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We aim to construct suitable tests when we have imprecise information about a sample.
More specifically, we assume that we get a collection of n sets of values, each one charac-
terizing an imprecise measurement. Each set specifies where the true sample value is (and
where it is not) with full confidence, but it does not provide any additional information.

Our main objectives are twofold: first we will review different kinds of tests in the liter-
ature about inferential statistics with random sets and discuss the approach that best suits
our definition of imprecise data. Secondly, we will show that we can take advantage from
mark and recapture techniques to improve the accuracy of our decisions. These techniques
will be specially important when the population is small enough (with respect to the sam-
ple size) that recaptures are common. They also seem to be useful when resampling tech-
niques are involved in the decision process.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The modern theory of random sets was initiated in the seventies, independently by David Kendall [29] and Georges Math-
eron [36] and its rapid development is mainly due to the following applications: stochastic geometry and representation of
imprecise random measurements. On the one hand, stochastic geometry is concerned with random geometric structures,
ranging from simple points or line segments to arbitrary closed sets. Stochastic geometry techniques can be applied in a wide
range of fields, such as image analysis, telecommunication networks, forestry or environmental research. On the other hand,
random sets seem to be the natural representation for imprecisely observed random quantities, when we can only determine
a set of values that contains each outcome. Due to the imprecision of devices, we can only say that the outcome belongs to a
more or less precise set, but we cannot establish a probability distribution within it indicating different grades of belief for
different zones of the set. In this paper, we will focus on this particular application of random sets.

Specifically, we will deal with parametric hypotheses testing. So we first need to clarify the notions of ‘‘parameter” and
‘‘sample statistic” in our context. From now on, and for the sake of simplicity, we will restrict ourselves to random sets de-
fined on the real line, and to the concepts of mean and variance. We can find in random sets literature at least two alternative
procedures to extend those notions.

(A) The first option consists in considering the random set as a ‘‘random object” (a measurable mapping in a classical
sense). So, it induces a probability measure on a r-algebra defined over a family of subsets of the real line. Each param-
eter is calculated as a function of its induced probability measure. Debreu expectation [21] and Körner variance [31]
are examples of this approach. Following the same approach, the sample mean and variance are also calculated as
functions of the empirical distribution of the random set.
. All rights reserved.
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(B) The second one regards the random set as a collection of random variables (the class of its measurable selections). The
parameter is calculated as the set of ‘‘admissible” values. Aumann expectation [2] and Kruse variance [33], for
instance, fit this formulation. The sample mean and variance are calculated in a similar way, as sets of admissible val-
ues for the mean and variance of the underlying imprecisely observed data.
Even when it is defined as a set of admissible values, Aumann expectation is sometimes considered in the literature
within the first approach (option (A)), because, under some conditions about the non-atomicity of the initial space, it
can be written as a function of the probability distribution of the random set.

Regarding the construction of tests for set-valued data, we also find two different approaches in the literature, each one in
accordance with the above alternatives.

(1) In the first approach, the null and the alternative hypotheses concern the ‘‘value” of a particular parameter of the ran-
dom set. Standard binary (always conclusive) tests are proposed to reach a decision (see [6,32,43], for instance). This
approach is usually combined with the first option (option (A)), but not always (see [8], for instance).

(2) In the second approach, the random set is understood as the imprecise perception of a standard random variable.
Hypotheses about a certain parameter of this random variable are proposed. Thus, imprecision in sample data is trans-
lated to tests functions, so they may be inconclusive (see [24] for a detailed discussion about this approach). This
approach is in accordance with option (B).

As far as we know, there is no detailed comparison between the above alternatives in the literature. The choice of one
or another will depend on the interpretation of the data set. We will get into details in Sections 3 and 4: In Section 3,
we will discuss the difference between options (A) and (B). Example 3.1 will reflect a situation where option (A) is the
most appropriate, whereas Example 3.2 illustrates option (B). We conclude that we must choose option B, because our
random set represents an imprecisely perceived random variable. Hence, our incomplete knowledge about a particular
parameter or about a sample statistic will be described by means of a set of admissible values. On the other hand, a
discussion about the difference between options (1) and (2) will be provided in Section 4: Example 4.1 illustrates a sit-
uation where option (1) is the most suitable one, while Example 4.2 illustrates option (2). In our setting, we do not look
for a test of a certain parameter of a random set. What we want is to make inferences about the random variable’s
expectation or variance, based upon the information provided by a sample of set-valued observations, so we need to
choose option (2).

We must remark that there is a strong connection between (A) and (1) and between (B) and (2), in the literature, in the
sense that those works considering definitions according to approach (A) usually propose decision making methods accord-
ing to (1). Nevertheless, even in the cases where the set of admissible values for the parameter can be written as a function of
the probability distribution induced by the random set, and therefore, even when the distinction between (A) and (B) does
not apply, the distinction between (1) and (2) makes sense. This point will be discussed in detail in Example 4.2.

Classical tests associate a p-value to each possible sample. When sample data are set-valued, we can use set-valued anal-
ysis to compute bounds on the test probability (p-value). When the resulting bounds are on one side of the a-level, the deci-
sion of the hypothesis test is clear. But when the bounds straddle the threshold, the test is inconclusive, since the imprecision
in the data prevents us from making a clear determination. But the more precise they are, the more likely we will be able to
make a decision. In Section 4 we illustrate these ideas. Afterwards, in Section 5, we postulate that marking and recapture
techniques will exploit data in a suitable way in order to increase the probability of reaching a clear decision. These tech-
niques will be especially useful when the population is small enough that recaptures are common. It will be also useful when
resampling techniques are used, as we illustrate in Section 6.

2. Preliminaries and notation

Consider a probability space ðX;A; PÞ, and an arbitrary measurable space ðX0;A0Þ. Let f:X ? X
0

be an A�A0 measurable
function, i.e., a function satisfying the condition:
Please
son (2
f�1ðAÞ 2 A; 8A 2 A0:
We will denote by P�f�1 the probability measure it induces on A0, i.e.
P � f�1ðAÞ :¼ Pðf�1ðAÞÞ; 8A 2 A0;
where f�1 : PðX0Þ ! PðXÞ is the mapping defined as
f�1ðAÞ ¼ fx 2 X : f ðxÞ 2 Ag; 8A # X0:
Let us now consider a measurable space, ðX;AÞ, the usual Borel r-algebra on Rn; bRn , and the power set of Rn; }ðRnÞ. Let C be
a multi-valued mapping between X and Rn;C : X! }ðRnÞ, with non-empty images. Let A 2 bRn an arbitrary Borel set. The
upper inverse of A is the set:
C�ðAÞ ¼ x 2 X : CðxÞ \ A – ;f g:
cite this article in press as: I. Couso, L. Sánchez, Mark-recapture techniques in statistical tests for imprecise data, Int. J. Approx. Rea-
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We say that C is strongly measurable [44] when C�ðAÞ 2 A; 8A 2 bRn .
Given a probability space ðX;A; PÞ, we will say that the multi-valued mapping C : X! }ðRnÞ is a random set when it is

strongly measurable. Let us now consider, for each A 2 bRn , the family of sets:
1 In f

Please
son (2
PA ¼ fC # Rn : C \ A – ;g:
Let rP be the r-algebra generated by the class P ¼ fPA : A 2 bRng on the universe of ‘‘elements” }ðRnÞ. We easily observe that
C is strongly measurable if and only if it is A� rP measurable (regarded as a point to point function, where the ‘‘points” in
the final space are elements of }ðRnÞ). We will denote by P�C�1 the probability measure induced by C on rP:
P � C�1ðCÞ ¼ Pðfx 2 X : CðxÞ 2 CgÞ; 8C 2 rP :
We will denote by S(C) the class of measurable selections of C:
SðCÞ ¼ X : X! Rn : X measurable and XðxÞ 2 CðxÞ; 8x 2 Xf g:
Let us suppose that C represents some incomplete knowledge about the outcomes of a (standard) random variable X*. In
other words, all we know about each outcome X*(x) is that it belongs to the set C(x). Then, all we know about X* is that
it is a measurable selection of C. Consider an arbitrary parameter associated to the probability distribution of X*, h(X*).
The random set C regards the following information about h(X*):
hðCÞ ¼ fhðXÞ : X 2 SðCÞg; ð1Þ
as suggested by Kruse and Meyer [34]. In other words, if we observe C(x) as an incomplete perception of X*(x), for each
x 2X, then all we know about h(X*) is that it belongs to the class h(C). When, in particular, h(X*) represents the Lebesgue
expectation, E(X*), then h(C) is called the Aumann expectation1 [2] and, when it represents the variance, h(C) is called the Kruse
variance [33].

The probability measure induced by a random set, P�C�1 does not determine its class of measurable selections. Thus, we
can find two different random sets, C1 and C2, with the same probability distribution, P � C�1

1 ¼ P � C�1
2 , but with different

collections of measurable selections, S(C1) – S(C2). (See [17,19,37–40] for detailed discussions.) Furthermore, the classes of
values h(C1) and h(C2) can be different, for some parameter h, such as the expectation, the variance, etc.

Let X� : X! R be a random variable representing some numerical characteristic of the individuals in the population X. A
random sample of size n is a random vector ðX�1; . . . ;X�nÞ : Xn ! Rn, where each X�i : Xn ! R is defined as follows:
X�i ðx1; . . . ;xnÞ ¼ X�ðxiÞ; 8ðx1; . . . ;xnÞ 2 Xn:
(A collection, of n elements – some of them maybe coincident – is selected from the population. Such a collection of elements
is denoted by (x1, . . .,xn) 2Xn. Each X�i represents the value of the characteristic for the element selected at random in the
ith place.) When, in particular, the product probability is considered over Xn (i.e., when the individuals are taken with
replacement, and each selection is independent from the others), the random variables X�1; . . . ;X�n are i.i.d., so they represent
a simple random sample.

Let now the multi-valued mapping C : X! }ðRÞ represent some incomplete knowledge about X� : X! R, in the sense
that, when we select a particular element x from the population X, we cannot observe the quantity X*(x), but we just know
that it belongs to the set C(x). We will represent the imprecise observation of the random sample ðX�1; . . . ;X�nÞ by means of
the multi-valued mapping ~C ¼ ðC1 � . . .� CnÞ : Xn ! }ðRnÞ, defined as
C1 � � � � � Cnð Þ x1; . . . ;xnð Þ ¼ C1 x1; � � � ;xnð Þ � � � � � Cn x1; . . . ;xnð Þ;
where
Ci x1; . . . ;xnð Þ ¼ C xið Þ; 8 x1; . . . ;xnð Þ 2 Xn:
Summarizing, for a specific sequence of n selections (x1, . . .,xn) 2Xn, all we know about the realization
~x� ¼ ðx�1; . . . ; x�nÞ ¼ ðX

�ðx1Þ; . . . ;X�ðxnÞÞ is that it belongs to the cartesian product c = c1 � � � � � cn = C(x1) � � � � � C(xn).
3. Two different ways to define parameters and sample statistics for random sets

As we have pointed out in Section 1, a random set can be understood either as a family of measurable selections or as a
measurable set-valued mapping. Such a measurable function induces a probability measure on the final set. Let us notice
that this probability distribution does not determine, in general, the class of measurable selections of a random set, as shown
in [17,37–39,42,47]. Thus, we can find two different random sets with the same probability distribution, but with different
Aumann expectations and/or different Kruse variances (see [11,17], for instance). Hence a hypothesis test about the ‘‘value”
of the parameter according to the first formulation would not be informative at all to our purposes. Let us next compare both
approaches in more detail.
act, the set of all integrable selections, S1(C) # S(C) instead of the whole class S(C) is considered here.
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010), doi:10.1016/j.ijar.2010.07.009

http://dx.doi.org/10.1016/j.ijar.2010.07.009


4 I. Couso, L. Sánchez / International Journal of Approximate Reasoning xxx (2010) xxx–xxx
3.1. First approach: the random set as a random object

According to the first approach (option (A) described in Section 1), the random set is just considered as a particular mea-
surable mapping within the framework of classical probability theory. Thus, the parameter is calculated as a function of the
probability distribution of the random set. The concepts of expectation, variance, etc. are extended by reproducing classical
techniques. More specifically, set-valued arithmetic is used to derive a method of construction of the expectation: a limit-
based construction analogous to Lebesgue integral definition (using Minkowski sum and scalar product to define the expec-
tation of ‘‘simple” random sets) leads to a definition of expectation which is consistent with Bochner integral. This expecta-
tion is a subset of the final space and it plays the role of the ‘‘average value” of the random set. We can make a parallel
construction of the variance: let us consider a particular metric defined over the class of subsets of the final space. In this
setting, we can define the variance of a random set as the mean (classical expectation of a random variable) of the squares
of the distances from the images of the random set to the (set-valued) expectation. For instance the definitions of Feng et al.
[23] and Körner [31] fit this formulation. In this context the variance is a (precise) number that quantifies the degree of dis-
persion of the images of the random set.

Similarly, the sample mean is calculated by using set-valued arithmetic and the sample variance averages the squared
distances (for a particular metric defined for pairs of subsets of the real line) between the sample values and the sample
mean.

The outcomes of the experiment considered in the next example are represented, in a natural way, by means of intervals
of the real line, so it illustrates this first option.

Example 3.1. In [6], the following collection of 59 intervals is provided:
P
so
11.8–17.3
lease cite this artic
n (2010), doi:10.1
11.9–21.2
le in press as: I. C
016/j.ijar.2010.0
9.8–16.0
ouso, L. Sánchez,
7.009
10.4–16.1
Mark-recapture te
12.2–17.8
chniques in stati
9.7–15.4
stical tests for imp
13.1–18.6
recise data, Int. J.
12.0–18.9

8.7–15.0
 10.5–15.7
 11.3–21.3
 14.1–25.6
 12.0–17.9
 14.1–20.5
 10.8–14.7
 10.1–19.4

9.9–16.9
 11.5–19.6
 10.9–17.4
 12.6–19.7
 9.9–17.2
 12.8–21.0
 9.9–20.1
 11.3–17.6

9.4–14.5
 8.8–22.1
 11.4–18.6
 14.8–20.1
 11.3–18.3
 14.5–21.0
 11.1–19.2
 9.4–17.6

12–0-18.0
 11.6–20.1
 10.2–15.6
 10.0–16.1
 10.2–16.7
 10.3–15.9
 15.9–21.4
 10.4–16.1

10.2–18.5
 13.8–22.1
 10.6–16.7
 11.1–19.9
 8.7–15.2
 11.2–16.2
 13.0–18.0
 12.0–18.8

13.6–20.1
 10.3–16.1
 9.5–16.6
 9.0–17.7
 12.5–19.2
 9.2–17.3
 11.6–16.8
 9.7–18.2

8.3–14.0
 9.8–15.7
 12.7–22.6
It corresponds to a sample of 59 patients in a hospital, and each interval represents the systolic blood pressure range over

a day for each patient. Each interval represents a range of values associated to some patient in a particular day, and it does
not represent any incomplete knowledge about a real-valued quantity. The sample mean is calculated in [6] as the closed
interval:
�c ¼ 1
59

c1 � � � � � c59ð Þ;
where � represents the Minkowski sum and ci = [mi � di,mi + di] is the interval associated to the ith patient. (In other words,
the sample mean is the interval bounded by the arithmetic means of the bounds of the intervals in the sample). On the other
hand, the sample variance is calculated as follows:
s2 ¼ 1
58

d2 c1; �cð Þ þ � � � þ d2 c59; �cð Þ
h i

;

where d is a metric defined for pairs of closed intervals as
d mi � di;mi þ di½ �; �m� �d; �mþ �d
� �� �

¼ mi � �mð Þ2 þ 1
3

di � �d
� �2

� �1=2

:

In this example, the sample mean, �c ¼ ½11:19;18:17�, represents the ‘‘average range” over the 59 patients. The sample var-
iance s2 = 1.9 quantifies the dispersion over the 59 intervals. Several authors (see Feng [23] and Körner [30], for instance) in
the literature have proposed other alternative scalar variances, corresponding to different metrics over the class of closed
intervals. Each metric would provide a different value for the sample variance, but for all of them the variance is a function
of the empirical distribution of the random set (it is determined by the – relative – frequencies of appearance of each
interval).
Remark 3.1. Following similar procedures, the expectation and the (population) variance of a random interval can be cal-
culated as functions of the probability measure that it induces on the family of intervals of the real line.
Remark 3.2. In a quite different context, Billard and Diday [5], also calculate the sample mean and variance as functions of
the empirical distribution of the random set.
Approx. Rea-
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3.2. Second approach: the random set as a family of admissible random variables

According to the second approach, the random set is understood as a family of measurable mappings (the class of its mea-
surable selections). In this context, the parameter is defined as the class of ‘‘admissible” values (i.e., the set of values asso-
ciated to every measurable selection of the random set). According to this approach, Aumann defines the expectation of the
random set as the class of expectations of all its integrable selections [2]. Kruse follows the same approach to define the var-
iance [33] of a random set. This approach is related to the concept of ‘‘identification region” (see, for instance, [4,26,27,35]) or
‘‘identified set” [48,53], terms used in some papers concerning other different incomplete data problems. The identification
region is defined in [26] as the set of values of the parameter associated to the family of ‘‘feasible distributions”. Such family
is the set of probabilities consistent with some available empirical information, not necessarily determined by the family of
selections of a random set.

In the next example, the random set represents an incompletely perceived random variable and we intend to represent
the imprecise knowledge about the parameter, so it illustrates this second alternative. It has been taken from [10]. In that
paper a more detailed discussion is given about the notion of variance for random sets and fuzzy random variables.

Example 3.2.
(a) The sample (x1, . . .,x4) comprises four objects, whose actual weights are x�1 ¼ 10:2, x�2 ¼ 10:0, x�3 ¼ 10:4, x�4 ¼ 9:7. We
measure the weights with a digital device that rounds the measure to the nearest integer, and displays the value ‘10’ in
all of these cases. Therefore, we get the same interval of values for every object, ci = [9.5,10.5], "i = 1, . . .,4. The true
variance of the four measurements is 0.067. But, we only know the information provided by the four intervals, so all
we can say about the variance is that it is bounded by the values 0 and 0.25. (Kruse’s variance returns this range of
values). On the contrary, the scalar variance (Körner and Feng definitions) returns the misleading value 0.

(b) Let us modify a bit the last situation. Let us suppose that, instead of four objects, we had only selected the first one
(suppose that we had a sample of size n = 1). Then, Kruse’s variance would returns the singleton {0}. (We know with
certainty that the variance of a single measurement is 0). So, let us observe that Kruse’s variance cannot be written as a
function of the empirical distribution of the random set. In both cases (cases (a) and (b) in this example), the (relative)
frequency of the interval [9.5,10.5] is 1, but Kruse’s variance returns different ranges of values. On the contrary, Kör-
ner’s and Feng’s variances can be written as functions of the empirical distribution. Hence, Körner’s and Feng’s vari-
ances would be useless within this context.

(c) Let us suppose that four objects x1, . . .,x4 weigh the same: x�1 ¼ x�2 ¼ x�3 ¼ x�4 ¼ 9:8 g. Let us also suppose that, for some
reason, the weight of the fourth object was measured with imprecision, and we only know that it is between the val-
ues 9.5 and 10.5. Our knowledge about the four measurements are given by c1 = {9.8}, c2 = {9.8}, c3 = {9.8} and
c4 = [9.5,10.5]. The true variance in the sample is 0 and Kruse’s variance produces the interval [0,0.092]. According
to the above incomplete information, Kruse’s interval represents all our knowledge about the true variance. On the
other hand, the scalar variance (Körner and Feng definitions) assigns a strictly positive value to it. We conclude that
the scalar variance is neither an upper bound of the actual value of the variance of the underlying sample (see case (a)
in this example), nor a lower bound (see case (c)).

(d) Now, suppose that in cases (a) and (b) we are censuring the whole population (the respective population sizes are 4
and 1). Then, the empirical distribution turns into the probability distribution. From (a) and (b), we conclude that
Kruse’s variance is not a function of the probability distribution of the random set (in both cases, the random sets take
the ‘‘value” [9.5,10.5] with probability 1, but Kruse’s variance does not return the same interval. So, when we aim to
describe all the available (incomplete) information about a parameter, the probability distribution induced by the ran-
dom set does not provide enough information.

It has been proved by Castaldo et al. [7, Corollary 3.4], that the weak closure of the family of probability distributions in-
duced by the measurable selections of any compact-valued random set defined on a non-atomic space, and taking values on
a Polish space, is determined by the probability distribution of the random set (considered as a measurable mapping). This
result has been independently proved and also extended to other situations by Miranda et al. in [37, Corollary 2] and [39,
Corollary 4.8]. Those situations cover the cases where the images of the random set are open or closed sets in a Polish space,
among others. According to these results, the differences between approaches A and B are irrelevant when the initial space is
non-atomic, and the images of the random set are open or closed subsets of the real line. In such cases, the set of admissible
values for a specific parameter can be essentially written as a function of the probability distribution induced by the random
set. Let us furthermore notice that the non-atomic case covers some important specific situations, as the case where the
probability distribution of the original random variable is assumed to be absolutely continuous (w.r.t. Lebesgue measure).

So far, we have not approached the problem of making inferences from set-valued data samples. As we have suggested in
the introduction, we can distinguish in the literature two different types of methods to construct hypothesis tests for fuzzy/
crisp-set-valued data. The first one leads to classical tests about fuzzy/crisp-set-valued parameters, since the second method
([24,45,25]) leads to fuzzy/crisp-set-valued tests about precise parameters. This second approach is closely related to the
theory of imprecise probabilities. In the following subsection, we will compare both approaches and justify why the second
approach is the one we will choose in our context.
Please cite this article in press as: I. Couso, L. Sánchez, Mark-recapture techniques in statistical tests for imprecise data, Int. J. Approx. Rea-
son (2010), doi:10.1016/j.ijar.2010.07.009
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4. Two different ways to make inferences from set-valued data

4.1. Inferences about the probability distribution induced by the random set

Körner suggests in [30] a general procedure for testing hypothesis about fuzzy parameters associated to fuzzy random
variables. It can be particularized to the case of random sets. It essentially consist in treating the random set as a ‘‘random
object” that induces a probability measure on the power set of the real line (assigning a probability value to each class of
subsets of the real line), and making inferences about a particular parameter (possibly set-valued), h, associated to such
probability distribution. A metric, d, between pairs of subsets of the real line and a consistent estimator, ĥ, of h (consistent
with respect to the distance d) are considered. As Körner suggests, we are inclined to reject H0: h = h0 against H1: h – h0 when
the distance dðĥ; h0Þ is too large. Since d is a standard metric (it returns precise values), dðĥ; hÞ is (under some measurability
restrictions) a standard random variable. When the exact or the asymptotic probability distribution of this random variable
is known, a standard a-test can be easily derived. In fact, we should reject the null hypothesis when
Please
son (2
dðĥ; h0Þ > t1�a;
where tq is the q-quantile of dðĥ; hÞ and a is the type I error. Thus:
P dðĥ; h0Þ > t1�ajH0

� 	
6 a:
We can find in the literature different papers based on these ideas (see [6,32,43], for instance). Each of these papers deter-
mines the probability distribution of the statistic dðĥ; h0Þ for a particular distance d and a particular parameter h. Let us illus-
trate this procedure with an example.

Example 4.1. The following table has been taken from [43], and it corresponds to a random sample of 59 patients from the
Nephrology Unit of a hospital. Each interval ci = [mi � di,mi + di] represents the range for the pulse rate during a day for a
particular patient. The interval [60,100] is assumed to be the adequate pulse rate fluctuation in a healthy adult. We aim to
test whether the range for the pulse rate of the patients in that unit is similar to the range of healthy people. Let C denote the
random interval corresponding to the pulse rate range of patients selected at random from the Nephrology Unit. We want to
test the hypothesis H0 : E(C) = [60,100] against H1 : E(C) – [60,100]. In [43] it is proposed to reject H0 when the following
inequality holds:
pt2
m þ ð1� pÞt2

d > t1�a;
where
t2
m ¼

P59

i¼1
mi

59 � 80

 �2

s2
m

; t2
d ¼

P59

i¼1
di

59 � 20

 �2

s2
d

; s2
m ¼

P59
i¼1 mi �

P59

i¼1
mi

59


 �2

58
; s2

d ¼

P59
i¼1 di �

P59

i¼1
di

59


 �2

58
; p ¼ s2

m

s2
m þ 1

3 s2
d

;

and the quantile t1�a is determined using bootstrap techniques.
This test is based on the fact that the equality E(C) = [60,100] equates to E(mid (C)) = 80 and E(spr (C)) = 20, where

mid(C) and spr(C), respectively, denote the midpoint and the radius of C.
The p-value associated to the data set is p = 0.0003, so there are enough evidences to reject the hypothesis that the pulse

rate range of those patients coincides with that for healthy people.
4.2. Inferences about the probability distribution induced by the underlying random variable

The last method is not useful when the random set represents the imprecise observation about a random variable, and we
aim to make inferences about its distribution. In that case, we must follow the procedure detailed in Ferson et al. [24] (option
2, in the introduction of our paper), as we will illustrate in the following example.

Example 4.2. The random sample {x1, . . .,x100} comprises a hundred objects, and it has been taken from a large population.
Their actual weights (X) are displayed in the following frequency:
xi
cite this article in press as
010), doi:10.1016/j.ijar.201
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: I. Couso, L. Sánchez, Mark-recap
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ni
 27
 24
 25
 24
Let us suppose that we want to test the hypotheses:
H0 : l 6 6:5 against l > 6:5; ð2Þ
. Rea-
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where l = E(X*) represents the expectation of the actual weight. Having into account that the statistic Tn ¼
ffiffi
n
p
ðX�n�EðX�ÞÞbSX�

is

asymptotically N(0,1), we should reject the null hypothesis if 10ð�x�100�6:5Þ
s�x

> t1�a. This statistic takes the value 0.253, so the

p-value is approximately 0.4. Hence, we have no evidences to reject H0.
Now suppose that we measure the weights with a digital device that rounds the measure to the nearest integer. Thus we

obtain a random sample from an interval-valued random set C, which is determined by the following frequency table:
If we can only see the information provided by the second table (with the grouping intervals) we can only calculate an

interval of bounds for the statistic an the p-value. The bounds of the statistic are �0.42 and 16.44, respectively, so the
respective bounds for the p-value are approximately 0 and 0.6628. So, due to the high imprecision in the new data set, our
test is inconclusive.

In this situation, a test about the Aumann expectation of C would not be appropriate to draw conclusions about H0. In
general, a null hypothesis about the Aumann expectation E(C) = [E(L), E(U)) would refer to the pair of expectations of the
observable random variables, E(L) and E(U), where L and R, respectively denote L = infC and R = supC. Hence, it may involve
some concerns about the degree or imprecision of the observations which are unrelated to the expectation of the underlying
random variable, E(X*). For instance, the null hypothesis H00 in the test:
Please
son (2
H00 : EðCÞ ¼ ½0;6:5� against H01 : EðCÞ– ½0;6:5� ð3Þ
would represent the assertion: ‘‘the average (interval-valued expectation) of the imprecise observations of X* is [0,6.5]”.
Thus, H00 : EðCÞ ¼ ½0;6:5� implies that the expected degree of imprecision of the incomplete data is equal to 6.5, which is
not implied by the initial null hypothesis H0. The data set in Table 1 provides enough information to reject H00 (the specific
calculations are omitted), while it is uninformative about H0. Another candidate concerning the Aumann expectation of C
could be, for instance the following test:
H000 : ½m;6:5�# EðCÞ against H001 : ½m;6:5�� EðCÞ;
for some specific choice of m. This test is not appropriate, either, since the null hypothesis H000 also involves a specific assump-
tion about the degree of imprecision of the observations (the expected imprecision is less than or equal to 6.5 �m), which is
not covered by the initial hypothesis. The interval data set in Table 1 does not provide evidence to reject H000. But we could get
some other different data set providing evidence to reject H000, and not to reject the initial hypothesis H0. Furthermore, even
for the specific case of the actual data set (Table 1), the conclusions concerning H0 and H000 are not the same: on the one hand,
the test concerning H0 is inconclusive, as we cannot determine whether the actual sample of X* belongs to the rejection re-
gion or not, on the basis of the interval data set provided in Table 1. In other words, the high degree of imprecision in the data
set prevents us from taking a decision (reject/no reject) about H0. On the other hand, the test concerning H000 is conclusive, for
this (and for any other) data set. The distinction between ‘‘not rejecting” and ‘‘not concluding” is of interest in practice.
4.2.1. How do we make inferences from imprecise data?
Let X� : X! R be a random variable and let us state the hypothesis:
H0 : hðX�Þ 2 H0 against H1 : hðX�Þ 2 H1;
where h(X*) is a parameter that depends on the probability distribution induced by X*. Let u : Rn ! f0;1g be a non-random-
ized test that represents the decision rule that will lead to a decision to accept or reject the null hypothesis. The critical re-
gion associated to u is
C ¼ f~x 2 Rn : uð~xÞ ¼ 1g:
The mapping u is said to be a test with level of significance a, 0 6 a 6 1, when
EhðuÞ ¼ PhðCÞ 6 a; 8h 2 H0:
Furthermore, let us suppose that we have an a-test, ua, for each a 2 (0,1] with critical region Ca. Let us suppose that those
critical regions are one included in another, as usual, i.e.,
a1 6 a2 ) Ca1 # Ca2

� �
:

The critical level or the p-value associated to this family of tests is the mapping p : Rn ! ½0;1� defined as
pð~xÞ ¼ supfa 2 ½0;1� :~x 2 Cag:
Let us now consider, for a fixed a 2 [0,1], the test u0a : Rn ! f0;1g defined as follows:
Table 1
Interval data set.

ci [5.5, 6.5) [6.5, 7.5) [7.5, 8.5)
ni 27 49 24
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Please
son (2
u0að~xÞ ¼
1 if pð~xÞ 2 ½0;a�;
0 otherwise:



It is well know in statistics that u0a is an a-test and, under some continuity conditions, it coincides with ua.

It is also known in standard statistics that the construction of parametric tests can be based upon the construction of con-
fidence regions. Let us consider a confidence region for the parameter h(X*) at a confidence level 1 � a, CR : Rn ! }ðRÞ. It is
well known that the mapping u00a : Rn ! f0;1g defined as follows:
u00að~xÞ ¼
1 if CRð~xÞ \H0 ¼ ;;
0 otherwise:



is an a-test of H0 : h(X*) 2H0 against H1 : h(X*) 2H1.

Now, assume that we want to make a decision on the basis of a sample of n imprecise measurements. First, let us recall
what kind of ‘‘imprecise measurements” do we have. Each individual measurement is characterized by an interval (or, more
generally, by a set) of values, ci # R. The set ci specifies where the value x�i is (and where is not). Thus, all we know about the
sample realization~x� ¼ ðx�1; . . . ; x�nÞ is that it belongs to the cartesian product c ¼ c1 � � � � � cn 2 }ðRnÞ.

Let us consider a particular test u : Rn ! f0;1g. We will assign to c the (set-valued) decision:
DuðcÞ ¼ fuð~xÞ :~x 2 cg# f0;1g ¼
f1g if c # C;

f0g if c # Cc;

f0;1g if c \ C – ;; and c \ Cc – ;;

8><>: ð4Þ
Du represents our decision rule when we observe data with imprecision. According to this ‘‘extended a-test”, we will:

	 Reject H0, when Du(c) = {1}.
	 Do not reject H0 when Du(c) = {0}.
	 Do not make any decision when Du(c) = {0,1} (in this case, the test is inconclusive).

In particular, for the tests u
0
and u

00
above defined, we can consider the multi-valued decisions Du0 and Du00 . We can easily

see that they can be alternatively written as follows:

	 Alternative expression for Du0 :
Du0 ðcÞ ¼
f1g if pðcÞ# ½0;a�;
f0g if pðcÞ# ða;1�;
f0;1g if pðcÞ \ ½0;a� – ; and pðcÞ \ ða;1�– ;;

8><>: ð5Þ
where
pðcÞ ¼ fpð~xÞ :~x 2 cg:
Note that p(c) represents our knowledge about the p-value pð~x�Þ. I.e., if all we know about ~x� ¼ ðx�1; . . . ; x�nÞ is that
x�i 2 ci; 8i ¼ 1; . . . ;n, then all we know about pð~x�Þ is that it belongs to p(c). We can find in the literature some precedents
of the above construction in Ferson et al. [24], Filtzmoser and Viertl [25] and Denoeux et al. [22].
	 Alternative expression for Du00 :
Du00 ðcÞ ¼
f1g if CRðcÞ \H0 ¼ ;;
f0g if CRðcÞ \H0 – ;;
f0;1g otherwise;

8><>: ð6Þ
where CR(c) and CRðcÞ are defined as
CRðcÞ ¼ \~x2cCRð~xÞ; CRðcÞ ¼ [~x2cCRð~xÞ: ð7Þ
The three procedures described in Eqs. (4), (5) and (6) are essentially equivalent (if the corresponding standard tests u, u
0

and uPrime do coincide, then the set-valued test functions Du, Du0 and Du00 do also coincide). Along the rest of the paper, we
will use the procedure described in Eq. (5), which is, in general, the most operative. The idea behind the construction of the
‘‘outer approximation”, CRðcÞ, of the incompletely known confidence region CRð~x�Þ is related to some confidence sets pro-
posed in [1,4,27]. We will provide a more detailed comparison in Section 4.2.2. More details about inner and outer approx-
imations of confidence regions can be found in [18].

When using our set-valued sample data, we will start from a specific a-test (obtained from a specific confidence region,
for example) and then we will extend it to the set-valued case, by means of Eq. (4). The evaluation of optimal initial standard
tests is out of the scope of the paper. Just as a matter of example, we will next illustrate that the UMP test is not necessarily
the best choice:
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Example 4.3. Let X* be a random variable with known standard deviation r = 1 and unknown expectation. Let us test the
null hypothesis:
Please
son (2
H0 : EðXÞ ¼ l0 against H1 : EðXÞ– l0;
but let us assume that we cannot get a random sample from X*, as it happened in the last example. Let us assume that we can
only observe a sample of size n = 100 of random variable L and that we just know that L 6 X 6 L + 1. In other words, we ob-
serve a vector (l1, . . ., l100) and all we know about ðx�1; . . . ; x�nÞ is that x�i belongs to the closed interval ci = [li, li + 1],
"i = 1, . . .,100.

Let us consider two different confidence regions of E(X*) at the same level of confidence 0.95:

1. CR1ð~xÞ ¼ ð�x� 0:196; �xþ 0:196Þ
2. CR2ð~xÞ ¼ ð�x� 0:164;1Þ

The first one is associated to the UMP test of size 0.05. The second one is also associated to a 0.05-size test, but it is not the
UMP. Let us now apply Eq. (6) to derive a set-valued test for our set valued information. Let c = c1 � � � � � cn =
[l1, l1 + 1] � � � � � [ln, ln + 1]. According to Eq. (7):
CR1ðcÞ ¼ \~x2cCR1ð~xÞ ¼ ;;
CR1ðcÞ ¼ [~x2cCR1ð~xÞ ¼ ð�l� 0:196;�lþ 1:196Þ;
and, according to Eq. (6), we can construct the following set-valued test:
D1ðcÞ ¼
f1g if l0 R ð�l� 0:196;�lþ 1:196Þ
f0;1g otherwise

(

For the second confidence region we calculate:
CR2ðcÞ ¼ \~x2cCR2ð~xÞ ¼ ð�lþ 1� 0:164;1Þ;
CR2ðcÞ ¼ \~x2cCR2ð~xÞ ¼ ð�l� 0:164;1Þ;
and the set-valued test:
D2ðcÞ ¼

f1g if l0 <
�l� 0:164;

f0g if l0 >
�lþ 0:836;

f0;1g otherwise:

8>>><>>>:

Notice that the first test (D1) is inconclusive for the family of samples where:
�l� 0:196 < l0 <
�l� 0:164;
while the second test (D2) rejects the null hypothesis. Furthermore, when:
�lþ 0:836 < l0 <
�lþ 1:196;
the first test is also inconclusive and the second test is conclusive (according to D2, we do not reject H0 for those samples). On
the other hand, the error II probability bounds are more accurate in the first case than in the second case. So, none of those
tests seems to be preferable to the other one. And our preference will depend on the particular application.
4.2.2. Relationship with partial identification problems
There is a common rationale behind this work and many others in the ‘‘partial identification” literature (see, for in-

stance, [4,26,27,35,48,53]): the ‘‘worst case scenario” assumption. According to this principle, we try to exploit all the
available information without adding any artificial knowledge. Notwithstanding the overall philosophy is the same, we
cannot take advantage from partial identification techniques, because we are focused on a different kind of problem.
To illustrate this fact, we will provide a formal comparison with some techniques initially proposed by Imbens and Manski
in [27].

As we pointed out in Section 3.2, the definitions of parameters of a random set according to the ‘‘set of admissible random
variables” approach is closely related to the notion of ‘‘identification region” in partial identification problems. In either case,
the set of admissible values for the parameter is considered, and each admissible value is associated to a feasible probability
distribution. The difference between both definitions lies in the natures of the families of the probability measures being
considered. In this paper we are considering the family of probabilities associated to the measurable selections of the ran-
dom set, which is not necessarily the case in partial identification problems.

The paper by Imbens and Manski [27] marked a new starting point in confidence estimation for partially identified prob-
lems: they showed that, in some situations, for a specific asymptotic confidence level, confidence intervals for the parameter
cite this article in press as: I. Couso, L. Sánchez, Mark-recapture techniques in statistical tests for imprecise data, Int. J. Approx. Rea-
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are proper subsets of (same confidence level) intervals for the identification region, the difference in width being related to
the difference in critical values for one- and two-sided tests. This is one of the main differences with respect to our proposal,
since our ‘‘outer approximation”, CRðcÞ, covers the whole set-valued parameter of the random set. We will illustrate the dif-
ference between both approaches with an example:

Example 4.4. Let X* be a random variable with unknown expectation and known standard deviation, r = 1. Let us test the
null hypothesis:
Please
son (2
H0 : l ¼ l0 against H1 : l – l0;
where l denotes the expectation of X*. Let us suppose that we cannot get a random sample from X* but we can only observe a
sample of size n = 100 of another random variable L = X* � a, where a is an unknown constant within the unit interval
[0,0.15]. In other words, we observe a vector (l1, . . ., l100) and all we know about ðx�1; . . . ; x�nÞ is that x�i ¼ liþ
a; 8i ¼ 1; . . . ;100. We can easily check that the random interval ð�l� 0:165;�lþ 0:315Þ (where �l denotes the sample mean)
coincides with ð�x� � 0:165� a; �x� þ 0:165þ ð0:15� aÞÞ, and it is an approximately 95% confidence interval for l, for every
a 2 [0,1]. According to it, the test u : Rn ! f0;1g defined as
uð~lÞ ¼ 1 if l0 R ð�l� 0:165;�lþ 0:315Þ;
0 otherwise;

(

is a test of size 0.05.

The confidence interval ð�l� 0:165;�lþ 0:315Þ does not cover the entire identification region [E(L),E(L) + 0.15] with
probability 0.95, but it covers any possible value for l with such a confidence.

Let us now suppose that we would just had the interval information X* 2 [L,L + 0.15] and we would not know that X* � L is
a constant. The Aumann expectation of the random set [L,L + 0.15] coincides with the above identification region. But, in this
case, we would not be able to say that ð�l� 0:165;�lþ 0:315Þ ¼ ð�l� 0:165; ð�lþ 0:15Þ þ 0:165Þ is a 95% confidence interval and
that u is a 0.05-size test (we would be able to assure that it is a 90% confidence interval).
Another relevant difference with respect to our approach relies on the nature of the confidence regions in both cases. On
the one hand, the confidence intervals considered in partial identification problems are closely related to our outer approx-
imations: both kinds of intervals cover the unknown parameter with a prefixed confidence level. On the other hand, our in-
ner approximations do not have any counterpart within the partial identification approach. The role of the inner
approximation is crucial under our approach, because it allows us to construct set-valued test functions, as the one consid-
ered in Eq. (6), instead of point-valued ones. From a practical point of view, they allow us to distinguish between ‘‘no rejec-
tion” and ‘‘no conclusion”, as we illustrate in the following example.

Example 4.5. Consider again the second situation described in Example 4.4: we take a 100 size sample from an observable
random variable L with known standard deviation, r = 1. We want to test the null hypothesis:
H0 : l ¼ l0 against H1 : l – l0;
where l denotes the expectation of a random variable X* that is known to take values in the interval [L,L + 0.15] (we do not
directly observe X*, but for each observation li of L, we can say that the corresponding value x�i belongs to the interval
[li, li + 0.15]). Following the procedure described in Eq. (6), we can build a pair of outer and inner approximations for the
0.95 confidence interval ðx� � 0:196; x� þ 0:196Þ. For a specific set-valued realization c = [l1, l1 + 0.15] � [l100, l100 + 0.15], they
are calculated as follows:
CR cð Þ ¼ [~x2c �x� 0:196; �xþ 0:196ð Þ ¼ �l� 0:196;�lþ 0:346
� �

;

CR cð Þ ¼ \~x2c �x� 0:196; �xþ 0:196ð Þ ¼ �l� 0:046;�lþ 0:196
� �

:

Furthermore, we can derive from them the following set-valued test function:
Du00 ðcÞ ¼

f1g if CRðcÞ 63 l0

f0g if CRðcÞ 3 l0

f0;1g otherwise

8>>><>>>: ¼

f1g if �l > l0 þ 0:196 or �l < l0 � 0:346

f0g if l� 0:196 < �l < l0 þ 0:046

f0;1g otherwise

8>>><>>>:

The use of the inner region allows us to distinguish between the no rejection cases (for which the output of the test func-

tion is {0}) from the not concluding situations (where the output of the test function is {0,1}, due to the imprecision of our
observations). The distinction in practice is important: they allow us to differentiate the situations where the sample data
assure us that the sample belongs to the acceptance region from those samples that, due to the imprecision of our observa-
tions, can not be classified in the rejection region, nor in the acceptance region.
cite this article in press as: I. Couso, L. Sánchez, Mark-recapture techniques in statistical tests for imprecise data, Int. J. Approx. Rea-
010), doi:10.1016/j.ijar.2010.07.009

http://dx.doi.org/10.1016/j.ijar.2010.07.009


I. Couso, L. Sánchez / International Journal of Approximate Reasoning xxx (2010) xxx–xxx 11
More specifically, those samples where the observable sample mean, �l, falls within the interval (l � 0.196,l + 0.046)
0 0

belong to the acceptance region with complete certainty. On the contrary, any of the samples satisfying the restriction
�l 2 ðl0 � 0:346;l0 � 0:196Þ [ ðl0 � 0:046;l0 þ 0:196Þ is known to belong to the rejection or to the acceptance region. In
other words, with this kind of test, we distinguish those samples that ‘‘support” the null hypothesis from those samples that,
due to the imprecision of our observations, do not allow us to take a decision.

As illustrated at the end of the last example, the more precision in the data, the lower the proportion of samples where the
extended a-test is inconclusive. In the next section, we will show that marking and recapture techniques give us additional
information and reduce the proportion of samples where the test prevents us from taking a decision.

5. Mark and recapture techniques

In this section, we will consider the set-valued test for imprecise data considered in the previous section. We want to
show that this method can be improved if we use mark and recapture techniques when we take a particular sample. More
specifically, we will show that marking the sample elements induces a lower proportion of cases where the test is inconclu-
sive. Let us introduce these ideas with some illustrative examples:

Example 5.1. Let us recall Example 4.2. We took one hundred objects from a large population, and weighed them in a coarse
scale, obtaining the following frequency table:
Pl
so
ci
ease cite this article in press as: I. C
n (2010), doi:10.1016/j.ijar.2010.07
[5.5, 6.5)
ouso, L. Sánchez, Mark-recapture techniques
.009
[6.5, 7.5)
in statistical tests for imprecise data, Int. J. A
[7.5, 8.5)

ni
 27
 49
 24
Let us compute the bounds of bSX� . These can be obtained by solving the box-constrained optimization problem:
minðmaxÞ 1
99

X100

i¼1
xi �

P100
i¼1 xi

100

 !2

; ð8Þ
subject to
5:5 6 xi < 6:5 i ¼ 1 . . . 27;
6:5 6 xi < 7:5 i ¼ 28 . . . 76;
7:5 6 xi < 8:5 i ¼ 77 . . . 100:

8><>: ð9Þ
The minimum and maximum values of the sample variance, given by Eq. (9), are 0.130 and 1.296. However, in Example
4.2, the initial data set (with the precise measurements) showed that there were only four different classes of objects. Now,
suppose that this extra information is available, in addition to the information provided by Table 1. That is to say, we know
that all objects where ci = [5.5,6.5) weight the same (unknown) amount. The same can be said about those objects where
ci = [7.5,8.5).

This extra information can be accounted by two new equality constraints in the optimization problem:
x1 ¼ x2 ¼ � � � ¼ x27; ð10Þ
x77 ¼ x78 ¼ � � � ¼ x100; ð11Þ
that reduce the number of variables in the optimization problem from 100 to 51.
Lastly, in case we can mark the members of all the four classes, we can add two more equality constraints:
x28 ¼ x29 ¼ � � � ¼ x51; ð12Þ
x52 ¼ x53 ¼ � � � ¼ x76; ð13Þ
that reduce the optimization problem size to 4 unknowns. In addition, the new bounds of the sample variance are tighter
(0.130 and 1.255). More details about this technique, the so called mark-recapture process, will be given at the end of this
section.
Example 5.2. Suppose that we have three urns. Each of the urns contains balls which are coloured either red or white. You will
select one of the three urns according to the following procedure. You will choose at random a card from a deck of 52 playing
pprox. Rea-

http://dx.doi.org/10.1016/j.ijar.2010.07.009


12 I. Couso, L. Sánchez / International Journal of Approximate Reasoning xxx (2010) xxx–xxx
cards. If a queen is chosen, then you will select a ball at random from urn number 1. If you choose an ace, you will select a ball
from urn number 2. Otherwise, you will select a ball from urn number 3. You neither know how many balls are in each urn, nor
the proportion of red and white balls. But, in fact, each of the urns numbers 1 and 2 only contains one ball. The one in the first
urn is white and the one in the second urn is red. Let us now consider two different situations for the third urn:

1. In the first case, there is only one ball, which is red, but it is kept in a box and you cannot open it.
2. In the second case, there are a hundred balls. Half of them are white and half of them are red. Each ball is kept in an indi-

vidual box that you cannot open.

Consider the random variable X : X ? {0,1} defined on the set of balls X as follows:
Please
son (2
XðxÞ ¼
1 if x is white;
0 if x is red:



X is a Bernoulli random variable, and the parameter p of success is the probability of selecting a white ball. In the first case
p = 1/13 and in the second situation, p = 0.5, but you do not know it.

Let us consider the following one-sided test about the variance of X:
H0 : r2 P 3=16 against H1 : r2 < 3=16:
Since r2 = p(1 � p), this test is equivalent to the following one:
H0 : p 2 ½0:25;0:75� against H1 : p R ½0:25; 0:75�:
For all p 2 [0.25,0.75] and all c 2 R, we easily check that:
ffiffiffi
n
p
ðc � 0:25Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:25 � 0:75
p P

ffiffiffi
n
p
ðc � pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p � ð1� pÞ
p ;
and
 ffiffiffi
n
p
ðc � 0:75Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 � 0:5
p 6

ffiffiffi
n
p
ðc � pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p � ð1� pÞ
p :
Hence, an asymptotic a-test should be determined by the critical region:
C ¼ ðx1; . . . ; xnÞ :

ffiffiffi
n
p

�x� 0:25ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25 � 0:75
p < �z1�a=2 or

ffiffiffi
n
p
ð�x� 0:75Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 � 0:5
p > z1�a=2;

 �
;

where zp is the q-quantile associated to the standard normal distribution and �x ¼
Pn

i¼1
xi

n represents the proportion of white
balls in the sample. Thus, for instance, if a = 0.05 and n = 100, then the critical region becomes:
C ¼ ðx1; . . . ; xnÞ : �x < 0:165 or �x > 0:848f g:
Let now the multi-valued mapping C : X ? }({0,1}) represent your imprecise observation of X. It is defined as follows:
CðxÞ ¼
f1g if x is whiteðand you can see its colourÞ;
f0g if x is redðand you can see itÞ;
f0;1g if x is kept in a box:

8><>:

Suppose that you can take samples of size 100, i.e., you can repeat the above experiment a hundred times (you first select a
card and then you select a ball with replacement from the corresponding urn). Then you get an incomplete knowledge about
the colour of the 100 balls which is described by the vector~c ¼ ðc1; . . . ; c100Þ 2 }ðf0;1gÞ. You must take a decision about the
one-sided test on the basis of this incomplete information. The extension of the above a-test should be represented by
u:}({0,1})n ? }({0,1}) which is defined as follows:
uð~cÞ ¼ f1g if ~c # C;

f0g if ~c # Cc f0;1gif ~c \ C – ; and ~c \ Cc – ;:



In other words, u is defined as follows:
uð~cÞ ¼
f1g if �xh0:165 or �xi0:848; 8~x 2~c;
f0g if �x 2 ½0:165; 0:848�; 8~x 2~c;
f0;1g if 9~x;~x0 2~c s:t: �x 2 ½0:165;0:848�c and x0 2 ½0:165;0:848�:

8><>:

Suppose that, for a specific sequence of 100 selections you have made:

	 8 selections from the first urn.
	 7 selections from the second urn.
	 85 selections from the third urn.
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For this particular sample, the class of possible values for the sample mean (the proportion of white balls) is
Please
son (2
�x ¼
P100

i¼1 xi

100
: x1; . . . ; x100ð Þ 2~c

( )
¼ i

100
: 8 6 i 6 93

 �
:

This set of values satisfies the following conditions:
i
100

: 8 6 i 6 93
 �

\ ½0:165;0:848�– ; and

i
100

: 8 6 i 6 93
 �

\ ð½0;0:165Þ [ ð0:848;1�Þ– ;:
Thus, the extended a-test described by the set-valued function u should be inconclusive for this particular sample. Never-
theless, mark and recapture techniques should give us enough information to reject the null hypotheses for the first situation
described at the beginning of this example. In fact, if we had marked the closed box the first time that we selected it (the first
time we chose urn number 3) we should notice that we were selecting the same box the 84 subsequent times. Thus, we
should not know the colour of the ball inside, but we should know that it was the same color every time. According to this

additional information, there should be only two possible values for the sample proportion �x ¼
P100

i¼1
xi

100 . In fact, we should
know that it is either �x ¼ 0:08 or �x ¼ 0:93. Both values belong to the set of values [0,0.165) [ (0.848,1], so we should reject
H0.

Let us now formalize the above idea of marking individuals to obtain more precise information. Let X = {x1, . . .,xN} be a
finite population. Let the random variable X : X! R represent some property of the elements of X. Let the multi-valued
mapping C : X! }ðRÞ represent an imprecise perception of X. Let ðX1; . . . ;XnÞ : Xn ! Rn, and ðC1; . . . ;CnÞ : Xn ! ½}ðRÞ�n be
samples of size n, respectively taken from X and C, i.e.
Xiðx1; . . . ;xnÞ ¼ XðxiÞ and Ciðx1; . . . ;xnÞ ¼ CðxiÞ; i ¼ 1; . . . ;n:
(C1, . . .,Cn) represents imprecise information about the random sample (X1, . . .,Xn). But, is it the most informative multi-val-
ued mapping? Or, on the contrary, can we define a more precise multi-valued mapping on Xn that describes our information
about (X1, . . .,Xn)?

Let Y : X! N be defined as
YðxiÞ ¼ i; 8i ¼ 1; . . . ;N: ð14Þ
Let ðY1; . . . ;YnÞ : Xn ! Rn represent a sample of size Y taken from Y, i.e., Yi(x1, . . .,xn) = Y(xi), "i = 1, . . .,n. Let us assume that
we can observe these sample values because we have previously marked all the elements of the population.

Lemma 5.1. Let ~C0 : Xn ! }ðRnÞ be the multi-valued mapping defined as follows:
~C0ð~xÞ ¼ ðx1; . . . ; xnÞ : xi 2 Cið~xÞ; 8i ¼ 1; . . . ; and YiðxÞ ¼ YjðxÞ ) xi ¼ xj
� �� �

:

Then,

1. fðX1ð~xÞ; . . . ;Xnð~xÞÞg#~C0ð~xÞ# C1ð~xÞ � � � � � Cnð~xÞ; 8~x 2 Xn.
2. In particular, when C represents a precise observation of X, i.e., C(x) = {X(x)} "x 2X, then C

0
represents the same informa-

tion as (X1, . . .,Xn).

Proof

1.
	 We easily check the inclusion fðX1ð~xÞ; . . . ;Xnð~xÞÞg#~C0ð~xÞ, since, on the one hand, ðX1ð~xÞ; . . . ;Xnð~xÞÞ 2

C1ð~xÞ � � � � � Cnð~xÞ and, on the other hand Y is injective and thus [Y(xi) = Y(xj)) X(xi) = X(xj)].
	 The proof of the second inclusion is straightforward.

2. We easily derive from the first part of this lemma that, in such a case fðX1ð~xÞ; . . . ;Xnð~xÞÞg ¼ ~C0ð~xÞ ¼
C1ð~xÞ � . . .� Cnð~xÞ;8x 2 X. h

According to the first point of this lemma, the information accuracy should benefit from marking and recapturing tech-
niques. According to the second point, C

0
represents the initial sample when the perception of X is precise. Let now

u : Rn ! f0;1g denote a non-randomized a-test and let us define T~X : Xn ! f0;1g; T~C : Xn ! }ðf0;1gÞ and
T~C0 : Xn ! }ðf0;1gÞ as follows:

	 T~X : Xn ! f0;1g denotes the composition T~X ¼ u � ðX1; . . . ;XnÞ, i.e.,
T~Xð~xÞ ¼ u X1ð~xÞ; . . . ;Xnð~xÞð Þ ¼ u Xðx1Þ; . . . ;XðxnÞð Þ; 8~x ¼ ðx1; . . . ;xnÞ 2 Xn:
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	 T~C : Xn ! }ðf0;1gÞ denotes the multi-valued mapping:
Fig. 1.
the test

Please
son (2
T~Cð~xÞ ¼ uðx1; . . . ; xnÞ : xi 2 Cið~xÞ ¼ CðxiÞ; 8i ¼ 1; . . . ;nf g:
	 T~C0 : Xn ! }ðf0;1gÞ denotes the multi-valued mapping:
T~C0 ðx1; . . . ;xnÞ ¼ uðx1; . . . ; xnÞ : ðx1; . . . ; xnÞ 2 C0ðx1; . . . ;xnÞf g:
Corollary 5.1. According to the above notation, the following inclusions hold:

	 T~Xð~xÞ 2 T~C0 ð~xÞ# T~Cð~xÞ; 8~x 2 Xn.
	 If C = {X} then T~Xð~xÞ ¼ T~C0 ð~xÞ ¼ T~Cð~xÞ; 8ð~xÞ 2 Xn.

This means that the extended test associated to ~C0 is as least as precise as the test associated to ~C. They can only report
different results when the test associated to ~C is inconclusive.
Computer algorithm for computing a test for the variance based on set-valued data. If the set T is not contained in the regions stated in Section 5.1,
is inconclusive; otherwise, a decision can be made.

cite this article in press as: I. Couso, L. Sánchez, Mark-recapture techniques in statistical tests for imprecise data, Int. J. Approx. Rea-
010), doi:10.1016/j.ijar.2010.07.009

http://dx.doi.org/10.1016/j.ijar.2010.07.009


I. Couso, L. Sánchez / International Journal of Approximate Reasoning xxx (2010) xxx–xxx 15
Remark 5.1. Throughout this section we have assumed that we can mark each individual in the population and most of the
times this is not possible in practice: the population may be so large and marking individuals could be very expensive or
impractical. Even so, using this technique may be feasible, since we only need to mark the sample elements. Thus, we should
observe the values of the ordering variable Y defined in Eq. (14) (more strictly speaking, we observe the values of a bijection
of Y) on the sample and we could apply also this technique when the population is not finite. According to these
considerations, we extend the classical test of the mean in the following subsection.
5.1. Particular case: variance test for imprecise data

Let us apply these mark-recapture techniques to extend the classical test of the variance for normal populations. Let us
take a random sample of size n and let li and ui be the lower and the upper bounds of the interval data. The procedure is as
follows:

1. In the first place, we remove all the elements of the sample that appear more than once, leaving one single copy of each.
This process can also be thought of as iterating over the sample, then
(a) mark each element that has not been seen before, and
(b) update a counter each time a marked element is recaptured (i.e., whenever an already seen element appears again in

the sample).
Let us name the k elements that are left ðxv1 ; . . . ;xvk

Þ. The counters of these elements are n1, . . .,nk, where ns is the absolute
frequency of xvs in the original sample.
2. Next, the range of values of the sample variance is computed. Each possible value of the sample variance can be written as

follows:
Please
son (2
S2 ¼ n
n� 1

Pk
s¼1a2

s ns

n
�

Pk
s¼1a2

s ns

n

 !2
24 35 : as 2 lvs ;uvs½ �:
Thus, all we know about the sample variance is that it belongs to the class of values:
M ¼ ff a1; . . . ; akð Þ : a1; . . . ; akð Þ 2 Ag; where

f a1; . . . ; akð Þ ¼ n
n� 1

Pk
s¼1a2

s ns

n
�

Pk
s¼1asns

n

 !2
24 35; and

A ¼ a1; . . . ; akð Þ 2 R : as 2 ½lvs ; uvs �f g:
In Fig. 1 there is a computer algorithm for performing the calculations explained previously. It is emphasized that the
computation of the bounds of M is a numerical problem that depends on finding the extrema of a function. If mark-recapture
techniques are used, this function depends on k variables, or else it depends on n variables. Since k 6 n, mark-recapture tech-
niques require less computer time.

Let us now extend the classical variance test for interval data. Let l denote the expectation of X. Let Tr denote the chi-
square statistic Tr ¼ ðn�1ÞS2

r2 , where S2 represents the sample variance, based on a random sample (X1, . . .,Xn). Under the
assumption of normality, Tr is a chi-square random variable. In the following table we summarize classical results about this
parametric test:
cite this article
010), doi:10.10
H0
in press as: I. Couso, L. Sán
16/j.ijar.2010.07.009
H1
chez, Mark-recapture tec
Reject H0 at level a if
I
 r 6 r0
 r > r0
 Tr0 ðx1; . . . ;xnÞP vn�1;1�a
II
 r P r0
 r < r0
 Tr0 ðx1; . . . ;xnÞ 6 vn�1;a
III
 r = r0
 r – r0
 Tr0 ðx1; . . . ;xnÞ 6 vn�1;a orTr0 ðx1; . . . ;xnÞP vn�1;1�a=2
If we get interval-valued observations [l1,u1], . . ., [ln,un], the class of possible values of Tr0 is
N ¼ ðn� 1Þs2

r0
: s2 2 M

 �
:

Thus, for instance, according to the second one-tailed test (test II) we propose the following decision scheme:

	 Reject H0 if N # [0,vn�1,a).
	 Accept H0 if N # [vn�1,a,1].
	 Otherwise, we will say that the test is inconclusive, due to imprecision in measurements.

Example 5.3. Suppose that we take a random sample, with replacement and without marking. The observations of the char-
acteristic under study are not precise, and the elements of the sample are intervals. The size of the sample will be higher than
that of the population. For instance, we are performing a bootstrap analysis of the data.
hniques in statistical tests for imprecise data, Int. J. Approx. Rea-
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Let us use small numbers, so the calculations can be done by hand. Imagine that we have taken a sample of size n = 6 from
a population of size 3. This sample is
Please
son (2
½li;ui� : ½0;10� ½10;20� ½20;30� ½0;10� ½10;20� ½20;30�;
and we want to test:
H0 : r 6 28:6 against H1 : r > 28:6:
In the first place, let us compute the extrema of the statistic Tr0 ¼
ðn�1ÞS2

r2
0

, where r0 = 28.6. The lowest bound of Tr0 is 100=r2
0,

which would be attained if the actual values of the elements of the sample were:
10 15 20 10 15 20:
Conversely, the upper bound of Tr0 is 950=r2
0, produced by the values:
0 10 30 0 20 30:
Hence, the interval N is [0.12,1.16]. The test is inconclusive at significance level a = 0.05.
Secondly, we are going to apply mark-recapture techniques. Observe that, if one element of the population appears more

than once, all their instances are assigned the same interval. By using this extra information, we are able to make stronger
assertions about the population. The lower bound of Tr0 will be the same as before, but the upper bound is no longer 950/r0,
but 933.33/r0, for a sample:
0 10 30;
where each element appears twice. Therefore, N = [0.12,1.14], which is narrower than before. In this case, we have evidence
against the null hypothesis.
6. A basic bootstrap test for imprecise data

Bootstrap-based confidence intervals and tests can take advantage of mark-recapture techniques, simplifying the numer-
ical computations and, in certain circumstances, obtaining more conclusive tests from imprecise data.

In this section we will show, with the help of an example, how to extend the basic bootstrap confidence limits for a
parameter [20] to the case of interval data, applying mark-recapture techniques. A test will be derived from this confidence
limits, with the help of Eq. (6).

We will summarize first the concept of basic bootstrap confidence region. Let X = (X1, . . .,Xn) be a random sample, and let
T = g(X) be an estimator of a scalar parameter h. Let~x ¼ ðx1; . . . ; xnÞ be a realization of the sample X, and let t ¼ gð~xÞ be the
punctual estimation of h for the sample realization ~x. Let bF be the empirical distribution function:
bF ðxÞ ¼ 1
n

Xn

i¼1

Hðx� xiÞ; ð15Þ
where H(u) is the unit step function that jumps from 0 to 1 at u = 0. Lastly, let T* = g(X*) be the same statistic based on a sam-
ple X� ¼ ðX�1; . . . ;X�nÞ, where the X�i are independently sampled from the distribution bF .

The basic intervals are based on the idea that the distribution of T � h mimics that of T* � T. Let ka=2ð~xÞ and k1�a=2ð~xÞ be the
a/2 and 1 � a/2 quantiles of the distribution of T*, respectively. The basic bootstrap interval expression, for a particular sam-
ple ~x ¼ ðx1; . . . ; xnÞ is
2gð~xÞ � k1�a=2ð~xÞ;2gð~xÞ � ka=2ð~xÞ
� �

; ð16Þ
ka=2ð~xÞ and k1�a=2ð~xÞ are estimated by computer simulation: we generate R realizations~x�r of X*, resampling~x with replace-
ment, and estimate the cumulative probability G(u) = P(T 6 u) with
bGRðuÞ ¼
1
R

XR

r¼1

H u� t�r
� �

: ð17Þ
If R is high enough, we approximate the quantile h, khð~xÞ, by
k�hð~xÞ ¼maxfujbGRðuÞ 6 hg ð18Þ
which is the h(R + 1) th ordered value of t*. R is chosen so that h(R + 1) is an integer. A realization of the approximated basic
bootstrap confidence region is, therefore, the interval:
CRð~xÞ ¼ 2gð~xÞ � k�1�a=2ð~xÞ;2gð~xÞ � k�a=2ð~xÞ
� 	

: ð19Þ
We will construct a parametric test for a simple null hypothesis upon this confidence region. As mentioned in Section 4.2.1,
when CR is a 1 � a-confidence interval, the mapping u00a : Rn ! f0;1g :
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Please
son (2
u00að~xÞ ¼
0 if h0 2 CRð~xÞ;
1 otherwise;



is an a-test of H0 : h(X*) = h0 against H1 : h(X*) – h0. For making a decision on the basis of a sample of n imprecise measure-
ments such that~x 2 c, we will use the procedure described in Eq. (6):
D00uðcÞ ¼
f1g if h0 R CRðcÞ
f0g if h0 2 CRðcÞ
f0;1g otherwise:

8><>: ð20Þ
In this case, CR(c) and CRðcÞ can be expressed as follows:
CRðcÞ ¼ \~x2c 2gð~xÞ � k�1�a=2ð~xÞ;2gð~xÞ � k�a=2ð~xÞ
� 	

; ð21Þ

CRðcÞ ¼ [~x2c 2gð~xÞ � k�1�a=2ð~xÞ;2gð~xÞ � k�a=2ð~xÞ
� 	

: ð22Þ
Obtaining the limits of the above intervals is a hard computational problem, because there is not a general procedure for
obtaining the solution of a box-constrained optimization of a non-differentiable function. We could use metaheuristics, non-
linear programming techniques, or Monte-Carlo simulation, neither of which has an admissible cost if the sample size is
large.

However, computing the approximation:
CRðcÞ ¼ 2 �max
~x2c

gð~xÞ �min
~x2c

k�1�a=2ð~xÞ;2 �min
~x2c

gð~xÞ �max
~x2c

k�a=2ð~xÞ
� �

; ð23Þ

CRðcÞ ¼ 2 �min
~x2c

gð~xÞ �max
~x2c

k�1�a=2ð~xÞ;2 �max
~x2c

gð~xÞ �min
~x2c

k�a=2ð~xÞ
� �

; ð24Þ
is a feasible problem, and we can take advantage of mark-recapture techniques for computing Tð~xÞ and k*. In the following
example we illustrate the construction of an approximated bootstrap test for the same data that we have used in Example
5.3, and also show the differences between the solution of Eqs. (21) and (22) and Eqs. (23) and (24), this last ones with and
without mark-recapture techniques.

Example 6.1. Let us consider the sample:
½li;ui� : ½0;10� ½10;20� ½20;30� ½0;10� ½10;20� ½20;30�:
We will provide inner and outer approximations for the basic bootstrap confidence interval based in the standard devi-
ation. We just aim to exemplify how mark-recapture techniques allow us to find more accurate approximations. We approx-
imate the so-called ‘‘basic bootstrap confidence interval” construction [20] just for simplicity, and we choose the sample
variance just for the sake of unity w.r.t. the examples provided in Section 5. The analysis of the properties of this specific
random interval fall beyond the scope of the paper.

Let S be the sample standard deviation, and let us take R = 99 resamples with replacement, c�1; . . . ; c�R, of the imprecise
sample c. We need to compute the tightest bounds for the quantiles k�0:025 and k�0:975; first, we compute the bounds for the
cumulative empirical distribution function:
G99ðuÞ ¼
1

99

X99

r¼1

H u�min
~x�2c�r

Sð~x�Þf g

 �

; ð25Þ

G99ðuÞ ¼
1

99

X99

r¼1

H u�max
~x�2c�r

Sð~x�Þf g

 �

: ð26Þ
Observe that the computation of min~x�2c�r fSð~x
�Þg and max~x�2c�r fSð~x

�Þg involves an optimization problem similar to that men-
tioned in the preceding section. In this case we can take advantage of the mark-recapture techniques because we know that
the duplicate elements originated in the resampling with replacement are imprecise observations of the same value.

In Fig. 2 we have plotted the bounds of these cumulative empirical distribution function. The bounds of the quantile k�h are
determined by the intersection between G99, G99 and the horizontal line at height h. Without mark-recapture:
k�0:025 2 ½0;5:47�; k�0:975 2 ½5:17;15:49�;
and therefore:
CR ¼ ;; CR ¼ ½0;27:57�:
Using mark-recapture:
k�0:025 ¼ 0; k�0:975 2 ½5:17;15:49�;
cite this article in press as: I. Couso, L. Sánchez, Mark-recapture techniques in statistical tests for imprecise data, Int. J. Approx. Rea-
010), doi:10.1016/j.ijar.2010.07.009

http://dx.doi.org/10.1016/j.ijar.2010.07.009


Index

p0

-0.1 1.91 3.92 5.93 7.94 9.95 11.96 15.98 20

0
0.
2

0.
4

0.
6

0.
8

1

Fig. 2. Bounds of the cumulative empirical distribution function (cedf) G99 in Example 6.1. Black: bootstrap cedf originated in the midpoints of the data.

Blue: G99 and G99, computed with mark-recapture techniques. Red: G99, computed without mark-recapture. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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and therefore:
Please
son (2
CR ¼ ;; CR ¼ ½0;27:32�:
Observe that, in the first case, the test is inconclusive for values of h0 between 27.32 and 27.57, where the second test rejects
the null hypothesis. The pseudocode of the algorithm is included in Fig. 3.

We have also computed a Monte-Carlo approximation to Eqs. (21) and (22), thus we can judge the quality of the
approximation in Eqs. (23) and (24). Even for this oversimplified problem, the bounds do not become stable until 50000
samples are drawn. Lastly, it is remarked that the final value is not too different from the approximate solution shown before.
Fig. 3. Computer algorithm for computing a bootstrap test for the variance based on set-valued data.
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7. Concluding remarks and open problems

We have shown how set-valued tests for set-valued data can benefit from mark-recapture techniques. These techniques
seem to be especially useful when the population is small enough that recaptures are common. In such a case, sample infor-
mation about a particular statistic is much more precise when we mark individuals as we select them from the population.
This is the point that we have tried to illustrate in Example 5.2. In the first situation described in the example, the population
size is 3 and the sample size is 100. If we do not mark the balls, the lower and upper bounds for the sample variance are 0.065
and 0.253, respectively. But, when we mark them, the upper bound is reduced to 0.074. In Examples 5.3 and 6.1 the differ-
ences are less remarkable, since the sample size is n = 6, instead of n = 100. Example 5.2 illustrates a very special situation. In
some applications it is not possible to mark individuals as they are being selected from the population (it can be very expen-
sive, or maybe we have not designed the sampling procedure). Furthermore, extensions of classical tests do not apply in
some problems with imprecise data, because we cannot verify the hypotheses that are needed to do so. Nonetheless, we
can take advantage from marking procedures in such cases. Even when the sample elements are not marked as they are ta-
ken from the population, we can mark them afterwards. In this way, we preserve some relevant information. In particular,
this procedure can be useful when applying resampling techniques to determine (estimate) the distribution of statistics, as
we have illustrated in Section 6. If we deal with imprecise data, we will preserve more information if we mark the sample
individuals before resampling. Moreover, the use of marking techniques is justified, even when the information gain is not
noticeable, since the computation time is reduced in most cases. When dealing with interval data, taking a decision involves
the calculation of a minimum and a maximum of a function defined on a class of feasible solutions. Using mark-recapture
techniques reduces this class, so the algorithm tends to end earlier.

The particular case considered in Section 5.1 concerns a parametric test. Nevertheless, applying mark-recapture tech-
niques for finding confidence regions seems to be straightforward. Furthermore, we could apply them in non-parametric
inference problems. In particular, we think that mark-recapture techniques could be especially useful in testing stochastic
independence and linear correlation. Let us first note that a high (linear or not) dependence between two attributes
(X*,Y*) does not imply (neither is implied by) a high dependence between the random intervals, [LX,UX], [LY,UY], regarded
as imprecise observations of the attributes. For instance, the total ignorance about the values of an attribute would be rep-
resented by means of a constant random interval (focussed on the range of possible values) which is stochastically indepen-
dent from any other random interval, even when the true values of the attribute have some variability. Conversely, when, for
instance, the amplitudes of both random intervals are not constant (i.e., the degree of precision of our observations can vary
with time) but both amplitudes are somehow related, two independent attributes could be represented by means of a pair of
stochastically dependent random intervals. More detailed discussions are given in [3,9,15,16,24]. So, testing independence
between [LX,UX] and [LY,UY] (which basically consists in testing stochastic independence between the random vectors (LX,UX)
and (LY,UY)) does not necessarily give any insight about the dependence relations between X* and Y*. To detect them, we
should actually start from a classical independence test (like a chi-square test, for instance). Then we should consider the
extended set-valued test for imprecise data. We suspect that imprecision in measurements has a strong influence on this
kind of tests. Thus, independence tests should be frequently inconclusive. Hence, we think that mark-recapture techniques
prevent us from propagating more and more imprecision, and allow us to draw more conclusive decisions.

In the near future, we plan to extend the ideas given in this paper to the case where the imprecise observations are de-
scribed by means of fuzzy sets, and also to apply some of these concepts in practical problems [28,49–52]. These studies will
be related to the second-order model introduced in [14,17] for fuzzy random variables. This model is based on the possibi-
listic interpretation of fuzzy sets [13]. But let us notice that there exist in the literature two additional interpretations of fuz-
zy random variables, different from the representation of the imprecise observation a standard random variable. On the one
hand, Puri and Ralescu claim in [46] that the observations of some random experiments do not consist of numerical outputs,
but are represented by vague linguistic terms. According to this idea, the fuzzy random variable is a measurable function, in
the classical sense, between a certain r-algebra of events in the original space and a r-algebra defined over a class of fuzzy
subsets in the final space. On the other hand, in [3,10,12,41,42] fuzzy random variables (and, in particular, random sets) are
viewed as conditional possibility measures. More specifically, in this approach, it is assumed that there is a sequence of two
random experiments on X and R, respectively. The probability measure, P, ruling the first one is completey determined. On
the other hand, the other experiment is only known via a fuzzy relation which assigns, to each outcome x of the first sub-
experiment in the sample set X, the fuzzy set eXðxÞ of possible outcomes of the second experiment. Its membership function
is a possibility distribution eXðxÞð�Þ ¼ pð� j xÞ that models knowledge about the relationship between the outcome x of the
first sub-experiment and the possible outcomes of the second one. p(�jx) is called a conditional possibility distribution: if the
result of the first experiment is x, then the possibility degree of x 2 B occurring in the second one is PðB j xÞ ¼
supx2B

eXðxÞðxÞ. The mark-recapture technique here proposed is not compatible with any of those interpretations of random
sets and fuzzy random variables.
Approx. Rea-
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