Finally, the path ends in
ð1;5Þ because it is farther from ð0;4Þ than ð0;5Þ.

3.3. Randomized longest path estimation

There is an alternate implementation for the method proposed
in the preceding section. Let us suppose that we superimpose a
grid on the chain of circles (see Fig. 7) and compute the whole set
of lengths obtained by the selection of one point of the grid from
each fix. In order to compute the maximum length from the
obtained trajectories, a backtracking algorithm is impracticable
due to the high number of points present in real trajectories.
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Fig. 7. Discretization of GPS measurements and exhaustive exploration of the

lengths of all the trajectories obtained from all the possible combinations of

discretized points. Only a fraction of the possible trajectories is shown.
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However, we can uniformly sample a number of trajectories and
compute a Monte Carlo estimate of the probability distribution of
the lengths that arise. The mean value of this distribution would
be our estimation of the length, and we can also produce a
confidence interval for the mean, from which to calculate our
tolerance.

To build a sample trajectory, we have implemented the
procedure that follows: for each fix, with a probability 0.95, a
point of the grid which is inside the CEP at that level is randomly
selected (thus with a probability 0.05 the point is selected from
outside the corresponding CEP). The length of the polygonal that
joins all these points is stored and the whole procedure repeated a
high number of times. The sample distribution of these lengths is
finally used to compute the sample mean (which is an estimator
of the length that the taximeter should have produced) and a
confidence interval for it.

Unfortunately, there are some issues with this method. In
particular, the range of the sample distribution of the lengths is
bounded by the maximum sample length, which is general is not
the maximum length of a compatible path. As a matter of fact,
the maximum of the sample would be more reliable estimator of
the LUB for our purposes. Since there are not clear improvements
in speed neither in accuracy with respect to the method in the
preceding section, Monte Carlo analysis is not considered in this
work.
Fig. 8. Pseudocode of the NSGA-II algorithm.
3.4. Predetermined trajectories and maps

A trivial improvement of the accuracy could be obtained if we
restricted ourselves to a known route, and adjust the GPS
coordinates so that each position is replaced by its nearest point
in the center of the road. However, this method has been rejected
by the experts in the certification agency that will homologate the
device. The reason given was that all the measurements have to be
reproducible. There will be points with known latitude and
longitude where the certification agency will position the devices
and check that the tolerance of the measurements is within the
range. This kind of certification is not compatible with dynamic
changes in the coordinates, because the nearest point of the road
may well be out of the circle defined by the CEP, making the
determination of the LUB useless.

However, nothing prevents using the map as a constrain,
i.e. we know that the car is in the intersection between the road
and the confidence interval produced by the GPS. The coordinates
of the whole road and not only its center are needed, though. This
method has not been implemented either, because we have not
measured the width of the road, neither have access to a
cartography of the route with legal validity. This last point is
important, because any error in the maps would void all the
measurements taken with the devices. Nevertheless, observe that,
even if we decided to include this information in the future, it
would not alter the computations we present in this paper.
4. Genetic filtering of the fuzzy data

In this section the details of the codification and operators
used in the genetic algorithm which has been used to filter the
data are given. A multiobjective genetic algorithm has been used
in the filtering process. Specifically, the multiobjective genetic
algorithm used in this work is the well known NSGA-II (Deb et al.,
2000; Deb and Goel, 2001). This algorithm is outlined in Fig. 8.

4.1. Codification of an individual

Each individual is a subset of the chain of fuzzy points, codified
as an array of Booleans. That is to say: input data are a series of
timely ordered fuzzy points. Each one of the fuzzy input points
has a Boolean value associated for each individual. When the
Boolean value for a fuzzy point is set to true then that fuzzy point
is included by the individual. When the Boolean value for a fuzzy
point is set to false that fuzzy point is filtered out.

To generate an individual, a probability threshold p is given,
and each fuzzy point in the vector of input fuzzy data is included
with probability p. The origin and the end of the taxicab run must
always be included.

4.2. Multiobjective fuzzy fitness function

Observe that both the area of the polygonal chain and the
percentage of covered fuzzy data by the polygonal chain are fuzzy
functions. We want to minimize the area of the defined polygonal
chain and to maximize the percentage of covered fuzzy data.
Following Sánchez and Couso (2007), we will not defuzzify the
objectives, but use a fuzzy valued fitness function to assess the
quality of the filtering.

Genetic algorithm can solve fuzzy valued optimization
problems. For instance, we can define a total order between the
fuzzy values of the fitness function (Abbasbandy and Asady, 2006;
Mitchell, 2006; Tran and Duckstein, 2002; Sheen, 2006; Sun and
Wu, 2006). In particular, we need to sort fuzzy numbers, which
some authors think it is inconsistent with most definitions of total
order between fuzzy sets (Yeh and Deng, 2004; Wang et al., 2005).
The use of a weaker (partial) order can also be made compatible
with a tournament-based selection in conventional genetic
algorithms. In this context, in Jahanshahloo et al. (2004) and
Wang et al. (2005) an interval representation is used, and in
Ganesan and Veeramani (2006) another partial order relation is
proposed, restricted to trapezoid membership functions. This last
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solution cannot be applied to our problem, either, as there is
neither knowledge nor restrictions about the membership func-
tions type and certainty distributions. Also, different approaches
for evaluating the Pareto dominance using fuzzy fitness functions
have been proposed. In Youssef and Khan (2000) the use of
fuzzy rules for determining the dominance of one individual with
regard to another is proposed. Similar works are documented in
Trebi-Ollennu and White (1997) and Kiyota et al. (2000). In this
work we have decided to use our own implementation of the
NSGA-2 algorithm for fuzzy data, which is described in Sánchez
et al. (2007) and Sánchez et al. (submitted). We have used an
imprecise probabilities based ranking, in combination with the
definitions of nondominated sorting and crowding distance
explained therein.

4.3. Genetic operators

The definitions of the crossover and mutation must reduce the
number of vertexes in the population.
�
 Crossover. Given two parents A and B, the offspring are two new
chains C and D such that A \ B � C and A \ B � D; a vertex
v 2 A� B has a probability pþ of being in C, and a vertex in
B� A has a probability p� of being in C, where p� is much
lower than pþ. D set is constructed in the same way.

�
 Mutation. This operator is defined as the random removing of a

point of the chain, different from the first or last one. It is
important to notice that neither the first nor the last fuzzy
points will be included in the genetic operations because both
trajectory ends must be included for all individuals.

5. Experiments and results

In this section we describe the experiments that we have
devised for justifying the claims in this paper. Our experimental
design has three objectives:
1.
 Assessing the theoretical accuracy of the proposed method.

2.
 Obtaining the actual tolerance of the roller machine.

3.
 Comparing the accuracies of this method and the roller

machine in practical cases.

Therefore, three sets of experiments have been conceived:
1.
 Simulated paths: We have generated synthetic data, and added
random noise to it mimicking the properties of a typical GPS
sensor. Using this noisy data we made estimates of the
percentage of error between our LUB and the true length of
each path.
2.
850

N
or

th
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g

Tolerance of the roller machine: Even though the roller
machine has a theoretical null error, in practice the pressure
of the tyres and the level of wear cause a dispersion of the
measurements of the same order of magnitude as the GPS
sensor.
3.
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800
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Fig. 9. Example of GPS generated data along with the true trajectory. As can be

seen, some of the fixes CEP do not intersect the true trajectory. The most part of the

points of the trajectory are inside the CEP at 95%.
Compared accuracies: A real-world example is used to
compare the measurements taken with our system and the
former method: we have measured a circuit with an ISO-9002
certified odometer and then used it in our own testing
procedure. The same vehicle was also tested in the roller
machine, and all the results are compared and discussed.

Each one of these categories will be analyzed in detail in the
sections that follow.
5.1. Simulated paths

We have evaluated our algorithm in realistic paths that cover
most of the situations found when the TI test of a taxi is carried
out. These synthetic paths simulate several turns, accelerations,
decelerations and changes in CEP. GPS longitude/latitude coordi-
nates were translated to Universal Transverse Mercator northing/
easting coordinates in order to make distance calculations
between GPS fixes easier (Snyder, 1982). With this system, points
on the Earth’s surface are projected onto an equally spaced planar
metric grid, therefore the distance between fixes is the usual
Euclidean one. The trajectory is sampled once each second.

Since we need to know the true length of the path, and the
differences between the actual position and the GPS data, some
random noise is added to each point of the trajectory. At each
location, a random number from 4 to 8 is taken as the CEP at 95%
probability. The uncertainty in the GPS measurements is simu-
lated using the following procedure: with a probability of 0.95, a
point is selected whose distance to the real one is shorter than the
CEP, and with probability of 0.05 an outlier is introduced. Part of
the generated data is shown in Fig. 9. GPS measurements are
represented with circles (actually ellipsoids in Fig. 9, due to
scaling issues) with a radius equal to 95% CEP and the original
trajectory with a continuous line. As can be seen, 95% of the circles
intersect the trajectory, but none of their centers are in the actual
trajectory.

We perform two experiments with two trajectories of 120
points each in order to test if the tolerance computed from the
LUB is lower than the legal margin or not. If the true length of the
trajectory is known, the tolerance is

� ¼ ðLUB� lengthÞ=length. (6)

Several tests were also carried out to assess the genetic filtering.
This was launched with the parameters shown in Table 1. Firstly,
and for both trajectories, 10 runs of each of the multiobjective
algorithm were done, without restrictions based on the dynamic
behavior of the vehicle. Finally, a second set of 10 runs were done
with the multiobjective algorithm using the same parameters but
assuming that the angular velocity of the vehicle had a speed
dependent bound.

5.1.1. Case study I

The true length of the first trajectory is 3228.6 m. The distance
through the GPS fixes is 3238.5 m. Taximeters which mark more
than 3228:6þ 10% ¼ 3551:4 will be rejected. Observe that, in
practical circumstances we do not know the actual length of the
path and we will reject those taxis that charge more than
3238:5þ 10% ¼ 3562:4.
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Table 1
Parameters used for NSGA-II algorithm

Parameter Value

Number of generations 1000

Number of individuals 100

Number of populations 1

Minimum percentage of fuzzy points covered by each individual 0.85

Probability pþ for genetic crossover 0.5

Probability p� for genetic crossover 0.1

Crossover probability 0.7

Mutation probability 0.1

Table 2
Results from 10 runs of NSGA-II without dynamic analysis

Dataset True

length

Measured

length

LUB

estimation

LUB

estimation

Best Mean

1 3228.57 3238.521 3456.61 3499.48

2 2741.30 2696.487 3126.99 3192.51

Table 3
Results from 10 runs of NSGA-II with dynamic analysis

Dataset True

length

Measured

length

LUB

estimation

LUB

estimation

Best Mean

1 3228.57 3238.521 3242.64 3243.45

2 2741.30 2696.487 2765.63 2798.01

Table 4
Vehicle’s odometer measurements for a roller machine measurement of 1000 m

Press or condition Min Med Max Weared

Mean 1006.525 1027.437 1009.578 1030.420

Std. deviation 14.29073 3.661429 6.815601 5.170147

In each column the mean and standard deviation at each pressure or condition are

shown. The behavior of the system is complex: when the tyre pressure is high, the

diameter of the tyre increases and the odometer measurements are lower. If the

pressure is too low, the deformation of the tyre increases the perimeter and the

measurements are lower also. The effect of the wear is simpler; it always decreases

the perimeter of the tyre.
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The mean LUB for this trajectory (first row of table in Fig. 2) is
3499.5. Then, the expected tolerance is 0.084 (0.081, if we used
the measured values to compute the tolerance). This result means
that taximeters charging more than 3551.4 can be safely rejected.

If we filter the data taking into account the dynamics of the
vehicle (see Table 3) the expected tolerance is 0.005 (0.002 if we
used the measured length) which is much lower than the legal
margin.

5.1.2. Case study II

The length of the second trajectory is 2741.3 m. This trajectory
has stronger turns than the first, and we will see that the LUB will
be less tight, given the deterministic procedure explained in
Section 3.2. The distance through the GPS fixes is 2696.5 m. If we
repeat the analysis done in the preceding case (see second row of
Table 2), then the mean LUB is 3127.0. The expected tolerance is
0.141 (0.160), thus we cannot reject a taximeter on the basis of a
test carried in this route (see also Table 3).

The use of dynamic restrictions in the genetic filtering causes a
significant improvement of the tolerance, which is now 0.021
(0.038) thus we could legally reject taxis that charge more than
2741:3þ 10% ¼ 3015:4 ð2966:2Þ using the same input data.

Observe that, given these results, we recommend the TI station
to choose circuits with smooth turns, since they will surely
produce a low rate of null verifications. In general terms, the use
of convoluted paths is not advised with the system we propose
here.

5.2. Tolerance of the roller machine

The GPS measurements are inherently imprecise. As a matter
of fact, that imprecision is not too high, as the simulation in the
preceding section has shown. Even though sometimes we could
not demonstrate that the accuracy of the measurements was
lower than 10%, the actual accuracies were around 0.3% in the first
test case, and 1.6% in the second. Nevertheless, the roller machine
has a theoretically null error, because the number of turns of the
cylinders can be precisely counted, and from a point of view of a
metrology expert, this procedure has more sense and reportedly
should be preferred, if applicable.

However, in practice, tyre pressure and wear influence the
measurements. The dependence is not immediate, though. The
effect of the tyre pressure on the measures taken with the roller
machine is not easy to model, because the number of turns of the
cylinder for each linear meter depends on both the effective
diameter of the wheel and the tyre slip, although conversely the
level of wear is directly related to the measured distance.

For studying these dependences, we have designed a small set
of experiments. In the first place, we measured the errors
introduced by the different pressures in the tyres. Five taxi
models were used, and the pressures were:
�
 the maximum allowed (according to the manufacturer speci-
fications);

�
 the recommended pressure;

�
 a very low pressure (0.5 bar below the recommended).

In the second place, for analyzing the dispersion of results for
different levels of wear, one last round of experiments was
performed with a set of wheels weared to the limit, and inflated to
standard pressure. It is also remarked that all the experiments had
to be done at very low speed to avoid the electronic traction
control system activation.

Each round of experiments consisted on 10 runs. Each run
began with the vehicle’s odometer set to zero and ended when the
roller machine reached 1000 m. In Table 4 the mean and standard
deviation of the odometer measurements is shown. In Fig. 10 the
same data are shown graphically using boxplots.

It should be observed (Table 4) that the dispersion of the
measurements is much higher than expected. There have been
differences of 30 m in a 1000 m run, or 3%, which is well above the
theoretical tolerance of the GPS in the simulated path. We have
not tested the combined effect of wear plus different inflating
pressures, but the actual dispersion could be even higher. In the
next section we compare both methods (rollers and GPS) on an
actual path, and confirm that the tolerance of the GPS sensor is
not, in practical cases, worse than that of the rollers.

5.3. Real-world measurements

When a taximeter is being verified, the taxi owner is sent for a
run. He/she must carry the target taximeter, and the GPS-based
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Fig. 10. Boxplots of the distance, as measured by the odometer, when the rollers

indicate 1000 m. Note how the pressure of the tyre or the level of wear affects to

the distance reported by the taximeter.

Fig. 11. Prototype of the data logger that is being developed for the verification of

taximeters. The design is based on low cost automotive microcontrollers and a

consumer-grade GPS receiver.

Fig. 12. Aerial picture of the circuit used in the tests. In the left of the image, a

portion of the road is shown between the building and an area covered with trees,

where GPS measurements are difficult.

Fig. 13. Path registered by the GPS, 10 laps to the circuit depicted in the preceding

figure. There are large differences between the laps, mostly in the left part of the

circuit.

Table 5
Mean and standard deviation of the 10 measurements of the real path using MOSA

and NSGA-II filtering, unfiltered GPS coordinates and equivalent rolling cylinder

machine run

MOSA NSGA-II GPS Rolling machine

Mean 1118.872 1121.494 1103.635 1106.667

Standard deviation 7.353936 7.665415 16.49395 5.532274

The measured length using a certified odometer was 1093 m.
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datalogger device. (A photography of the prototype which
is currently under development is shown in Fig. 11.) Once
the taxi comes back to the TI, the GPS measurements are
loaded into the computer where the LUB computing will be
carried out. Only bidimensional measurements are to be taken
into account as the height is not relevant: the trajectories range
between 3 and 5 km, and the differences in altitude are a few
meters. Each measurement includes the coordinates, the calcu-
lated CEP value for the desired a-cuts and the number of available
satellites.

In this section we have used a circuit surrounding the Campus
de Viesques’ buildings (Gijón, Asturias, Spain). The length of
the circuit was measured using an ISO-9002 certified odometer.
In Fig. 12, a picture of the circuit can be seen. The circuit comprises
two long and two short straight paths, and four sections with
close turns. The measured length was 1093 m.

A direct comparison of the rolling machine against the other
methods is not possible, so an indirect procedure was employed.
We equipped a car with an odometer that reported the distance
travelled. Then we placed the same car in the rolling machine, and
travelled 1093 m, according to the same instrument. Lastly, we
read the measurement produced by the rolling machine. This
procedure was repeated 10 times.

In Fig. 13, the route recorded by the GPS in the analyzed laps
can be seen. There are large differences between the centers of the
measurements between successive laps, especially in the left part
of the circuit. This uncontrollable behavior results in a variation of
the measured length of the same path, as shown in Table 5. This
table collects the mean and standard deviations of the obtained
measures, using each method discussed in the paper: MOSA and
NSGA-II dynamical filtering, raw GPS coordinates, and cylinders. It
is remarked that the variability of the results in the cylinders does
not take into account the variability induced by changes in
pressure of the tyres neither their wear that will be discussed later
in this section.

The same results are graphically shown in Figs. 14 and 15,
where data collected in 10 runs is summarized by means
of boxplots. We have placed an horizontal line at the true length
(the value that was measured with the certified odometer) in both
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Fig. 14. Boxplots of 10 measurements of the circuit using unfiltered GPS

coordinates, and the equivalent measurements using rolling cylinders. The

measured length using a certified odometer was 1093 m (the horizontal line).

Raw GPS measurements had a high variability and were not a suitable alternative

for the cylinders.
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Fig. 15. Boxplots of the 10 measurements of the real path using unfiltered GPS

coordinates and filtered GPS coordinates with MOSA and NSGA-II. The measured

length using a certified odometer was 1093 m, the horizontal line is placed at that

length. Note that the measurements done with filtered GPS coordinates never fall

under the actual value of the length.
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Fig. 16. Boxplots of the 10 measurements of the real path using MOSA and NSGA-II

filtered GPS coordinates, and equivalent measurements using rolling cylinders. The

measured length using a certified odometer was 1093 m, the horizontal line is

placed at that length. Note that filtered GPS measurements are comparable to

those made with recommended tyre pressure.
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figures. Observe in Fig. 14 that the unfiltered GPS coordinates
produce a large dispersion of measurements, and the dashed line
is crossed with a probability which is not negligible.However, in
Fig. 15 the effect of the evolutionary filtering is clear, as both
boxplots, depicting the filtered results, are well above the dashed
line. That is to say, the filtering produces a good approximation of
the LUB, which is never below the actual length. From the two
filtering techniques, MOSA exhibits less variability and a mean
lower mean value than NSGA-II, closer to the actual length.

Lastly, in Fig. 16, a comparison between the filtered GPS
measurements and the rolling machine is done. Observe that the
accuracy of the filtered GPS is not only comparable but better than
that of the cylinders if the tyre pressure is too low or high. It is also
remarked that the GPS-based verification does not depend on the
condition of the tyres.
6. Conclusions

There are legal issues concerning the use of GPS devices for
verifying taximeters. However, in our opinion a GPS is the
measuring device that best balances cost and accuracy for a TI.

To homologate a GPS for this application, we need to guarantee
that the tolerance of the measurements is lower than the legal 10%
margin. We cannot assert that this tolerance holds in absolute
terms, but in this paper we have defined how to compute the
upper bound of any trajectory length compatible with GPS data,
which effectively is a computation of the upper tolerance of the
device, for a particular route. This calculations must be repeated
each time a taxi is verified, because the obtained margins depend
on the GPS signal reception, the satellite configuration and the
shape of the path. We have also found that, the stronger the turns
in the calibration trajectory, the less accurate the measurement
is. Therefore, we recommend to avoid convoluted paths in the
GPS-based verification of taximeters.
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