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Abstract Fuzzy memberships can be understood as

coverage functions of random sets. This interpretation

makes sense in the context of fuzzy rule learning: a ran-

dom-sets-based semantic of the linguistic labels is com-

patible with the use of fuzzy statistics for obtaining

knowledge bases from data. In particular, in this paper we

formulate the learning of a fuzzy-rule-based classifier as a

problem of statistical inference. We propose to learn rules

by maximizing the likelihood of the classifier. Further-

more, we have extended this methodology to interval-

censored data, and propose to use upper and lower bounds

of the likelihood to evolve rule bases. Combining descent

algorithms and a co-evolutionary scheme, we are able to

obtain rule-based classifiers from imprecise data sets, and

can also identify the conflictive instances in the training

set: those that contribute the most to the indetermination of

the likelihood of the model.

1 Introduction

It is well known that fuzzy memberships can be interpreted

as coverage functions of random sets (Dubois and Prade

1997; Goodman and Nguyen 1985). This interpretation

makes sense from a possibilistic point of view and is also

related to the likelihood-based vision of a fuzzy set (Dubois

et al. 1997), therefore it can be used for assessing the

semantics of linguistic labels that have been numerically

obtained from data.

In the context of machine learning, many properties of

this interpretation can be exploited for learning Knowledge

Bases (KBs) from data. This has been done in combination

with clustering algorithms and also Genetic Fuzzy Systems

(GFSs): in (Sánchez 1998) it was derived a procedure for

fitting a one point coverage function to a cloud of data and

this procedure was embedded in a single linkage hierar-

chical clustering for obtaining scatter fuzzy rules from

data. More recently, in the GFS field, it has been intro-

duced the concept of random sets-rule based system (from

now on, RSRBS) and it was shown that, under certain

conditions, RSRBSs are numerically equivalent to fuzzy-

rule-based systems (FRBSs) and thus they can be regarded

as such (Sánchez et al. 2002).

The initial purpose of RSRBSs was to serve as a

threshold when determining the quality of other GFSs.

When statistical classifiers and fuzzy rule-based classifiers

are compared, we often do not know to what extent the

difference in performance is intrinsic to the data set

[because the decision surface is too complex for being

representable by a compact set of rules (Ho 2008)] or the

learning algorithm is accountable because it has not found

the best knowledge base (KB). As we will show later in this

paper, there are not analytical results about the optimal

weight assignment for FRBSs in the general case, but this

optimal assignment can be found for RSRBSs. As a con-

sequence of this result, RSRBSs can be estimated from data

with deterministic descent algorithms. Comparing the

quality of a suitable RSRBS to that of the GFS under study,

we can find those cases where a GFS has not properly
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converged to an appropriate KB (but the information in its

corresponding data set can be represented with an FRBS)

or, by the contrary, its decision surface is too complex for a

linguistic classifier and we cannot expect that a GFS scores

well for the problem. In the same paper (Sánchez et al.

2002) it has been shown that a Genetic Algorithm (GA) can

perform a rule selection in an RSRBS and the resulting KB

is still competitive with state-of-the-art GFSs in both

accuracy and interpretability.

Furthermore, in this paper we have generalized these

RSRBSs to interval censored data. That is to say, data that

is either known through a pair of bounds, or an upper or

lower bound of the true value. We will extend the results of

(Sánchez et al. 2002) to this kind of data, which is seldom

considered in the GFS field (Herrera 2008), and use

RSRBSs for detecting those data sets where the inaccuracy

of the data prevents us from finding a useful decision

surface. We also want to combine the method with a

genetic rule selection for deriving a linguistically under-

standable fuzzy rule based classifier that can take advan-

tage of this particular case of imprecise data.

There are, however, many numerical difficulties when

obtaining an RSRBS from interval data, because the

precise minimum of the objective function cannot be

produced. At the most, we will obtain a set of feasible

solutions constrained by the bounds of the values of each

training data (Ratschek 1988). In previous works on this

subject it has been proposed to use evolutionary schemes

guided to obtain nondominated sets of bounds of the

objective function by means of multicriteria GAs

(Sánchez et al. 2007, 2009). This could be used to solve

this problem, however the computational cost is high. In

this work, we propose a more efficient co-evolutionary

scheme (Potter and De Jong 2006) that is able to produce

not only a nondominated linguistically understandable

classifier, but also the list of the instances of the training

set that contribute the most to the uncertainty about the

fitness of the classifier. This list of instances is crucial for

improving the computer efficiency of our approach. We

will show later that all the elements in the training set can

be approximated by crisp data except the elements in that

list. Reducing the number of imprecise elements in the

training set is the crux for being competitive in cost with

crisp GFSs.

This paper is structured as follows: in Sect. 2 we recall

and update the definition of RSRBS introduced in (Sánchez

et al. 2002), and its similarities with an FRBS. In Sect. 3

we state the maximum likelihood estimate of an RSRBS

from crisp data, and discuss how to extend the problem to

imprecise data. In Sect. 4, we discuss a co-evolutionary

genetic algorithm that solves the problem, and in Sect. 5

we provide compared numerical results. The paper finishes

with the concluding remarks in Sect. 6.

2 A random-set based linguistically understandable

classifier

Let C 2 f1; . . .; lg be the class labels, x = (x1, ..., xn), the

features with which we perceive an object, and let X be the

input space, x 2 X ¼ X1 � � � � � Xn: Lastly, let the Bayes

minimum error classifier be

classðx0Þ ¼ arg max
c

PðC ¼ c j X ¼ x0Þ: ð1Þ

We will consider that a rule-based classifier is a parametric

model of PðcjxÞ which has a specific human-readable form.

In this section we will develop a statistical model that

relates that linguistically understandable form, based on

fuzzy logic, to abstract concepts of classification theory.

2.1 Crisp sets-based model

Let us define first an instrumental model that will be used

later in the definition of an RSRBS. We will call ‘‘crisp

parametric model’’ to a pair comprising a partition

fA1; . . .;Amg of the input space X and a matrix

M ¼
p11 . . . p1l

..

. . .
. ..

.

pm1 . . . pml

0
B@

1
CA ð2Þ

where

pic ¼ Pðc j AiÞ: ð3Þ

Given the matrix M and an input x0, we can compute

Pðc0 j xÞ ¼
Xm

i¼1

Pðc0 j AiÞPðAi j xÞ

¼
Xm

i¼1

pic0
IAi
ðxÞ ð4Þ

where IAi
ðxÞ is either 1 or 0 if x [ Ai or x 62 Ai; respectively.

In addition, if we impose that each element of this last

partition is decomposable (see Fig. 1),

Ai ¼ A1
i � � � � � An

i ; Aj
i � Xj ð5Þ

then the model is linguistically understandable, because to

each element of M we can assign a linguistic rule, as

follows:

if x1 is A1
i and . . . and xn is An

i then class is ci with pi:

In case there exists a partition fL1
k ; . . .;L

mj

k g on each

variable j,

Xj ¼
[mj

k¼1

Lj
k; Lj

k \ Lj
m ¼ ; for m 6¼ j ð6Þ

such that all terms in the antecedent of the rules fulfill that

Aj
i = Lj

k for some k, then the linguistic rule is descriptive.

Otherwise, it is a scatter rule (Cordón et al. 2001).
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For example, let X1 = [0, 1] be the domain of the weights

of a collection of objects, and X2 = [1, 2] the domain of their

lengths, thus X = [0, 1] 9 [1, 2]. Let fSMALL, LARGEg
with SMALL = [0, 0.5], LARGE = [0.5, 1] a linguistic

partition of X1, and let fSHORT, LONGg with SHORT =

[1, 1.5], LONG = [1.5, 2] a linguistic partition of X2.

Lastly, consider the rule that follows:

if x1 is SMALL and x2 is SHORT then class 2 with 0:8:

The information provided by this rule is

PðC ¼ 2 j x 2 ½0; 0:5� � ½1; 1:5�Þ ¼ 0:8:

In the next section we will define a random-sets based

model by means of a family of crisp models and a proba-

bility distribution defined over this family.

2.2 Random sets-based model

As we have just mentioned, we will define a random sets

rule-based system (RSRBS) by means of a family of crisp

models, indexed by a parameter h [ H, and a probability

distribution in H. Each model in this family shares the

same matrix M and depends on a partition fAh
1; . . .;Ah

mg of

the input space X (see Fig. 2).

To classify an input value x, we average the outputs of

all the crisp models in the family:

Pðc0 j xÞ ¼
Z

H

Xm

i¼1

pic0
IAh

i
ðxÞ

 !
dPh

¼
Xm

i¼1

pic0

Z

H

IAh
i
ðxÞdPh

¼
Xm

i¼1

pic0
UiðxÞ ð7Þ

where Ui(�) is the one point coverage function of the ran-

dom set Ai
h, i.e. Ui(x) = P(x [ Ai

h).

Let Ah
i ¼ A1h

i � � � � � Anh
i ; in case the random variables

I
Ajh

i
ðxÞ are independent, then

UiðxÞ ¼
Yn

j¼1

Uj
iðxjÞ ð8Þ

where

Uj
iðxjÞ ¼

Z

H

I j

Ah
i

ðxÞdPh ð9Þ

are one point coverage functions of random sets defined on

the variables Xj.

2.3 Relationship between the random set-based model

and an FRBS

According to (Dubois and Prade 1997; Goodman and

Nguyen 1985), the one point coverage function of a random

A1 A2 A3 A4

A5 A6 A7 A8

A9

A10 A11

p(C1|A1)=p11

p(C2|A1)=p12

p(C3|A1)=p13

p(C1|A2)=p21

p(C2|A2)=p22

p(C3|A2)=p23

p(C1|A3)=p31

p(C2|A3)=p32

p(C3|A3)=p33

p(C1|A4)=p41

p(C2|A4)=p42

p(C3|A4)=p43

p(C1|A5)=p51

p(C2|A5)=p52

p(C3|A5)=p53

p(C1|A7)=p71

p(C2|A7)=p72

p(C3|A7)=p73

p(C1|A8)=p81

p(C2|A8)=p82

p(C3|A8)=p83

p(C1|A9)=p91

p(C2|A9)=p92

p(C3|A9)=p93

p(C1|A10)=p10 1 

p(C2|A10)=p10 2 

p(C3|A10)=p10 3

p(C1|A11)=p11 1 

p(C2|A11)=p11 2 

p(C3|A11)=p11 3 

p(C1|A6)=p61

p(C2|A6)=p62

p(C3|A6)=p63

Fig. 1 A crisp parametric model is an instrumental model that

comprises a crisp partition of the input space and a matrix of

probabilities. A crisp model for a problem with two input variables

and three classes is shown. The input partition is decomposable

and has 11 elements. Each cell can be linguistically expressed as

three interval rules ‘‘If (x1, x2) [ Ai the class is c1 with pi1’’, ‘‘If

(x1, x2) [ Ai the class is c2 with pi2’’ and ‘‘If (x1, x2) [ Ai the

class is c3 with pi3’’

A1 A2 A3 A4

A5 A7 A8

A9

A10 A11

A6-1

A6-2

A6-3

x1

x2

Fig. 2 A random sets-based model comprises a family of crisp

models and a probability defined in this family. In the figure we depict

the case where the family comprises three elements. The 6-th cell of

the corresponding partitions is shown in detail. Observe that the point

x1 always belongs to A6, but x2 belongs to A6 with certain probability.

This probability (that is, the one-point coverage function of the

random set with images fA1
6;A

2
6;A

3
6g) will be understood as a fuzzy

membership function to a fuzzy cell eA6
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set can be understood as a fuzzy membership function. If the

functions Ui are regarded as membership functions, then

Xm

i¼1

UiðxÞ ¼
Xm

i¼1

Z

Ah
i

ðxÞdPh

¼
Z

H

Xm

i¼1

IAh
i
ðxÞ

 !
dPh

¼
Z

H

dPh

¼ 1 ð10Þ

thus they form a Ruspini’s fuzzy partition of X (Ruspini

1969).

This means that the linguistic information of a random

sets-based model is compatible with that of a fuzzy model,

at least for certain t-norms, t-conorms and inference pro-

cedures. Observe that the inference in an FRBS comprising

rules ‘‘if eAk then ck with wk’’ is:

classðxÞ ¼ arg max
c

_
i:ci¼c

^
j

eAj
iðxÞ ^ wi

 !( )
ð11Þ

and the same process in an RSRBS composed by the same

linguistic rules ði.e. UðxÞ ¼ eAðxÞÞ produces

classðxÞ ¼ arg max
c

X
i:ci¼c

Y
j

Uj
iðxÞ � wi

 !( )
ð12Þ

that is to say, the RSRBS is a particular case of fuzzy clas-

sifier where
P eAðxÞ ¼ 1 for any x, and voting-based infer-

ence (Ishibuchi et al. 1999) and product t-norm are used.

It is remarked that these fuzzy classifiers may be

expressed with type-III fuzzy rules (Cordón et al. 1999);

each group of l random set-based rules like

if Uk then c1 with wk1

..

.

if Uk then cl with wkl

carries the same meaning that

‘‘if eAk then c1 with wk1 and . . . and cl with wkl’’:

3 Estimation of an RSRBS from data

If the linguistic partitions are not modified during the

learning, then obtaining an RSRBS from data consists of

inferring the weights of the rules, i.e. the matrix M. This is

similar to many of the algorithms used for obtaining

weighed fuzzy classification rules from data (Ishibuchi

et al. 1995): we want to determine a sparse set of weights

for the elements of a large set, comprising all the candidate

rules. This large set can contain either an exhaustive enu-

meration of all the valid antecedents or comprise the rules

produced by another learning algorithm that was applied to

the training data (Ishibuchi and Takashima 2001; Ishibuchi

and Yamamoto 2005).

It is remarked that many authors prefer using rules with

binary weights and also optimize the parameters defining

the membership functions (Cordón et al. 2001). While

there is nothing in our previous explanation that prevents

either way, we have decided to explore the case where the

membership functions are not learnt neither tuned, but the

rule weighs are. Our initial pool of rules comprises the set

of all possible antecedents. Observe also that we are not

assuming that the consequents of these rules are the alter-

natives with highest confidence (Ishibuchi and Takashima

2001): cases can be found where this assignment is not

optimal (Sánchez et al. 2002).

The most relevant consequence of our decision is the set

of necessary conditions that follows. The weights of the

rules in an RSRBS must fulfill these conditions after the

training process, and the same conditions will be the base

of a numerical algorithm that we will propose later.

Lemma 1 Let an RSRBS comprise m linguistic rules

‘‘if eAk then c1 with wk1 and . . . and cl with wkl’’

Given a sample of data fðxs; csÞgs¼1;...;q;the best assignment

of weights fulfills that

X
s:cs¼a

eAiðxsÞPm
k¼1

eAkðxsÞwkcs

¼
X

s:cs¼b

eAiðxsÞPm
k¼1

eAkðxsÞwkcs

ð13Þ

for all a; b 2 f1; . . .; lg; and i ¼ 1; . . .;m

Proof Let us consider that an RSRBS produces the

probabilities pðcjxÞ of each class, conditioned to the input,

as we have stated in Eq. 7. This way, the the log-likelihood

of the RSRBS is

LðMÞ ¼
Xq

s¼1

log
Xm

i¼1

UiðxsÞpics
ð14Þ

and there are m constraints

Xl

c¼1

pic ¼ 1: ð15Þ

We convert the constrained problem into an unconstrained

one with the help of m Lagrange multipliers,

L0ðMÞ ¼
Xq

s¼1

log
Xm

i¼1

UiðxsÞpics
þ
Xm

i¼1

ki 1�
Xl

c¼1

pic

 !

ð16Þ

Taking derivatives with respect to pic and ki, we obtain the

following conditions
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X
s:cs¼c

UiðxsÞPm
k¼1 UkðxsÞpkcs

¼ ki ð17Þ

for i ¼ 1; . . .;m; c ¼ 1. . .; l and

Xl

c¼1

pic ¼ 1 ð18Þ

thus Eq. 13 fulfills.

Observe that these conditions are necessary but not

sufficient, because the likelihood function is not always

unimodal. However, in practice good solutions are found

starting from an uniform assignment of weights (all

weights equal to 1/l) and using the deterministic algorithm

in Fig. 3. This algorithm combines solving these m(l ? 1)

nonlinear equations with a descent step based on a Brent

linear search (Luenberger 1984) and a projection of the

search direction in the feasible space. The parameter called

‘‘selected’’ in this function allows us to select which rows

of M intervene in the optimization problem. The unse-

lected rows will end up with weights equal to 1/l for all

classes, thus the corresponding rules vote the same for all

classes and can be removed. This parameter allows us to

guide the search of a compact rule base with a genetic

algorithm, as we will show later.

The linear search (determination of the value of a) was

implemented with Brent’s method. All points examined

fulfill Eq. 18 because of the function normalize, and the

algorithm stops when the conditions (17) are approxi-

mately true.

3.1 Generalization to interval-valued data

Let us study the case where the input data cannot be pre-

cisely observed, but we perceive intervals that contain

them. This includes, for instance, inexact measurements,

censored data and missing values (represented by an

interval that spans the range of the unknown variable). In

particular, consider that we have a sample

fðCs; csÞgs¼1;...;q

where

Cs ¼ ½x�1s; x
þ
1s� � � � � � ½x�ns; x

þ
ns�

is an interval of Rn. Let gs = (x1s, x2s, ..., xns) be a vector

or Rn, such that xis [ [xis
-, xis

?], thus the sequence

(g1, g2, ..., gq) is a selection of the sample, gs [ Cs.

If the true training set was this selection, its likelihood

would be

LðMÞ ¼
Xq

s¼1

log
Xm

i¼1

UiðxiÞpics
: ð19Þ

It is clear that the likelihood of the RSRBS, given the

information provided by the interval sample, is an

unknown value in the set

½L�ðMÞ; LþðMÞ� ¼
Xq

s¼1

log
Xm

i¼1

UiðgsÞpics
j gs 2 Cs

( )
;

ð20Þ

with the same m constraints as before.

It is also clear that, generally speaking, we can no longer

determine an unique set of weights M but we want to find

the largest set of nondominated matrices

fM j LþðM0Þ[ L�ðMÞ for all M0g: ð21Þ

3.1.1 GAs and interval-valued optimization

Genetic algorithms are well suited for this kind of

search, that is closely related to multicriteria optimization

(Koeppen et al. 2003). Let us clarify the task at hand with

the help of an example: in Fig. 4 we depict a case where we

want to find the minimum x0 of a partially known function

f, that lies between f- and f?. We know that the value of the

objective function in the minimum, f(x0), is in the segment

we have labelled ‘‘Pareto front in the fitness landscape’’. In

turn, x0 is in the area marked ‘‘Pareto front in Genotype

Space’’.

Former genetic solutions to this problem (Sánchez et al.

2007) defined the fitness of each individual x as the set

[f-(x), f?(x)] and then introduced a precedence between

fitness values, for instance

½a; b� � ½c; d� () b\c: ð22Þ

Many different precedence operators can be used (Huynh

et al. 2006). Once the operator is selected, a GA depending

on it can be easily defined. If the precedence operator

induces a total order in the set of fitness values, a scalar
Fig. 3 Pseudocode of the numerical algorithm used to solve the set of

Eq. 13
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algorithm is suitable, or else a multicriteria GA is needed.

These extended multicriteria GA produce sets of individ-

uals contained in the Pareto front in the genotype space.

In this paper we will improve this schema, as we will

detail in the next section. We want to identify those ‘‘max–

min‘‘ and ‘‘min–min’’ individuals in Fig. 4. In particular,

we want to identify two crisp samples fxlow
s ; csg and

fxhigh
s ; csg; with xs

low, xs
high [ Cs, such that the models

obtained from these two samples (by applying the algo-

rithm introduced in the preceding section) score both

extrema L- and L? of the Pareto front in the Fitness

Landscape.

4 A proposal of co-evolutionary learning of RSRBS

from vague data

In this section we propose a novel co-evolutionary algo-

rithm that solves the optimization problem mentioned in

the last section. We want to obtain the bounds of the

likelihood for an interval censored data set, and at the same

time perform a rule selection that produces a compact rule

base.

In addition, we want to save as much computer time as

possible, so this method is comparable to crisp GFSs in

execution time. It is remarked that for the most part, the

extra overhead of an interval-data based GFS is consumed

evaluating the set of classes to which an imprecise input

belongs, i.e. determining the set

classðCÞ ¼ arg maxc

X
i:ci¼c

Y
j

Uj
iðxÞ � wi

 !( )
j x 2 C

( )

ð23Þ

Solving Eq. 23 requires, in turn, of a new optimization

algorithm, that can be rather costly.

However, there is no need for computing Eq. 23 for all

the elements of the training set. Observe, for instance, the

situation depicted in Fig. 5. If we wanted to obtain the

misclassification rate of the classifier given by the decision

surface in the figure, it is clear that we can replace all those

instances that do not intersect the decision surface with

points. Instead, if we want to obtain the likelihood this is

not exact, nevertheless it is still true that we can replace

most of the points in the data set by crisp instances without

committing large errors in the approximation.

Likewise, we propose an algorithm that searches the

best selection of rules, and at the same time finds those

elements of the sample that can be replaced by crisp

selections with the lowest approximation error. The algo-

rithm depends on three populations (see Fig. 6). The first

one contains different model candidates, represented by

their matrices M [thus each individual represents a model,

Pitts style (De Jong et al. 1993)], and the other two contain

the crisp samples fxlow
s g and fxhigh

s g mentioned in the

preceding section. In these two last populations, each

individual represents one point in the sample, and the

whole population is the solution [cooperative approach

(Ishibuchi et al. 1999)]. These three populations co-evolve

to find the best RSRBS and the extrema fxlow
s g; fxhigh

s g:
The parts and operators defining this GA are described in

detail in the remaining of the section.

Pareto front in Genotype Space

P
ar

et
o 

fr
on

t i
n 

th
e 

F
itn

es
s 

La
nd

sc
ap

e

max-min individuals

min-max individual

y=f+(x)

y=f-(x)

X

Y

min-min individual

Dominated
individuals

Dominated
Individuals

Fig. 4 Interval optimization: f-(x) B f(x) B f?(x). f- and f? are

known, but f is not. Hence, the minimum of f cannot be known, but we

can bound the values of x and f(x) at the minimum

D
ec

is
io

n 
su

rf
ac

e

Fig. 5 Classification with interval data: all the elements that are not

crossed by the decision surface can be replaced by any point in their

interior without altering the error rate, and with little influence in the

specificity of the likelihood of the classifier
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4.1 Representation of an individual

Each model in the first population can be univocally rep-

resented with a binary vector, that was called ‘‘selected’’ in

Fig. 3. This vector stores the set of rows of the matrix M

whose terms are different from 1/l; in other words, if a bit

is set to 1 then we emit the rule whose antecedent is

associated to the position of the bit. Observe that this

vector can have a significant size, therefore we encode it as

a sparse vector, an ordered list of the indices of the non

zeros.

The elements of the second and third populations are

points contained in the intervals Cs that form the input part

of the training set. Recall that we eventually want to find

the upper and lower extrema of the likelihood of the

classifier. The actual values of the elements of the sample

are not known, but we know bounds for them: the unknown

value of the s-th input xs is in the interval Cs. In addition,

we assume that, for most of the elements in the sample,

making a wrong guess about xs does not influence too much

the likelihood of the classifier: those elements can be

replaced with the midpoints of Cs.

Only those values of xs that make a difference in the

likelihood will be stored. It is needed to determine which

elements are those, and for each one of them we need to

know the point in Cs where the extremum is reached,

therefore each element of the population will be a pair

(index, value). The value of xs will be normalized so that

the lower and upper bounds of its coordinates xjs
- and xjs

? are

mapped to the values zero and one, respectively, at the

corresponding alleles. That is to say, each element xs will

be codified as a pair [s, (d1s, ..., dns)], where djs = (xjs - xjs
-)/

(xjs
? - xjs

-). For instance, if we are given a sample of two

imprecise values fðx1 ¼ ½0; 3� � ½1; 2� � ½3; 4�; class ¼ 1Þ;
ðx2 ¼ ½3; 4� � ½1; 1� � ½3; 3�; class ¼ 2Þg; the list f1; ð0:5; 1;
0:25Þg is a valid individual, and it represents a point

(1.5, 2, 3.25) [ [0, 3] 9 [1, 2] 9 [3, 4].

It is remarked that the index s is included in the repre-

sentation because we will manage population sizes lower

than the number of instances in the training set, and also

because the same index can appear more than once in the

same population, associated with different candidates for

these selections which maximize and minimize the likeli-

hood for the s-th element of the sample.

4.2 Fitness value

The fitness value of a model is an interval of values of

likelihood (see Eq. 14). The extrema of this interval are

reached for certain selections of the interval-valued sam-

ple. These selections are stored in the second and third

populations.

Due to this, the fitness value of an individual in these

last two populations is, respectively, the gain or loss in the

lower and upper bounds of the likelihood of the model,

when the point contained in the individual is replaced by

the midpoint of Cs (where s is the index codified in the

individual, as mentioned). This way, the sum of the fitness

values of all the individuals in the population equals the

difference between the likelihood of the sample comprising

the midpoints of the interval-valued training set and the

likelihood of the sample codified by the whole population.

The genetic evolution tends, therefore, to produce sets of

values with respectively lower and higher likelihoods (see

Fig. 7 for an actual plot of the bounds of the likelihood of

the best model in the first population when the second and

third populations evolve).

It is remarked that, in case that an index appears more

than once, the fitness values of all the individuals but the

best one must be set to zero, or else the sum of the fitness

values is no longer the mentioned difference and the

algorithm would not converge to the best solution, but to

populations containing many copies of the element that

makes the fork of values of the likelihood to grow the most.

It may be argued that these duplicate elements need not to

be stored, thus making room for new individuals and

achieving a higher diversity. Nevertheless, if this decision

was made, on the one side, we would also need to evolve

an additional mechanism for deciding how many conflic-

tive elements will be considered; this last mechanism is

implicit in the codification we are proposing in this section.

On the other side, the removal of duplicates would prevent

the evolution of the value of xs, as we will discuss in

Sect. 4.5.

M xlow xhigh

Population of models
(Pitts approach)

Populations of samples
(Cooperative  approach)

fitness(M)=[L(xlow),L(xhigh)]

Fig. 6 Populations of the co-evolutionary genetic algorithm. The first

one contains different model candidates, the second and the third

contain selections of the sample where the upper and lower bounds of

the likelihood are reached
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4.3 Co-evolutionary scheme

The co-evolutionary scheme is described with the pseu-

docode that follows:

1. All populations (models, xlow and xhigh) are initialized

with random values.

2. Repeat steps 3 to 9, G1 times:

3. Each model in the first population is optimized (see

Fig. 3) for a sample comprising the semi-sum of the

values encoded in the populations xlow and xhigh.

4. This first population is ranked by means of a prece-

dence operator between intervals (Limbourg 2005);

this definition is reproduced in Sect. 4.4 for making

this paper more self-contained. The elite is copied

apart. Tournament selection, crossover and mutation

are performed in this population, and the offspring is

inserted in place of the worst individuals in the

tournament.

5. Repeat steps 6 to 9, G2 times:

6. The first element of the second population (xlow) is

temporarily replaced by the midpoint of its corre-

sponding interval Cs in the training set. The likelihood

of the elite model is reevaluated. The gain with respect

to the lower bound of the likelihood of the elite, is the

fitness of this first element. Changes are reverted, and

this procedure is repeated for all the elements in this

population.

7. The first element of the third population is replaced by

the midpoint of its corresponding interval Cs in the

training set, and the process described in the preceding

step is repeated, now for the higher bound of the

likelihood.

8. For the two last populations, if an element of the

sample appears more than once, the fitness of all the

instances of the element but the best one are assigned a

value 0.

9. Crossover and mutation are performed in these last two

populations, and the offspring is inserted back in place

(steady state).

4.4 Uniform dominance

The precedence operator between interval-valued fitness

values has been adapted, as mentioned, from Limbourg

(2005). In short, for deciding whether an interval [a1, b1] is

preferred to another interval [a2, b2] we define two uniform

probability distributions in both intervals and assume that

the two unknown fitness values f1 and f2 fulfill

f1 ! U½a1; b1�; f2 ! U½a2; b2�: ð24Þ

so that

½a1; b1� � ½a2; b2� () pðf1	 f2Þ	 pðf2 [ f1Þ: ð25Þ

4.5 Genetic operators

All algorithms are steady state and based in a tournament

selection. The offspring of the winners of the tournament

replace the last two elements of the tournament, whose

length is used to control the selective pressure.

Standard two-point crossover and mutation are used in

the first population, which is binary encoded. The other

populations need custom operators. Two individuals

(s1, d1) and (s2, d2) are crossed as follows:

• If s1 = s2, we do an arithmetic crossover between d1

and d2 (Michalewicz 1992).

• If s1 = s2, we insert a copy of the best individual and

randomly generate the other.

This last operator might seem too disruptive, however

consider that individuals with the same index ‘‘s’’ are

actually being part of a subpopulation, since their ‘‘delta’’

parts can be regarded as approximations to the best value of

xs. Individuals from different subpopulations have com-

pletely unrelated delta parts, thus we have decided to

regard the crossover of individuals of different subpopu-

lations as a decimation operator and promote the intro-

duction of new genetic material.

5 Numerical results

In this section we have performed three different analysis

of the algorithm:

1. Study of the robustness of the algorithm for increasing

vagueness of the input data.

Fig. 7 Example run of the GA: bounds of the likelihood of the best

model in the first population when the second and third populations

evolve

L. Sánchez, I. Couso

123



2. Exploitation of the information in linguistic data sets

with censoring, interval valued data and missing

values.

3. Study of crisp classification problems with missing

values, for gaining insight into the advantages or

disadvantages of an interval-based representation.

5.1 Robustness of the algorithm

The first set of tests is intended to show that this algorithm

is consistent and the quality of the rules obtained with it

degrades less with highly imprecise data sets than crisp

classifiers. We have used a subset of size 100 of the

Haykin’s two Gaussians problem (Haykin 1999), and have

added interval-valued imprecision to the data in two dif-

ferent manners:

1. Each sample has been enclosed by a square of random

size, not centered in the point (one of the vertices of

the square is the actual value of the instance). The

training sets comprise sets of squares whose sides are

of varying lengths, with uniform distributions between

0 and 0.8, 1.0 and 1.2, respectively.

2. Some of the samples were enclosed in intervals

spanning the values between the lowest point in the

scale and the actual point, other samples were enclosed

in intervals that origin in the actual point and reach the

highest value in the scale (censored data).

In both cases, we have begun with a small amount of

imprecision and we have gradually increased it, plotting

the corresponding decision surfaces of the RSRBSs and

1NN (nearest neighbor) classifiers in Fig. 8. In the upper

part of the figure we show how the decision surface of

RSRBS is approximately the same for different uncer-

tainties of the sample, while the 1NN surface changes

because of the changes in the centers of the squares.

However, the most important differences are shown in the

lower part of the figure, where a different fraction of the

inputs instances are censored. Observe that the decision

surface of the RSRBS is almost immune to the presence of

censored data, while the 1NN is largely affected.
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Fig. 8 Upper part a, b and c the addition of interval-valued

imprecision to the data alters the decision surface of classical

classifiers, but the RSRBS is less affected. The average length of the

side of the squares is lowest in a and highest in c. Lower part d, e and

f different percentages of upper or lower censored data have a large

influence in the decision surface of crisp classifiers, not so for

RSRBSs. In all the figures, the ellipse is the theoretical decision

surface for the crisp, precise data. The classical classifier (irregular
line) is the 1NN. The smooth line is the decision surface of the

RSRBS, with three labels for each variable, and trained with a

Genetic Algorithm as explained in the text
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5.2 Exploitation of the information in synthetic

problems

We expect that the algorithm described in this paper is able

to efficiently exploit the available information in impre-

cisely perceived data sets. It is well known that when there

are missing, censored or interval data, standard GFSs must

preprocess the information and make up suitable replace-

ments for the incomplete instances. This generated infor-

mation might or might not match the actual, unknown

instances. In this last case, we want to check that the

degradation of the quality of the new algorithm is lower

than that of the combination of a crisp algorithm and a

suboptimal preprocessing of the data.

Given that the GFS proposed in this paper is not opti-

mized for large data sets, because the representation of an

individual in the first population is potentially very con-

suming in space, we have designed a benchmark for which

1. We know that the classification rules can be expressed

with a compact rule base: low to moderate number of

features, not too complex decision surface.

2. The data has low quality, including censoring, interval

valued and missing features.

To comply with our first requirement, we have built an

RSRBS comprising 9 rules in a problem with two inputs

between 0 and 1, and two classes. This RSRBS is a model

of a joint probability of the input features and the class

(Sect. 2). Since we know the distribution of the population,

we have generated data sets whose Bayes error is also

known, and for which there exists an RSRBS which is the

optimal solution. Two data sets of sizes 100 and 1,000 were

generated.

The second requirement has been fulfilled by adding

imprecision to these data sets. We have considered three

different categories of imprecision:

1. Censoring: in the 50% of cases, the training data xs is

replaced by the interval [0, xs]. The other cases were

replaced by the interval [xs, 1].

2. Interval valued data: each training data is replaced by

the interval [xs, xs ? 0.4]. or [xs, 1] if xs ? 0.4 [ 1

3. Missing values: 40% of the points in the training set

had one of their features replaced by the interval [0, 1].

These three additions were performed for both data sets,

giving the six problems we will use in this section. Other

details of the experimental setup are: each experiment has

been repeated 10 times, with a 5 9 2cv experimental

design. The size of the first genetic population is 25. Sec-

ond and third populations are of sizes 100 or 1,000,

depending on the data set. The number of generations G1 is

50 and G2 is 5 (see Sect. 4.3). The probabilities of cross-

over and mutation in the first population are 0.7 and 0.1,

and the probability of crossover in the second and third

populations are equal to 0.9. The tournament size is 5.

For crisp algorithms [LDA and QDA discriminant

analysis (Hand 1981), multilayer perceptron (Haykin

1999), KNN classifier, Chi et al. (1996), Ishibuchi et al.

(1995), Pal and Mandal (1992) and RSRBS (Sánchez et al.

2002)] we replaced each interval by its midpoint. We

expect that our approach performs the best in all the cases

we selected, and also that the final populations xlow and

xhigh contain the most conflictive points for the classifier

(i.e., those points that, if removed, reduce the most the

width of the interval of likelihoods of the model).

The mean value of the test results are shown in Table 1,

and the box plots depicting the relevance of the differences

are displayed in Fig. 9. We have obtained the expected

results in all cases but one (40% of missing data, data sets

of size 100), where the crisp version of the same algorithm

improved the results. At the sight of these preliminary

results, we think that this algorithm is a promising new

technique for exploiting interval data in rule-based classi-

fication problems.

5.3 Crisp benchmarks with missing data

While this method is not expected to improve previous

algorithms for crisp data and, in particular, will produce the

Table 1 Numerical results: crisp algorithms [LDA and QDA discriminant analysis (Hand 1981), multilayer perceptron (Haykin 1999), KNN

classifier, Chi et al. (1996), Ishibuchi et al. (1995), Pal and Mandal (1992) and RSRBS (Sánchez et al. 2002)] were compared to Interval-RSRBS

Linear Quadratic Neural KNN CHO ISH PM Crisp RSRBS Interval RSRBS

censored - 100 0.492 0.478 0.460 0.448 0.448 0.488 0.478 0.478 0.424

censored - 1000 0.421 0.414 0.424 0.437 0.409 0.413 0.474 0.403 0.402

interval - 100 0.554 0.478 0.490 0.506 0.460 0.478 0.458 0.442 0.432

interval - 1000 0.394 0.397 0.402 0.416 0.450 0.393 0.424 0.351 0.346

missing - 100 0.408 0.372 0.426 0.376 0.364 0.328 0.518 0.330 0.372

missing - 1000 0.416 0.445 0.412 0.461 0.470 0.426 0.456 0.415 0.401

The best test results are boldfaced
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same results as in (Sánchez et al. 2002) for crisp data sets,

we have studied the three data sets in the KEEL Data set

webpage (Alcala et al. 2009) that have missing values (see

the mentioned reference for a description of these data

sets). We have carried a compared study of these, using the

same battery of algorithms in the preceding section, for

determining whether the use of the new co-evolutionary

genetic algorithm, combined with an interval-valued rep-

resentation of the missing data, is competitive with a crisp

algorithm where the missing value is replaced by the mean

of the remaining elements of the variable. We expect that

the improvements are minimal, if any, but also that the new

algorithm is not worse than its crisp version.

The results of the experimentation are shown in Table 2

and Fig. 10. From the mean values in Table 2 we can

conclude that there is a small, not statistically significant

advantage to this method in all the cases (see the box plots

in Fig. 10 for information about the dispersion of the test

results). This is an expected result, because the number of

missing values is small and their influence in the fitness

value is not very noticeable.

6 Concluding remarks

In this paper we have proposed a new approach for

obtaining linguistically understandable classifiers from

interval-valued data. We have defined a particular case of

FRBS and its optimal assignment of weights. Then we have

combined a descent algorithm with a co-evolutionary

scheme and searched in parallel for the best set of rules,

and for the two selections of the training set where the

lowest and highest likelihood are reached. These two

bounds are used to find a model which is not dominated by

other models, and that results in a robust estimation under

vague input data. Lastly, we have checked that this

approach is able to obtain better models than many statis-

tical and fuzzy classifiers.

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
40

0.
45

0.
50

0.
55

0.
3

0.
4

0.
5

0.
6

0.
7

(c)(b)(a)

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

0.
30

0.
3

0.
4

0.
5

0.
6

0.
50

0.
45

0.
40

(f)(e)(d)

Fig. 9 Box plots showing the dispersion of the results in Table 1. Censored data, sizes 100 (a) and 1,000 (b). Interval valued data, sizes 100 (c)

and 1,000 (d). Missing data, sizes (e) and 1,000 (f). The algorithms being compared are in the same order as they appear in Table 1
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This is, however, a seminal work that might be benefited

in the future from some changes in the representation of the

rule base. In this sense, we plan to include ‘‘don’t care’’

terms among other, more flexible descriptions of linguistic

rule bases that allow reducing the number of degrees of

freedom of this model in problems with a large number of

input features.
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