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A fuzzy rule-based decision system for assisting coaches in the configura-
tion of an athletics team is presented. The knowledge base of this system
combines the experience of the trainer with genetically mined informa-
tion from training sessions and competitions. The novelty of our approach
comes from the fact that these sources of data have low quality: they
include subjective perceptions of mistakes of the athletes, different mea-
surements taken by different observers, and interval-valued attributes. We
will use a possibilistic representation of these categories of information,
in combination with an extension principle-based reasoning method, and
show that the predictive power of a genetic fuzzy system which is based in
these principles improves other systems that discard the vagueness of the
training data.
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1 INTRODUCTION

One of the most important decision of a professional atlethics coach is select-
ing the team that will take part in a competition. The purpose of this selection
is obtaining the highest score for the whole team. However, each athlete has
to compete at different events, and it may happen that the same person that
has consistently good performance at certain activity does not score well at
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other. To avoid this, the individual capabilities must be balanced in the team.
In other words, gathering points at the largest possible number of races is
preferred to obtaining the best marks in few of them.

If the marks that each athlete will obtain at each race could be known in
advance, then the composition of the best team, with respect to the rival team,
could be regarded as a variant of the knapsack problem [1]. However, to the
best of our knowledge, there are not previous works about intelligent models of
the future performance of athletes. According also to our own research, most
coaches believe that an accurate prediction of the performance of an athlete
at a future event is not possible, and they rely instead in a simpler, threshold-
based mechanism. They establish a baseline mark, and decide whether an
athlete will be able to improve that mark or not. This decision is based mainly
on the personal expertise of the trainer, and supported by the values of some
indicators measuring the ability of the athlete for rating high at certain activity.
The selection of those baseline marks and the mentioned set of indicators for
each race is not a trivial subject; it is required to keep track of each athlete in
different races, and it is also needed to agree in the set of properties that best
describe how an athlete fits an sport. Time ago, it was common that a trainer
set an unique mark for the whole team, that depended on the results of the
rival teams. By contrast, the current trend is to select a different mark for each
race [17], let it be a value that serves the coach to decide whether the athlete is
needed (i.e. the regional record) or the best or most relevant marks of the rival
team (see, for instance, Table 1, where we have included the actual marks of
a team for two different races, 100 and 400 meters hurdles.) The coach can
also decide that the baseline mark is the personal mark of one athlete, and
evaluate whether this athlete will be able to improve his/her mark or not.

Once that baseline mark is settled and the indicators of the races are
obtained, predicting whether this mark will be reached or not is a complex
decision. A coach uses his expertise, his personal knowledge of the athletes
and also the values of the indicators. In this work, as we will show later, these
values can be numbers, words, interval or fuzzy ranges of values, or com-
pound measures. We will propose a method for discovering a list of linguistic
rules that model the expertise of a coach, by mining a database that contain the
past performance of the athletes, and the values of the aforementioned indi-
cators. The mining task will be carried by a Genetic Fuzzy System (GFS),
as described in our previous works [15]. It is remarked that we have used a
nonstandard model that accounts for the imprecision in the indicators, and
based the modeling of that imprecision in the theory of possibility; our repre-
sentation of the data is explained in Section 2. As we will show later in Section
3, this representation requires some changes in the inference procedure. In
the same section we justify the use of weights in the consequents of the rules,
that are introduced for the first time in this paper in the context of possibilistic
data. In Section 4 we summarize all the changes that have to be effected to a
standard GA in order to cope with this problem, and in Section 5 we explain
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100 meters hurdles

Lic/Dor Name/Club Cat/Year Mark Position Points

L-2761 Cepeda I. Seni 15.13 1 8
8 Oviedo Atl. 1977

CO-1813 Lopez C. Juni 16.28 2 7
3 Diputac.Cordoba 1988

O-4084 Palacios A. Seni 16.32 3 6
27 Universidad Oviedo 1982

O-4995 Menendez L. Juve 16.39 4 5
7 Oviedo Atl. 1989

CO-1969 Gallardo I. Juve 17.16 5 4
4 Diputac.Cordoba 1989

O-4312 Perez L. Seni 18.89 6 3
19 Esnova Gijon 1982

O-4448 Barragan P. Pro 19.09 7 2
28 Universidad Oviedo 1984

O-4423 Rodriguez A. Pro 21.39 8 1
20 Esnova Gijon 1984

400 meters hurdles

Lic/Dor Name/Club Cat/Year Mark Position Points

L-2761 Cepeda I. Seni 1.03.88 1 8
8 Oviedo Atl. 1977

O-4084 Palacios A. Seni 1.05.49 2 7
27 Universidad Oviedo 1982

SE-4669 Jimenez M. Pro 1.08.74 3 6
4 Diputac.Cordoba 1984

O-4448 Barragan P. Pro 1.12.35 4 5
28 Universidad Oviedo 1984

O-5331 Escudero Y. Juve 1.13.42 5 4
7 Oviedo Atl. 1990

CO-2099 Aranda M. Juve 1.15.88 6 3
3 Diputac.Cordoba 1989

O-5175 Vigil M. Juve 1.22.10 7 2
20 Esnova Gijon 1990

O-4313 Alvarez N. Pro DNF DNF 0
19 Esnova Gijon 1984

TABLE 1
Marks in the races of 100 and 400 meters hurdles. The coach decides whether an
athlete will be in the team depending on the personal mark of the athlete, a regional
record or the most relevant marks of the rival team.
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the structure of the decision model, and review the indicators of each race.
Lastly, in Section 6, we setup two Genetic Fuzzy Systems that only differ on
the representation of the data and the inference mechanism, and show that the
changes proposed in this paper account for a better prediction capability. We
have included also a brief comparision between these new results and other
previous works involving crisp algorithms.

2 POSSIBILISTIC SEMANTICS AND VAGUE INFORMATION

As we have mentioned in the introduction, we need a common framework for
reasoning with numbers, words, interval or fuzzy ranges of values, and also
with compound measures. In this section we show that these kinds of data
are well suited for a possibilistic representation, which is commonly used in
fuzzy statistics, but not so common in fuzzy logic-based models.

The possibilistic representation we use in this paper models those situations
where we cannot accurately observe a property of an object, but we are given
a nested family of sets, each one of them containing the true value of the
property with certain probability. Observe that all the cases mentioned in the
last paragraph match well with this description, and many other common
types of data can be represented too with the same model. For instance, we
can consider datasets with missing values (one interval that spans the whole
range of the variable), left and right censored data (the value is higher or lower
than a cutoff value, or it is between between a couple of bounds), compound
data (each item comprises a disperse list of values), mixes of punctual and
set-valued measurements (as produced by certain sensors, for instance GPS
receivers) etc. All these cases share a certain degree of ignorance about the
actual value of a variable, thus we will refer to them with the generic term
“low quality data”.

Recent works in fuzzy statistics suggest using a fuzzy representation when
the data is known through a family of confidence intervals [3]. This represen-
tation assumes that a fuzzy set can be interpreted as a possibility distribution
(which, in turn, is a family of probability distributions) and each α−cut of
a fuzzy feature is a random set that contains the unknown crisp value of the
feature with probability 1 − α (see [19, 20] and Figure 1). The adoption of
this representation is not, however, compatible with other interpretations of a
fuzzy set, that must be modified in accordance, as we will discuss in the next
section.

3 COMPUTING THE OUTPUT OF AN FRBS WITH VAGUE DATA

The meaning attributed to a membership function in fuzzy logic differs from
the semantics we have introduced in the preceding section; none of the stan-
dard methods used to compute the output of a FRBS given a fuzzy input
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FIGURE 1
Fuzzy representation of vague data. Left: A missing value is codified with an interval that spans
the whole range of the variable, or P([ min, max ]) ≤ 1. Right: A compound value (in this
example, five different measurements of the variable) can be described by a fuzzy membership,
that can also be understood as an upper probability. Each α-cut contains the true value of the
variable with probability at least 1 − α.

preserve the possibilitic meaning of the data [6]. That is to say, it may happen
that, given a fuzzy input that has a possibilistic meaning, we come out with a
fuzzy output that is not compatible with that interpretation. In order to obtain
meaningful results, in this paper we will use a reasoning method, that was
proposed by us in [20] for fuzzy models, and later adapted to the classification
case in [15].

Consider a fuzzy classifier comprising M rules like this:

If (x is Ãi ) then class is Ci. (1)

Let us use the single-winner inference mechanism for obtaining the output of
this classifier. In the first place, let us suppose that we have a crisp perception
x of the properties of an object. We will assign to that object the class that
follows:

class(x) = Carg maxi {̃Ai(x)}. (2)

Now let the object be imprecisely observed, thus all our information is
“x ∈ X .” If we apply the fuzzy logic based inference mechanism mentioned
before, the class of the object is still a singleton:

class’(X) = Carg maxi{min{̃Ai(x)|x∈X}} (3)

which is not the result we need. We want to obtain the set of labels that follows:

class(X) = {Carg maxi {̃Ai(x)} | x ∈ X} (4)

or, in other words,

class(X) = {class(x) | x ∈ X}. (5)
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which is different than eq. (3). Let us make clear this with the help of a partic-
ular case; imagine that we have a classification system defined by these rules:

if x < 1 then class is A

if x ∈ [1, 2] then class is B

if x > 2 then class is C

(6)

and the input that follows:

x < 1. 8. (7)

The output of the classifier —according to eq. (5)— is the set of classes {A,
B}, and further refinements of this output would be arbitrary. That is to say,
if the object being classified is of class C, then we know that the classifier has
failed. Otherwise, we cannot precisely compute the error; alternatively, we
can say that it is in the set {0, 1}.

It is remarked too that, in certain (semi-supervised) problems, there might
be imprecision also in the independent variable. For instance, if an instance is
labeled as “class {A, B}”, we are not stating that it belongs to both categories
at the same time (which is not an imprecise assert); we are expressing that we
are not sure about the class of the object, as we only know that it is not in class
“C”. Therefore, if the output of the classifier is the set of classes {A, B} and
the point is also labeled with the same set “class {A, B}”, the error in this point
is still {0, 1} and not 0, as it would have been if we had used a distance-based
criterion. Because of this, we will restrict the search of knowledge bases (the
search algorithm will be described in Section 4) to those where each rule
contains a single consequent. We will not consider knowledge bases like this:

if x < 1 then class is {A, B}
if x ∈ [1, 2] then class is B

if x > 2 then class is C

(8)

becase, as we have mentioned, for any dataset we can always find a KB with
single consequents whose error is equal or better than that of (8).

3.1 FRBS with weights in the consequent part: definition of
confidence for imprecise data

The learning algorithm that we will use in this paper produces fuzzy rules
with one assert in the consequent, as mentioned, but at the same time we will
permit that each consequent has a numerical weight. That is to say, according
to the nomenclature in [2], we want to obtain “type 2” rules, whose structure
is as follows:

Rule Ri: If x is Ãi then Class is Ci with CFi, (9)

where CFi is the rule weight.
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The weights of the rules will be obtained through extensions of the four
heuristic methods defined in [8], that in the remaining of the paper will be
denoted CFI, CFII, CFIII, CFIV. All these heuristics depend on the confidence
degree of the fuzzy rule under study (and also on the confidence degrees of
those fuzzy rules with the same antecedent and different consequents) and
therefore it is needed to extend the definition of the concept of “confidence”
to fuzzy data before we can use type 2 rules in problems with low quality data.

Let {(x1, c1), . . . , (xm, cm)} be a crisp training set, and let the confidence of
a fuzzy rule c(Ai ⇒ Ci) for this crisp dataset be [8]:

c(Ai ⇒ Ci)(x1,c1,...,xm ,cm) =

∑
cp=Ci

µAi (xp)∑m
p=1 µAi (xp)

. (10)

For a a low quality (fuzzy) dataset {(X̃1, c1), . . . , (X̃m, cm)}, the direct appli-
cation of the extension principle to eq. (10) is the fuzzy subset of [0, 1]
defined by

c̃(Ai ⇒ Ci)(t)(X̃1,c1,...,X̃m ,cm) =
max

{
min

p=1...m
µXp (xp) | t = c(Ai ⇒ Ci)(x1,c1,...,xm ,cm)

}
.

(11)

The computation of this set is computationally costly. Nevertheless it is con-
tained in the set obtained by replacing the arithmetic operators in eq. (10) by
their corresponding fuzzy arithmetic counterparts, and we will use this last
approximation in our experiments. Lastly, it is remarked that eq. (11) is fuzzy
valued and we need a crisp value between 0 and 1, thus we have to replace
this last approximation by its defuzzified value.

4 OBTAINING FUZZY RULES FROM LOW QUALITY DATA

We will use the cooperative-competitive algorithm introduced in [7], extended
to low quality data [15][16]. This extension affects two parts of the GFS: how
the consequent of a rule is determined, given an antecedent and a vague
dataset, and how the fitness of a rule is computed. The remaning parts (rep-
resentation of the rules, generational scheme, operators, etc.) can be left
unaltered provided that we define a total order between the values of the
fuzzy-valued fitness function. Summarizing, in this section we will detail the
three following procedures:

1. Assignment of consequents (value and weight).

2. Computation of set-valued fitness functions.

3. Genetic selection and replacement of the worst individuals.
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4.1 Assignment of consequents
In [7], consequents were assigned after computing the confidences of the
rules “if (x is Ã) then class is C” for all the values of “C”, then selecting the
alternative with maximum confidence. In [15] and [13] we proposed that the
confidences of a rule was the compatibility grade defined by a set of values.
In the new extension of GFS the assignment of consequents (see Figure 2)
depends on confidences defined by the compatibility degree of the antecedent
of the rule with the examples, divided by the number of examples compatibles
with the antecedent of the rule (11) (see lines 4 to 12 in Figure 2).

As we have mentioned before, the confidence of a rule is a set; since we
need to select the alternative with higher confidence, we need to sort them.
We have decided to build first a list of nondominated values of confidence,
for choosing one value from this list and using its corresponding consequent.
This is achieved through the use of the operation “dominates” in line 16. It is
remarked that this operation can have different meanings, ranging from the
strict dominance (A dominates B iff a < b for all a ∈ A, b ∈ B) [21] to other
definitions that induce a total order in the set of confidences. In this paper, we
have used the uniform dominance defined in [10], that induces a total order
and thus the set of nondominated consequents has size 1 [15].

function assignImpreciseConsequent(rule)
1 for c in {1, . . . , Nc}
2 grade = 0
3 compExample = 0
4 for example in {1, . . . , N}
5 m̃ = fuzMembership(Antecedent,example,c)
6 grade = grade ⊕ m̃
7 if (sup {x : m̃(x) > 0} > 0) then
8 compExample = compExample + 1
9 end if
10 end for example
11 weight[c] = grade � compExample
12 end for c
13 mostFrequent = {1, . . . , Nc}
14 for c in {1, . . . , Nc}
15 for c1 in {c+1, . . . , Nc}
16 if (weight[c] dominates weight[c1]) then
17 mostFrequent = mostFrequent - { c1}
18 end if
19 end for c1

20 end for c
21 Consequent = select(mostFrequent)
return rule

FIGURE 2
If the examples are imprecise, we might not know the most frequent class label –lines 13 to 20–.
In this paper we have used the dominance proposed in [10] to reduce this set to one element.
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4.2 Computation of fitness
The fitness function depends on the winner rule for each object in the training
set; we increment the fitness of the winner rule if its consequent matches
with the class of the object. In this case, this function is fuzzy-valued, and
we will use the procedure introduced [15] and described again in detail in
Figure 4. Observe that we are using weighted rules and therefore there is an
small change with respect to the algorithm in [15], as we need to take into
account the matching between the antecedent of the rule and the object and
also the weight of the rule, as shown in line 5 of Figure 3.

The algorithm shown in that figure computes an interval or fuzzy set of
values of matching between each rule and the input, then discards all rules but
the winner rule, and approximates the output of the FRBS by the set of the
consequents of the non-discarded rules. Being based on an approximation, this
output always includes the theoretical output, but it might include extra class
labels. In Figure 4 we have included a different, more accurate approximation,
which is based on a sample of values of the support of the input. This second
approximation will be used in the next section to better determine the quality
of a classifier. However, our learning will be guided by the function defined
in Figure 3, because of its lower computational cost.

4.3 Genetic selection and replacement
The two other parts in the original algorithm that must be altered in order to
use an imprecise fitness function are: (a) the selection of the individuals (see
[7]) and (b) the removal of the worst individuals. The selection is carried by a
tournament, that we have made to depend on a total order on the set of fitness
values (the uniform dominance defined in [10] and also used in [15]). The
same order is used to determine the worst individuals.

5 STRUCTURE OF THE PROPOSED FUZZY RULE-BASED
DECISION MODEL

Once the representation of the data and the algorithm used to extract fuzzy
rules from this data has been explained, we describe the model that we will
use for deciding whether an athlete will take part of the team or not.

The different events where the team will collaborate are divided into speed,
middle distance, long distance running, hurdling, relays, walk, jumps and
throwing. Each event has, in turn, different categories. For instance, there are
100 metre hurdles and 400 metre hurdles; both are speed races. The races that
form the competition are shown in Table 2. In this section we will review an
outline of the selection process and the indicators used in only three of these
races: long jump, 100 meters and 200 meters.
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function assignImpreciseFitnessApprox(population,dataset)
1 for example in {1, . . . , N}
2 setWinnerRule = ∅
3 for r in {1, . . . , M}
4 dominated = FALSE
5 r.m̃ = fuzMembership(Antecedent[r],example)*CF[r]
6 for sRule in setWinnerRule
7 if (sRule dominates r) then
8 dominated = TRUE
9 end if
10 end for sRule
11 if (not dominated and r.m̃ > 0) then
12 for sRule in setWinnerRule
13 if (r.m̃ dominates sRule) then
14 setWinnerRule = setWinnerRule −{ sRule }
15 end if
16 end for sRule
17 setWinnerRule = setWinnerRule ∪{ r }
18 end if
19 end for r
20 if (setWinnerRule == ∅) then
21 setWinnerRule = setWinnerRule ∪{ rule_freq_class }
22 setOfCons= ∅
23 for sRule in setWinnerRule
24 setOfCons= setOfCons ∪{ consequent(sRule) }
25 end for sRule
26 deltaFit= 0
27 if ({class(example)} == setOfCons and

size(setOfCons)==1) then
28 deltaFit = {1}
29 else
30 if ({class(example)}∩ setOfCons 	= ∅) then
31 deltaFit = {0, 1}
32 end if
33 end if
34 Select winnerRule ∈ setWinnerRule
35 fitness[winnerRule] = fitness[winnerRule] ⊕ deltaFit
36 end for example
return fitness

FIGURE 3
Generalization of the function “assignFitness” to imprecise data by means of a fast approximation.

5.1 Computer aided selection of an athletics team
The score of an athletics team is the sum of the individual scores of the
athletes in the different events. As we have mentioned before, it is the coach’s
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function assignImpreciseFitnessExhaustive(population,dataset)
1 for dataset in {1, . . . , 1000}
2 fitness[dataset] = 0
3 for example in {1, . . . , N}
4 bestMatch = 0
5 WRule = -1
6 for r in {1, . . . , M}
7 m = membership(Antecedent[r],example)*CF[r]
8 if (m > bestMatch) then
9 WRule = r
10 bestMatch = m
11 end if
12 end for r
13 if (WRule == -1) then
14 WRule = rule_fre_class
15 end if
16 if (consequent(WRule) == class(example)) then
17 score = 1
18 else
19 if consequent(WRule) ⊂ class(example)) then
20 score= {0, 1}
21 end if
22 end if
23 fitness[dataset] = fitness[dataset] ⊕ score
24 end for example
25 end for dataset
26 fitness=0
27 for dataset in {1, . . . , 1000}
28 fitness=fitness ⊕ fitness[dataset]
29 end for dataset
30 fitness=mean(fitness)
return fitness

FIGURE 4
Other generalization of the function “assignFitness” to interval-valued or fuzzy data. This function
is computationally too expensive for being used as a fitness function; it will be used instead for
obtaining better estimations of test errors of the final rule bases.

responsibility to balance the capabilities of the different athletes in order to
maximize the score with a team according to the regulations [18]. The scheme
used to obtain the best team has the following parts:

1. Introduction of the marks of the rival teams for each race in the
competition (see Figure 5 for a screen capture of the computer
application).

2. Introduction of the marks of the available athletes.
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Race Type

100 meters Speed

200 meters Speed

400 meters Speed

800 meters Middle distance

1500 meters Middle distance

3000 meters Long distance

100 hurdles Speed and hurdle

400 hurdles Speed and hurdle

3000 steeplechase Long distance

High Jump Jumps

Pole Vault Jumps

Long Jump Jumps

Triple Jump Jumps

Shot Put Throwing

Discus Throwing

Hammer Throwing

Javaline Throwing

5000 walk Long distance and walk

4x100 meters Relays and speed

4x400 meters Relays and speed

TABLE 2
Races that form the competition. In this paper we have restricted ourselves to 100 and
200 meters and long jump.

3. Determination of the expected marks (or “thresholds”) for each one
of the races of the competition. These thresholds depend on the
expert knowledge of the trainer, that sets them according to the past
performance of the athlete and the marks of the rival teams.

4. Predict whether one athlete is needed or not for each race. This predic-
tion is fed with the thresholds obtained in the previous step and with a
set of indicators for each race. These indicators are described later in
this section.

5. Selection of best team. Once we have all the available information of
the athletes and their expected future performance with respect to the
threshold for all races, we obtain the best team and their expected marks.
Combining these marks and those of the rival team we can estimate the
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FIGURE 5
Screen capture of the computer application that assists the selection of an athletics team, showing
the marks of the rival team for all races.

score that the team will obtain, thus the selection of the athletes can be
finally solved [1].

All these steps are summarized in Figure 6. It is remarked that, in this
paper, we focus in in the prediction of whether an athlete will surpass his/her
threshold for each race (grey box in Figure 6).

5.2 Indicators of Long Jump
There are four indicators in long jump that are used to predict whether an
athlete will pass a given threshold [22]: the ratio between the weight and
the height, the maximum speed in the 40 metre race and the tests of central
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Performance
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Data of all the available athletes

BEST TEAM

and

EXPECTED MARKS

Confidence in the threshold

being passed by this athlete

FIGURE 6
Structure of the model. In this paper we focus in the prediction of whether an athlete will surpass
his/her threshold for each race (grey box)

(abdominal) muscles and lower extremities. The first two indicators are deter-
mined by the coach, who was allowed to use numbers, intervals or linguistic
values (fuzzy intervals) at his convenience. The two last tests are repeated
three times, and produce different numbers. The abdominal muscle test con-
sists in counting how many flexion movements the athlete can repeat in a
minute. Lastly, the lower extremities test measures how much the athlete can
jump from standstill.

5.3 Indicators of 100 meters sprint
There are also four indicators in this event: the ratio between weight and
height, the reaction time, the starting or 20 metre speed, and the maximum or
40 metre speed. We have collected two different databases for this problem.
In the first database, three different people measure the actual reaction time,
starting and maximum speed of the athletes. These three measurements are
joined to form an imprecise value. On the contrary, in the second database
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the trainer has graded each speed and time with a mark between 0 and 10.
He was allowed to express his grades with numbers, intervals or linguistic
values. This second database has a highly subjective component; it serves to
assess the expert knowledge of the trainer about the athletes, by comparing
this results with the actual measurements.

5.4 200 meters sprint
There are four indicators in this event: the ratio between weight and height,
the reaction time, action in the curve or 30 meters in curve and the maximum
speed in 60 meters. We have collected two different databases for this problem.
In the first database, the coach measures the actual reaction time, action in the
curve and maximum speed of the athletes. These measurements are combined
into fuzzy values. In the second database we have included a new feature
about the trainer’s personal knowledge of the athletes, defined by a fuzzy
term. Therefore, this second database has a subjective component so we can
compare the different results for judging whether the subjective perception of
the coach is a relevant variable.

6 NUMERICAL ANALYSIS OF THE ALGORITHM

In this section we have compared the results of a GFS that uses crisp datasets
to the same GFS, extended for using possibilistic data, using the represen-
tation and inference function we have mentioned in the preceding sections.
We have also compared the results of the extended GFS with other crisp
algorithms: Linear Discriminant Analysis (LDA) [4], Multilayer Perceptrons
(MLP) [5], K-Nearest Neighbours (KNN) classifier, Fuzzy rule-based Wang-
Mendel (WM) [23] and Pal-Mandal (PM) [11] algorithms ) and with our own
results obtained in previous works [15].

All our studies have been carried with real-world data with athletes of
the Oviedo University that participate in the Spanish Women’s Athletic Club
Championship.

6.1 Settings
Description of the datasets
We have collected eight datasets, whose descriptions are as follows:

1. Dataset Long-4: This dataset is used to predict whether an athlete
will improve certain threshold in the long jump, given the indicators
mentioned before. We have measured 25 athletes, thus the set has 25
instances, 4 features, 2 classes, no missing values. All the features, and
also the output variable, are interval-valued and the coach introduced
his personal knowledge.
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2. Dataset “BLong-4”: Same dataset as “Long-4”, but now the mea-
surements are defined by fuzzy-valued data, obtained by reconciling
different measurements taken by three different observers.

3. Dataset “100ml-4-I”: Used for predicting whether a threshold in the 100
metres sprint race is being achieved. Each measurement was repeated
by three observers. 25 instances, 4 features, 2 classes, no missing data.
All input and output variables are intervals.

4. Dataset “100ml-4-P”: Same dataset as “100ml-4-I”, but the measure-
ments have been replaced by the subjective grade the trainer has assigned
to each indicator (i.e.“reaction time is low” instead of “reaction time is
0.1 seg”).

5. Dataset “B200ml-I”: This dataset is used to predict whether an athlete
will improve certain threshold in 200 meters. We have 19 athletes, 4
features, 2 classes, missing values. All the indicators are fuzzy-valued
and the outputs are interval-valued.

6. Dataset “C200ml-I”: Same dataset as “B200ml-I”, with crisp outputs,
so that the approach in this paper can be compared with other crisp
algoritms.

7. Dataset “B200ml-P”: Same dataset as “B200ml-I”, with an extra feature:
the subjective grade that the trainer has assigned to each athlete. We have
19 athletes, 5 features, 2 classes, missing values. All the indicator are
fuzzy-valued and the outputs are interval-valued.

8. Dataset “C200ml-P”: Same dataset as “B200ml-P”, with crisp output.
Similarly to “C200ml-I”, this dataset will be used in comparisons with
other crisp algoritms.

Experimental design
All the experiments have been run with a population size of 100, probabilities
of crossover and mutation of 0.9 and 0.1, respectively, and limited to 200
generations. The fuzzy partitions of the labels are uniform and their size
is 5 except when mentioned otherwise. All the imprecise experiments were
repeated 100 times with bootstrapped resamples of the training set; the “test”
error is computed with the “out of the bag” instances. We have not included
p-values of the statistical tests (in our case, those would be interval valued or
fuzzy p-values, in turn) but graphical descriptions of the results, by means of
boxplots, from which the relevance of the differences is readily obtained.

All the datasets used in this paper are available in the website of the KEEL
project: http://www.keel.es.1.

1 Note to the reviewers: the web page of the KEEL project undergoes some changes. Some of
the datasets will be available to the public as soon as possible.
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Comparison and representation of results involving a mix of crisp and low
quality data-based algorithms
For comparing the performance of the generalized algorithm with that of
previous statistical and rule-based approaches, each crisp algorithm has been
fed with precise datasets that we have built by removing all the sources of
uncertainty in the original, imprecise datasets, using the method proposed
in [15][16]. The results will be displayed twice, with numerical (tables) and
graphical (boxplots) representations:

1. Tables: We show the mean of 100 repetitions. In the “Crisp” group of
columns we represent the results of learning and the quality of the orig-
inal GFS [7] (“Train” column and “Test column”, respectively). In the
“Low Quality” columnms, we show the results of learning (see Figure 3)
and the quality of the extended GFS, (see Figure 4) is in “Approx.Train”
and “Exh.Test” columns, respectively. Lastly the column, “Low Quality
[15]”, contains the results of the extended GFS proposed in [15], where
the rules were of type 1 (no weights).

2. Boxplot: It is remarked that our boxplots are not standard, because we
represent imprecise results. We use a box showing the 75% percentile
of the maximum and the 25% percentile of the minimum fitness (thus
the box display at least the 50% of data). In addition, we represent the
interval-valued median of the maximum and minimum fitness, for this
reason, we draw two marks inside the box. The dotted lines (not a part of
an standard boxplot) represent the mean of the minimum and maximum
fitness. Again, the information displayed in the boxplots are the results
of 100 repetitions of the learning algorithm.

6.2 Compared results
Original vs. extended GFS with and without weights
We have included the numerical values of the classification error in the Table
3, and the boxplots are shown in Figure 7. The results are promising in all
the experiments. We expected that the extra freedom that the coach has when
he is allowed to use ranges of values and linguistic terms instead of numbers
allowed us to capture better his expertise, and the results seem to confirm this
intuition. For example, in Table 3, “Long-4” and “BLong-4”, (the first one
includes this expertise of the coach, not so the second) we can observe this
difference. The same happens with “100ml-4-I” and “100ml-4-P”: we obtain
better results when we are using the knowlegde of the coach (“100ml-4-P”).
However, in “B200ml-P” and “C200ml-P” as the knowlegde of the trainer is
included as an extra feature (5 features) the results are similar to the case where
we work only with the measurement obtained by three people (4 features).

The use of weights seems to improve the results, as expected; in Table 3, the
new definition in the function “assign Consequent” (Figure 2) improves the
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FIGURE 7
Boxplots illustrating the results of the 100 repetitions of original and extended GFS in the prob-
lems “100ml-4-I”, “100ml-4-P”, “B200ml-I”, “B200ml-P”,“BLong-4”, “Long-4”, “C200ml-I”
and “C200ml-P” with 5 labels/variable

results of previous works [15]. In general, the results demonstrate that there
is a remarkable improvement when the heuristic weights are introduced.

Fuzzy data vs. crisp data
In this section, we compare the extended GFS with other crisp algorithms,
as mentioned before: LDA [4], MLP [5], KNN, WM [23] and PM [11]. All
the experiments in these crisp algorithms have been run with the same 100
bootstrapped datasets used in the extended GFS. The only difference is that
we have replaced each imprecise value by its middle point.

To compare these algorithms we have used only two datasets: “C200ml-I”
and “C200ml-P”. These are the only datasets that have crisp outputs, thus we
can evaluate the error of all crisp and fuzzy data-based models by means of a
crisp numerical value.
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Crisp Low Quality Low Quality [15]
Dataset Train Test Approx. Train Exh.Test Exh.Test

Long-4 CF0
i 0.143 [0.334,0.603] [0.003,0.286] [0.304,0.524] [0.349,0.616]

Long-4 CFI
i [0.010,0.294] [0.295,0.519]

Long-4 CFII
i [0.007,0.291] [0.297,0.522]

Long-4 CFIII
i [0.005,0.288] [0.299,0.520]

Long-4 CFIV
i [0.007,0.291] [0.299,0.522]

BLong-4 CF0
i 0.135 [0.345,0.645] [0.023,0.294] [0.299,0.586] -

BLong-4 CFI
i [0.300,0.569] [0.290,0.558]

BLong-4 CFII
i [0.018,0.288] [0.304,0.575]

BLong-4 CFIII
i [0.011,0.281] [0.297,0.569]

BLong-4 CFIV
i [0.022,0.292] [0.293,0.563]

100ml-4-I CF0
i 0.111 [0.202,0.404] [0.074,0.273] [0.159,0.372] [0.189,0.476]

100ml-4-I CFI
i [0.095,0.283] [0.184,0.400]

100ml-4-I CFII
i [0.069,0.258] [0.171,0.385]

100ml-4-I CFIII
i [0.083,0.271] [0.159,0.372]

100ml-4-I CFIV
i [0.069,0.258] [0.169,0.383]

100ml-4-P CF0
i 0.127 [0.234,0.413] [0.067,0.279] [0.165,0.360] [0.17,0.406]

100ml-4-P CFI
i [0.085,0.283] [0.182,0.385]

100ml-4-P CFII
i [0.060,0.258] [0.195,0.394]

100ml-4-P CFIII
i [0.073,0.271] [0.165,0.361]

100ml-4-P CFIV
i [0.061,0.259] [0.194,0.393]

B200ml-I CF0
i 0.129 [0.244,0.488] [0.001,0.252] [0.244,0.449] -

B200ml-I CFI
i [0.246,0.497] [0.243,0.479]

B200ml-I CFII
i [0.003,0.254] [0.223,0.444]

B200ml-I CFIII
i [0.002,0.253] [0.238,0.457]

B200ml-I CFIV
i [0.003,0.254] [0.227,0.445]

B200ml-P CF0
i 0.141 [0.275,0.493] [0.001,0.272] [0.213,0.474] -

B200ml-P CFI
i [0.236,0.507] [0.207,0.494]

B200ml-P CFII
i [0.001,0.272] [0.189,0.460]

B200ml-P CFIII
i [5.263,0.271] [0.199,0.470]

B200ml-P CFIV
i [0.002,0.273] [0.198,0.469]

C200ml-I CF0
i 0.005 0.517 [0.026,0.028] 0.392 -

C200ml-I CFI
i [0.377,0.377] 0.382

C200ml-I CFII
i [0.019,0.019] 0.360

C200ml-I CFIII
i [0.007,0.007] 0.365

C200ml-I CFIV
i [0.022,0.022] 0.367

C200ml-P CF0
i 0.004 0.549 [0.009,0.010] 0.405 -

C200ml-P CFI
i [0.385,0.385] 0.399

C200ml-P CFII
i [0.005,0.005] 0.413

C200ml-P CFIII
i [0.006,0.006] 0.412

C200ml-P CFIV
i [0.005,0.005] 0.406

TABLE 3
Means of 100 repetitions of the generalized GFS for the imprecise datasets “BLong-4”,
“100ml-4-I”, “100ml-4-P”, “B200ml-I” and “B200ml-P” with 5 labels/variable.
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Low Quality Crisp

Dataset Exh.Test Linear Neural KNN WM PM ISH

C200ml-I CF0
i 0.392 0.512 0.602 0.584 0.462 0.473 0.483

C200ml-I CFI
i 0.382

C200ml-I CFII
i 0.360

C200ml-I CFIII
i 0.365

C200ml-I CFIV
i 0.367

C200ml-P CF0
i 0.405 0.541 0.635 0.467 0.430 0.450 0.515

C200ml-P CFI
i 0.399

C200ml-P CFII
i 0.413

C200ml-P CFIII
i 0.412

C200ml-P CFIV
i 0.406

TABLE 4
Comparations of the means of 100 repetitions of the generalized GFS and other crisp
algorithms for the imprecise datasets “C200ml-I” and “C200ml-P”.

For example, let us compare the medians of the dataset “B200ml-I”
with “C200ml-I” in Figure 7. In the original GFS the median of the
dataset “C200ml-I” is similar at the median of the maximum fitness the
“B200ml-I”. However in the extended GFS the median of “C200ml-I” is
in the middle-upper between the median of the minimum and maximum fit-
ness the “B200ml-I”. The same happens with the datasets “B200ml-P” and
“C200ml-P”.

The test results are shown in Table 4, and in the Figure 8 the boxplots show-
ing the relevance differences between crisp algorithms and the generalized

Linear Neural KNN WM PM ISH LQD
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0.6

0.8

Test C200mlI

Linear Neural KNN WM PM ISH LQD
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0.4

0.6

0.8

Test C200mlP

FIGURE 8
Boxplots illustrating the results of the 100 repetitions of generalized GFS respect to crisp
algorithms for the imprecise datasets “C200ml-I” and “C200ml-P”.
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GFS are included too. Observe that the results of the extended GFS are uni-
formly better than the remaining crisp and rule-based algorithms, showing
that we have captured better the information in the real world low quality
data.

7 CONCLUDING REMARKS

In this work we have shown that the use of a possibilistic representation has
allowed us to obtain linguistic models that exploit the information in real
world, low quality datasets in an efficient manner. We are aware, however,
that there is still much room for improvement, as the difficulty of the problem
is high. The number of athletes in the team (25) is too low for obtaining an
adequately sized knowledge base and the percentage of wrong classifications
produced by any GFS is still too high for this model being an alternative to
the expert knowledge of the trainer, who can however use the system as an
aid to his/her decision.

ACKNOWLEDGEMENTS

This work was supported by the Spanish Ministry of Education and Sci-
ence, under grants TIN2008-06681-C06-04, TIN2010-20900-C04-01, and
by Principado de Asturias, under grant PCTI 2006-2009.

REFERENCES

[1] Chen, S. Analysis of maximum total return in the continuous knapsack problem with fuzzy
object weights. Applied Mathematical Modelling 33 (7): 2927–2933 (2009)

[2] Cordón O, Jesus M.J, Herrera F. A proposal on reasoning methods in fuzzy rule-based
classification systems. International Journal of Approximate Reasoning, 20 (1): 21–45
(1999)

[3] Couso, I., Sánchez, L. Higher order models for fuzzy random variables. Fuzzy Sets and
Systems 159: 237–258 (2008)

[4] Hand, D. J. Discrimination and Classification. Wiley Series in Probability and Mathematical
Statistics, Chichester (1981)

[5] Haykin, S. Neural Networks: a comprehensive foundation, 2nd Edition. Prentice Hall.
(1999)

[6] Cordón O, Herrera F, Hoffmann F, Magdalena L, Genetic fuzzy systems. Evolutionary
tuning and learning of fuzzy knowledge bases. World Scientific, Singapore (2001)

[7] Ishibuchi, H., Nakashima, T., Murata, T,A fuzzy classifier system that generates fuzzy ifthen
rules for pattern classification problems. In Proc. of 2nd IEEE International Conference on
Evolutionary Computation: 759–764 (1995)

[8] Ishibuchi, H., Takashima, T., Effect of rule weight in fuzzy rule-based classification systems.
IEEE Transactions on Fuzzy Systems 3 (3): 260–270 (2001)

[9] Ishibuchi, H., Yamamoto, T., Rule weight specification in fuzzy rule-based classification
systems. IEEE Transactions on Fuzzy Systems 13 (4): 428–435 (2005)



MVLSC_166i page 22

22 A. M. PALACIOS et al.

[10] Limbourg, P., Multi-objective optimization of problems with epistemic uncertainty. Lecture
Notes in Computer Science 3410, Evolutionary Multi-criterion Optimization EMO 2005:
413–427. (2005)

[11] Pal, S. K., Mandal, D. P. “Linguistic recognition system based in approximate reasoning”.
Information Sciences 61: 135–161 (1992)

[12] Palacios, A., Couso, I., Sánchez, L. GFS-based analysis of vague databases in High Perfor-
mance Athletics. Lecture Notes in Computer Science 5788, Intelligent Data Engineering
and Automated Learning IDEAL 2009: 620–609 (2009)

[13] Palacios, A., Sánchez, L., Couso, I. A baseline genetic fuzzy classifier based on low quality
data. Proc IFSA-EUSFLAT 2009: 803–808 (2009)

[14] Palacios, A., Sánchez, L., Couso, I. A minimum-risk genetic fuzzy classifier based on
low quality data. Lecture Notes in Computer Science 5572, Hybrid Artificial Intelligence
Systems IDEAL 2009: 654–661 (2009)

[15] Palacios, A., Sánchez, L., Couso, I. Extending a simple Genetic Cooperative-Competitive
Learning Fuzzy Classifier to low quality datasets. Evolutionary Intelligence 2 (1): 73–90
(2009).

[16] Palacios, A., Sánchez, L., Couso, I. Diagnosis of dyslexia with Low Quality Data with
Genetic Fuzzy Systems. Int. J. Approximate Reasoning. Admitted for publication.

[17] Palacios Martín, J. L. Comunicación personal. (2009).

[18] Reglamento Internacional de Atletismo. Ed. Escolar A. G. (1995)

[19] Sánchez, L., Couso, I., Casillas, J. Modelling vague data with genetic fuzzy systems under
a combination of crisp and imprecise criteria Proc. 2007 IEEE Symp. on Comp. Int. in
Multicriteria Decision Making, Honolulu, USA: 30–37. (2007)

[20] Sánchez, L., Couso, I., Casillas, J. Genetic learning of fuzzy rules based on low quality
data. Fuzzy Sets and Systems. 160 (17): 2524–2552 (2009)

[21] Teich J., Pareto-front exploration with uncertain objectives. Lecture Notes in Computer
Science 1993, Evolutionary Multi-Criterion Optimization EMO 2001: 314–328. (2001)

[22] Vinuessa, M., Coll., J. Tratado de atletismo. Servicio Geográfico del Ejercito Español.
(1984)

[23] Wang L.X., Mendel J.M., Generating fuzzy rules by learning from examples. IEEE
Transactions on Systems, Man, and Cybernetics 22 (6): 1414–1427 (1992)


