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Abstract

We extend the notion of confidence region to fuzzy data, by defining a pair of fuzzy inner and outer confidence regions. We show
the connection with previous proposals, as well as with recent studies on hypothesis testing with low quality data.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

More often than not, the measurements of the attributes involved in a statistical problem do not coincide with their
actual values. Sometimes, such difference is very small and it can be ignored. Some other times, it can be modeled by
means of a probability distribution, and therefore, traditional additive random noise techniques can be applied. In other
cases, we cannot model the expert knowledge about such difference by means of a unique probability distribution, but,
even though, we can bound it or, at least, we can assess different confidence degrees to an ordered sequence of bounds.
In such situations, we can assume that our data set comprises n instances, each one being an imprecise perception of a
value of the attribute(s), which is either represented by means of

1. a set of mutually exclusive values, one of which is the attribute value of the object under concern or
2. a fuzzy subset of the real line, interpreted as a possibility distribution over the class of possible values for the attribute.

The development of useful statistical procedures to take decisions from such kind of imprecise observations of the
attributes has gained recognition in recent years. In particular, the notions of p-value and test function have been already
generalized (see [4,5,7,12,13], for instance). Let us briefly recall those generalizations. In the classical setting, the
p-value represents the infimum significance value for which the null hypothesis can be rejected, based upon a specific
sample. When the available data set comprises a tuple of n crisp sets (situation described in point 1), an interval of upper
and lower bounds for the p-value can be computed. When both of them are on one side of the significance level �, the
decision (reject or accept) is clear. But when such interval of bounds overlaps the threshold, we are undecided. Thus,
the test function becomes a multi-valued mapping taking the values {1} (reject), {0} (accept) and {0, 1} (undecided). In
a more general setting, when the data set comprises a tuple of n fuzzy instances, interpreted as possibility distributions
over the class of possible values of the attribute (situation described in point 2), the p-value and the test function become
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into a fuzzy set and a fuzzy-valued mapping, respectively. The fuzzy memberships are naturally interpreted as degrees
of possibility.

Following a similar approach, in this paper we generalize the concept of confidence region. We consider a specific
1 − � confidence region for the parameter (a random subset of the real line containing the parameter with probability
greater than or equal to 1 − �) and we express the available information about it. Such available information will be
imprecise, due to the imprecision in the data set. When each one of the n inputs is a (crisp) set of values, the natural
representation of such information will be a pair of “outer” and “inner” approximations of the actual confidence interval.
When, in a more general setting, each input is a fuzzy subset on the class of possible values for the attribute, we will
represent the imprecise information about the confidence interval by means of a pair of “inner” and “outer” fuzzy
subsets of the real line. The close connection between these inner and outer approximations and the above-mentioned
extensions of the notions of p-value and test will be laid bare in the paper.

We must mention that this is not the first generalization of the concept of confidence interval in the fuzzy literature.
The closest precedent is the concept of “fuzzy confidence interval”, introduced by Kruse and Meyer in [15]. There,
a convex fuzzy subset of R is assigned to each fuzzy sample (each tuple of n fuzzy numbers). The calculation of
such fuzzy confidence interval coincides, under some continuity restrictions, with the calculation of our fuzzy outer
approximation, but their interpretations are completely different. There is one more difference between Kruse and
Meyer’s approach and ours. The fuzzy inner approximation has no place in Kruse and Meyer’s approach. But, in our
context, it expresses some relevant information that cannot be determined, in general, from the outer approximation.
Thus, the (fuzzy) set-valued tests that can be derived from Kruse and Meyer construction [14] are, in general, less
informative than the tests derived from our construction.

The paper is organized as follows: In Section 2, we will introduce the new notions of inner and outer approximations
of confidence regions. Section 2.1 will be devoted to the case of crisp set-valued data and Section 2.2 will generalize
the former ideas to the case of fuzzy data sets. In Section 2.3 we will compare this new concept with the notion of fuzzy
confidence interval introduced by Kruse and Meyer [15]. In Section 3 we will provide a method to construct fuzzy test
functions from pairs of (fuzzy) inner and outer approximations. In Section 4 we will propose a pair of crisp outer and
inner approximations of the actual confidence region, even for the case of fuzzy data set. Their interpretation is based
on the suggestions proposed by Kyburg and Walley about combining different sources of uncertainty into the same
probability model in the decision-making stage [16,29]. We finish the paper with some concluding remarks.

2. Imprecise confidence regions associated to low quality data

Let X∗ : � → R be a random variable with distribution function F∗ and let X∗ = (X∗
1, . . . , X∗

n) : �n → Rn be a
simple random sample of size n from F∗ (a collection of n independent and identically distributed random variables with
common distribution F∗. They represent n independent observations of X∗.). Let us now suppose that the distribution
function F∗ is known, except for the value of a certain parameter �∗ ∈ Rk , with k ≥ 1. We will consider a specific
set-valued mapping Reg : Rn → ℘(R), associating a subset of the real line (usually, an interval, but not necessarily)
to each possible sample realization x ∈ Rn . It is said to be a (1 − �)-level confidence region for a certain unknown
parameter �X∗ of the df F∗, when it satisfies the following restriction:

P�X∗ ({x ∈ Rn :Reg(x) � �X∗}) ≥ 1 − �.

In the above formula, P�X∗ denotes the probability measure associated to the random vector X∗. (Such a probability
depends on F∗, which in turn, is written as a function of the parameter �∗

X .)
Now assume that we have got imprecise information about a sample realization x∗. We will divide our study into

two phases. In Section 2.1 we will assume that such imprecise information is represented by a crisp subset of Rn . In
Section 2.2 we will generalize this approach to the (more general) case where such information is represented by means
of a fuzzy subset of Rn .

2.1. Imprecise confidence regions from (crisp) set-valued data

Along this subsection, we will describe our imprecise information about the sample realization x∗ = (x∗
1 , . . . , x∗

n ) ∈
Rn by means of a set of mutually exclusive points of Rn , � ⊆ Rn . In other words, all we know about x∗ is that it belongs
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to �. In this setting, we can provide a pair of inner and outer approximations of the 1 − �-confidence region Reg(x∗):

InnReg(�) =
⋂
x∈�

Reg(x)

and

OutReg(�) =
⋃
x∈�

Reg(x) (1)

The above approximations reflect our knowledge about the actual confidence interval Reg(x∗): it is known with certainty
that Reg(x∗) contains the inner approximation and that it is contained in the outer one, as Reg(x∗) coincides with Reg(x)
for some x ∈ �.

So, for an arbitrary point y ∈ R we can distinguish three possible situations:

• It belongs to InnReg(�). In such a case, we are sure that it belongs to the “true” confidence region, Reg(x∗).
• It does not belong to OutReg(�). In such a case, we are sure that it does not belongs to the “true” confidence region,

Reg(x∗).
• It belongs to OutReg(�), but it does not belong to InnReg(�). Then, we have no information about the membership

of y to the actual confidence region Reg(x∗).

Example 2.1. We have a container of apples and we are asked about their expected weight. We use a scale, but we do not
fully trust the obtained measurement. Let us denote the displayed quantity for each apple � by
d = D(�). Suppose that all the measurements are within a 3g error margin. Let us denote by x∗ = X∗(�) the
ill-known quantity describing the (actual) weight of an arbitrary apple � ∈ �. For simplicity, we suppose that the
random variable X∗ is normally distributed, with known variance �2 = 100g2 and unknown expectation, E(X∗) = �.
We want to provide some confidence-interval information about �, on the basis of a sample of 25 displayed quantities,
(d1, . . . , d25). We have imprecise information about the true tuple of weights x∗ = (x∗

1 , . . . , x∗
25) (based on the displayed

quantities and our knowledge about the precision of the scale). We know that they belong to the Cartesian product
� = [d1 − 3, d1 + 3] × · · ·× [d25 − 3, d25 + 3]. According to this information, we can provide a pair of inner and outer
approximations of the 0.95-confidence interval (x∗ − 3.92, x∗ + 3.92). We know with certainty that it is contained in
OutReg(�) = (d − 6.92, d + 6.92) and, furthermore, that it contains the interval InnReg(�) = (d − 0.92, d + 0.92).

The main goal in the next subsection is to provide a suitable extension of the above definitions to the case where the
expert’s information about the sample realization x∗ is given by means of a fuzzy subset.

2.2. Imprecise confidence regions from fuzzy-valued data

Let us now generalize the situation described in the last subsection, and suppose that the imprecise knowledge about
x∗ is represented by a fuzzy set x̃ ∈ F(Rn). First of all, we must clarify the meaning of such information under our
approach. We will consider the possibilistic interpretation of fuzzy sets [11]. Thus, for each x ∈ Rn , the membership
value x̃(x) represents the possibility degree that the “true” (imprecisely observed) realization x∗ coincides with x.
This possibility distribution reflects the limited confidence of the expert about his/her measurements. It may express a
subjective judgment or it can be based on some empirical knowledge. We can find more detailed explanations about
this interpretation and its relation with the theory of imprecise probabilities in [1–3,8]. Furthermore, the construction
of specific membership functions based on empirical data, according to this approach is provided in [18–21,23–27].

In Section 2.1, we have assumed that our information about each sample realization x∗ was determined by a set
� ⊆ Rn of feasible “values” (points in Rn). This information can be alternatively represented by means of a 0–1-valued
possibility measure on Rn . Let us now generalize the situation to the case where an arbitrary possibility measure on Rn

represents our imprecise knowledge about the sample realization x∗ = (x∗
1 , . . . , x∗

n ). We have the information provided
by a nested family of sets (x̃�)�∈(0,1) each one associated to a confidence degree 1 − �.

We will define two mappings ˜OutReg and ˜InnReg from F(Rn) to F(R) as follows.
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Definition 2.1. The outer fuzzy confidence region associated to x̃ is the fuzzy set ˜OutReg(x̃) defined as follows:

˜OutReg(x̃)(y) = sup{x̃(x):Reg(x) � y}, ∀y. (2)

Taking into account that x̃ is interpreted as a possibility distribution and, according to the supremum-preserving

property of possibility measures, the membership value ˜OutReg(x̃)(y) will represent the degree of possibility that x∗
belongs to the family of samples:

{x ∈ Rn :Reg(x) � y}.
In other words, the quantity ˜OutReg(x̃)(y) represents the possibility that the confidence region determined by x∗ contains
y, when our imprecise perception about x∗ is represented by x̃.

When, in particular, x̃ is a crisp set � ⊆ Rn , then ˜OutReg(�) assigns possibility 1 to all the elements in the crisp
set

⋃
x∈� Reg(x) and 0 otherwise. So the above definition extends the notion of “outer” approximation introduced in

Section 2.1. As we pointed out there, the crisp set
⋃

x∈� Reg(x) is the most committed set that would contain Reg(x∗)
with certainty.

Let us now extend the notion of inner approximation.

Definition 2.2. The inner fuzzy confidence region associated to x̃ is the fuzzy set ˜InnReg(x̃) defined as follows:

˜InnReg(x̃)(y) = 1 − sup{x̃(x):Reg(x) /� y}.

According to the above formula, the supremum sup{x̃(x):Reg(x) /� y} coincides with the membership of y to the

complement of ˜InnReg(x̃). According to the properties of possibility measures, such supremum represents the possibility
degree of the subset

{x:Reg(x) /� y}. (3)

Furthermore, due to the duality between possibility and necessity measures, the membership value ˜InnReg(x̃)(y)
represents the degree of necessity (certainty) of the complementary of the set given in Eq. (3), i.e.,

˜InnReg(x̃)(y) = Nec({x:Reg(x) � y}).
In other words, the membership value ˜InnReg(x̃)(y) expresses the degree of certainty that the number y belongs to the

“true” confidence region, Reg(x∗). Notice that the membership function ¬ ˜InnReg(x̃) : R → [0, 1] (the membership
function associated to the complementary of the inner fuzzy region) can be interpreted as a possibility distribution. For

an arbitrary y ∈ R, the membership value ¬ ˜InnReg(x̃)(y) represents the possibility of the set of samples {x:Reg(x) /� y}.
In other words, it represents the degree of possibility that the true confidence region does not contain the value y.

When, in particular, x̃ is a crisp set � ⊆ Rn , the membership function ˜InnReg(�) assigns the necessity value 1 to the
elements in the crisp set

⋂
x∈� Reg(x) and 0 to the elements in the complementary of it. So it extends the notion of

inner region introduced in Section 2.1 and it is interpreted as the largest set contained in Reg(x∗) with certainty.

Example 2.2. Consider again the situation described in Example 2.1. But now suppose that the specifications of the
scale are more complex: the scales are “under control” 90% of the time, and in such situation the measurements are
within a 3g error margin. In the remaining 10% of the time, the scales are “out of control” and we can only guarantee
an error lower than 15g. According to Couso et al. [2], we can describe this information by means of the fuzzy set
x̃ ∈ F(Rn) whose membership is defined as follows for each x = (x1, . . . , x25):

x̃(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if xi ∈ [di − 3, di + 3], ∀i = 1, . . . , 25

0.1 if xi ∈ [di − 15, di + 15], ∀i = 1, . . . , 25,

and x j /∈ [d j − 3, d j + 3] for some j ∈ {1, . . . , 25}
0 otherwise.
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Now we will provide the imprecise information we have about the 0.95-confidence interval about �X∗ = E(X∗),
Reg(x∗) = (x − 3.92, x + 3.92), based on our imprecise information about the realization x∗. According to Eq. (2),

we will define the fuzzy set ˜OutReg(x̃) as follows:

˜OutReg(x̃)(y) = sup{x̃(x):y ∈ Reg(x)}
= sup{x̃(x):y ∈ (x − 3.92, x + 3.92)}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if y ∈ (d − 6.92, d + 6.92),

0.1 if y ∈ (d − 18.92, d + 18.92)

but y /∈ (d − 6.92, d + 6.92),

0 otherwise.

As we pointed out at the beginning of this section, ˜OutReg(x̃)(y) represents the degree of possibility that y belongs to

Reg(x∗). We can provide an alternative expression for ˜OutReg(x̃) in terms of the crisp outer approximations associated
to the level cuts of x̃.

Proposition 2.1. ˜OutReg(x̃)(y) = sup{� ∈ [0, 1):y ∈ OutReg(x̃�)}.

Proof. The proof is straightforward, if we take into account that the membership function x̃ can be expressed as
the supremum x̃(x) = sup{� ∈ [0, 1):x ∈ x�} and that, according to Eq. (1), OutReg(x̃�) is defined as the union
OutReg(x̃�) = ⋃

x∈x̃�
Reg(x). �

Similarly, we can define the fuzzy set ˜InnReg(x̃) as follows:

˜InnReg(x̃)(y) = 1 − sup{x̃(x):y /∈ Reg(x)}
= 1 − sup{x̃(x):y ∈ (−∞, x − 3.92) ∪ (x + 3.92, ∞)}

=
{

0 if y ∈ (−∞, d − 0.92) ∪ (d + 0.92, ∞),

0.9 if y ∈ [d − 0.92, d + 0.92].

˜InnReg(x̃)(y) represents the degree of certainty that y belongs to Reg(x∗).

2.3. Similarities and differences with respect to Kruse and Meyer fuzzy confidence intervals

As we pointed out in Section 1, our notions of inner and outer approximations are somehow related to the earlier
concept of “fuzzy confidence region” introduced by Kruse and Meyer in [15]. In this subsection, we will highlight the
differences between them.

First of all, we need to recall the notion of “fuzzy perception” of a parameter in Kruse and Meyer’s context. According
to the nomenclature established at the beginning of Section 2, let us denote �X∗ a certain parameter associated to the
df F∗ of the “original” random variable X∗ : � → R. Let the fuzzy-valued mapping X̃ : � → F(R) represent the
“fuzzy perception” of X∗. For each � ∈ � and each x ∈ R, the membership value X̃ (�)(x) represents the possibility
degree that “true” image of �, X∗(�) coincides with x . The fuzzy-valued mapping X̃ determines a fuzzy set on the
class of all random variables from � to R which is called the “acceptability function” and is defined as follows:

accX̃ (X ) = inf
�∈�

X̃ (�)(X (�)) for all random variable X : � → R.

Such fuzzy set represents a possibility distribution over the class of random variables that assigns, to each variable X ,
the possibility degree that it coincides with the “original” X∗. The fuzzy perception of �X∗ is the fuzzy set �̃X̃ defined
as follows:

�̃X̃ (y) = sup{accX̃ (X ):�X = y}.
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The membership value �̃X̃ (y) represents the degree of possibility that the true value of the parameter �X∗ coincides
with y. This possibility degree is calculated on the basis of the vague perception of X∗.

Example 2.3. Consider the scale specifications described in Example 2.2: the scales are “under control” 90% of the
time, and in such situation the measurements are within a 3g error margin. In the remaining 10% of the time, the
scales are “out of control” and we can only guarantee an error lower than 15g. Let D denote the random variable that
represents the values displayed by the scale. The fuzzy perception of the expected weight �X∗ = E(X∗) is the fuzzy
number:

Ẽ(X̃ )(x) =

⎧⎪⎨
⎪⎩

1 if x ∈ [E(D) − 3, E(D) + 3],

0.1 if x ∈ [E(D) − 15, E(D) + 15] \ [E(D) − 3, E(D) + 3],

0 otherwise.

It coincides with the fuzzy expectation [22] of the fuzzy random variable X̃ : � → F(R) defined from D as follows:

X̃ (�)(x) =

⎧⎪⎨
⎪⎩

1 if x ∈ [D(�) − 3, D(�) + 3],

0.1 if x ∈ [D(�) − 15, D(�) + 15] \ [D(�) − 3, D(�) + 3],

0 otherwise, ∀� ∈ �.

The frv X̃ represents the incomplete knowledge about X∗ in the sense that X̃ (�) describes a possibility distribution over
the class of possible values for X∗(�). According to this possibilistic interpretation, Ẽ(X̃ )(x) represents the possibility
degree that the actual expectation of X∗ coincides with x , for all x ∈ R. In practice, we cannot calculate E(D), because
we have only information about a sample of displayed weights, so we cannot determine Ẽ(X̃ ).

Let now the fuzzy-valued mapping X̃ : �n → F(Rn) represent the fuzzy perception of a random sample from X∗,
X∗ = (X∗

1, . . . , X∗
n). For each �� ∈ �n and each x = (x1, . . . , xn), the membership value X̃( ��)(x) represents the degree

of possibility that the true sample realization X∗(��) = (x∗
1 , . . . , x∗

n ) coincides with x. Let us now recall the definition
of a fuzzy confidence interval introduced in [15].

Definition 2.3 (Kruse and Meyer [15]). A convex fuzzy-valued mapping 	 : F(Rn) → F(R) is a fuzzy confidence
interval when it satisfies the restrictions

P({ �� ∈ �n :(�̃X̃ )� ⊆ 	�(X̃(��)}) ≥ 1 − �, ∀� ∈ (0, 1). (4)

Just from a formal point of view, there is a connection between our definition of fuzzy outer approximation and the
above notion of fuzzy confidence interval.

Proposition 2.2. ˜OutReg(x̃) satisfies Definition 2.3.

Proof. According to the properties of the (weak) level cuts of fuzzy sets, the following equalities hold:

[�̃X̃ ]� =
⋂

<�

{�X :X (�) ∈ [X̃ (�)]
, ∀� ∈ �}

[ ˜OutReg(x̃)]� =
⋂

<�

OutReg(x̃
).

Having the above equalities into account, the proof is straightforward. �

Kruse and Meyer [15] propose a method to construct a specific fuzzy confidence interval from a standard confidence
interval. Let Reg = (T1, T2) : Rn → ℘(R) denote a 1 − �-confidence interval for �X∗ based on a specific realization
x∗ and let x̃ denote the fuzzy perception of x∗. The authors consider the convex fuzzy set 	(x̃) defined as follows:

	(x̃)(y) = sup{� ∈ [0, 1]:y ∈ (	1
�(x̃), 	2

�(x̃))}, (5)
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where 	1
�(x̃) and 	2

�(x̃) are given by

	1
�(x̃) = inf{T1(x):x ∈ x̃�}

and

	2
�(x̃) = sup{T2(x):x ∈ x̃�}.

They check that the convex fuzzy set 	 defined in Eq. (5) is a fuzzy confidence interval, according to Definition 2.3.
When the extremes of the confidence interval, T1 and T2, are continuous functions from Rn to R, and the �-cuts x̃�

are convex, the fuzzy outer approximation ˜OutReg(x̃) is a convex fuzzy set and it coincides with the fuzzy interval
defined in Eq. (5), in virtue of the Mean Value Theorem. In a more general setting it is easy to check that the fuzzy
outer approximation is at least as committed as the fuzzy confidence interval, i.e.,

˜OutReg(x̃)(y) ≤ 	(x̃)(y), ∀y ∈ R, ∀x ∈ Rn . (6)

But, even if there is a very close formal connection between the fuzzy outer approximation of a confidence region
and Kruse and Meyer fuzzy confidence intervals, their interpretation is not the same: while Kruse and Meyer aim to
cover the imprecise (fuzzy) perception, �̃X̃ of the parameter �X∗ , we aim to describe the available imprecise information
about the (crisp) confidence region Reg(x∗). There is a further difference between Kruse and Meyer approach and the

one presented here: the inner fuzzy region ˜InnReg(x̃) has no place within their approach, while it is needed in our
context. In Section 3, we will show that we need to take it into account, when we aim to construct fuzzy test functions
(see [4,7]) from fuzzy regions.

3. Fuzzy tests and p-values associated to fuzzy confidence regions

In classical statistics, there is a strong connection between the construction of confidence regions, the definition of
parametric test functions, and the calculation of critical values. In Section 3.1, we will recall these relationships. We will
make use of these ideas along the rest of the paper, in order to connect the concepts of inner and outer approximations
with the notions of fuzzy test [4,7] and fuzzy p-value introduced in the recent literature. (See [7,13] for the specific
definitions for some particular tests, and [4] for a more general definition). In particular, in Section 3.2, we will give a
procedure to define fuzzy test functions in the sense of [4,7] from the inner and outer fuzzy regions introduced in the
last section. In Section 4, we will take into account the connection between confidence regions and critical values, to
propose a meaningful “defuzzification” of the inner and outer fuzzy approximations. First, let us recall some notions
in the classical context.

3.1. Classical connection between tests, critical values and confidence regions

Let X∗ : � → R be a random variable and let us state the null hypothesis

H0 : �X∗ = �0 against the alternative H1 : �X∗ ∈ �1, (7)

where �X∗ is a parameter that depends on the probability distribution F∗ induced by X∗. (The last equation contains,
as particular cases, all one-sided and two-sided parametrical tests.) Let ��0 : Rn → {0, 1} be a non-randomized test
that represents the decision rule that will lead to accept or reject the null hypothesis. The critical region associated to
��0 is

C�0 = {x ∈ Rn :��0 (x) = 1}.
The size of the test ��0 is the quantity

E�0 (��0 ) = P�0 (C) ≤ �.

Now assume that we have an �-test (a test of size �), ��0
� , for each � ∈ (0, 1] with critical region C�0

� . Let us suppose
that those critical regions are one included in another, as usual, i.e.,

[�1 ≤ �2 ⇒ C�0
�1

⊆ C�0
�2

].
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Table 1
Summary of the classical relationships.

(��
�)�∈[0,1] : Rn → {0, 1} p�(x) = inf{�:��

�(x) = 1} Reg�(·)
�

(x) = {�:��
�(x) = 0}

(family of �-tests) (critical level) (confidence region)

Reg : Rn → ℘(R) ��
Reg(x) =

{
1 if Reg(x) /� �
0 if Reg(x) � �

(1 − � confidence region) (test with significance level �)

p� : Rn → [0, 1] �(p�,�) =
{

1 if p�(x) ≤ �
0 if p�(x) > �

Reg(p(·),�)(x) = {�:p�(x) > �}
(p-value) (family of �-tests) (1 − � confidence region)

The critical level (or “the p-value”) associated to this family of tests is the mapping p�0 : Rn → [0, 1] defined as

p�0 (x) = inf{� ∈ [0, 1]:x ∈ C�0
� }. (8)

Conversely, let p�0 : Rn → [0, 1] be the p-value function associated to the family of tests (��0
� )�∈[0,1]. For a specific

�, consider the mapping: �(p�0 ,�) : Rn → [0, 1]:

�(p�0 ,�)(x) =
{

1 if p�0 (x) ≤ �,

0 if p�0 (x) > �.
(9)

It can be easily checked that �(p�0 ,�) coincides with the infimum inf
>� ��0

 and so, it is an �-test. Furthermore, under

some continuity conditions, �(p�0 ,�) and ��0
� do coincide.

Now we will recall the connection between �-tests and 1 − �-confidence regions. Let Reg : Rn → ℘(R) denote a
1 − �-confidence region, in the sense that

P�X∗ ({x ∈ Rn :Reg(x) � �X∗}) ≥ 1 − �.

It is well known that the test ��0
Reg defined as follows:

��0
Reg(x) =

{
1 if Reg(x) /� �0,

0 if Reg(x) � �0
(10)

is a test of size less than or equal to � for the hypotheses given in Eq. (7). Furthermore, if the probability P�({x:Reg(x) �
�}) equals 1 − �, then the size of the test ��0

Reg is exactly �. Conversely, let us start from an �-test, ��0
� : Rn → [0, 1]

for H0 : � = �0 against H1 : � ∈ �1. Then the multi-valued mapping Reg : Rn → ℘(Rn) defined as Reg′
�(·)

�
(x) =

{� ∈ �:��0
� (x) = 0} is a 1 − �-confidence region for �, and furthermore, the probability

P�({x:Reg�(·)
�

(x) � �})

is exactly equal to 1−�. Table 1 summarizes the ideas recalled in this subsection. The first column represents the starting
notion and the other two columns represent the notions that can be derived from it. The third column in the second
line of the table is empty, because we should need a family of (nested) 1 − � regions (one region for each � ∈ (0, 1))
to derive the calculation of the critical value, and not a single confidence region for a specific �. Furthermore, they
should be exact confidence intervals, in the sense that, for each �, the probability of coverage of the parameter should
be exactly 1 − �.
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3.2. (Fuzzy)-set-valued test functions derived from inner and outer confidence regions

In some recent papers [4,7,12] the notion of �-test has been extended, according to Zadeh’s Extension Principle, to
the case where the incomplete information about sample realization x∗ = (x∗

1 , . . . , x∗
n ) is represented by means of a

(crisp or fuzzy) subset of Rn . The generalized test functions are interpreted as possibility distributions.
In this subsection we will show a procedure to construct such kind of (fuzzy)-set-valued test functions on the basis

of a pair of inner and outer fuzzy approximations. Furthermore, we will compare it with another procedure proposed
by Grzegorzewski in [14] to define fuzzy tests from Kruse and Meyer’s fuzzy confidence regions.

We will first recall the construction of fuzzy tests proposed in [4,7]. Let us initially suppose that the sample of
imprecise perceptions of the attribute is represented by means of a crisp set of mutually exclusive points in Rn . Then,
given an �-test � : Rn → {0, 1}, it is extended, in a natural way to ℘(R) as follows:

�(�) = {�(x):x ∈ �}

=

⎧⎪⎨
⎪⎩

{1} (reject) if �(x) ∈ C, ∀x ∈ �,

{0} (accept) if �(x) ∈ Cc, ∀x ∈ �,

{0, 1} (inconclusive) otherwise.

(11)

The assignation �(�) = {0, 1} means that our perception, �, of x∗ is too imprecise and prevents us to take a clear
decision (rejecting (1) or no rejecting (0)). So we would need further information to be able to take a decision.

Let us now suppose the more general case where the imprecise perception of x∗ is represented by a fuzzy set x̃.
Then, according to Zadeh’s Extension Principle (that extends the construction proposed in Eq. (11)), � is extended
(see [4,7]) from Rn to F(Rn) as follows:

�̃(x̃)(1) = sup{x̃(x):�(x) = 1}
and

�̃(x̃)(0) = sup{x̃(x):�(x) = 0}. (12)

Using the possibilistic interpretation of the fuzzy set x̃, �̃(x̃)(1) represents the possibility degree of the family of samples

{x ∈ Rn :�(x) = 1}.
In other words, it represents the possibility that the null hypothesis would be rejected, had the sample realization x∗
been precisely observed. Similarly, �̃(x̃)(0) represents the possibility that H0 would be accepted (no rejected), had the
data been precisely observed. Equivalently, the quantity 1 − �̃(x̃)(0) represents the degree of necessity (certainty) of
rejection of the null hypothesis.

Now, consider a specific confidence region Reg : Rn → ℘(R) and let ��0
Reg denote the test function derived from it

according to Eq. (10). Let �̃Reg denote its fuzzy extension according to Eq. (12). We observe that it can be alternatively
written in terms of the pair of outer and inner fuzzy approximations of Reg as follows:

�̃Reg(x̃)(0) = ˜OutReg(x̃)(�0),

�̃Reg(x̃)(1) = 1 − ˜InnReg(x̃)(�0). (13)

Note that the above formulae involve not only the outer approximation, but also the inner one. This is the main
difference with respect to the procedure proposed by Grzegorzewski [14] to derive fuzzy tests from fuzzy confidence
regions. Grzegorzewski method is based on the fuzzy confidence intervals proposed by Kruse and Meyer. We will next
analyze the differences between both approaches. First, we need to recall Grzegorzewski formulation.

Consider a 1−� confidence interval [T1, T2] for the parameter �X∗ . Suppose that the fuzzy set x̃ ∈ F(Rn) represents
imprecise perception of the sample x∗ ∈ Rn . Now, consider the convex fuzzy set defined in Eq. (5), 	(x̃). Let ¬	(x̃)
denote the (usual) complement of the fuzzy set 	(x̃), i.e.,

¬	(x̃)(y) = 1 − 	(x̃)(y), ∀y ∈ R.
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Let 	(x̃)� and [¬	(x̃)](�) denote the respective (weak) �-cuts of those fuzzy sets. Grzegorzewski [14] proposes the
following level-wise definition of a fuzzy test function �̃G to test the hypothesis H0 : � = �0 against H1 : � � �0:

�̃G(x̃)� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{0} if �0 ∈ 	(x̃)� \ [¬	(x̃)]�,

{1} if �0 ∈ [¬	(x̃)]� \ 	(x̃)�,

{0, 1} if �0 ∈ 	(x̃)� ∩ [¬	(x̃)]�,

∅ otherwise.

(14)

To compare this fuzzy test with the one given in Eq. (13), we will first replace this level-wise expression with the
membership function expression. The following equalities are straightforwardly obtained:

�̃G(x̃)(0) = 	(x̃)(�0),

�̃G(x̃)(1) = ¬	(x̃)(�0) = 1 − �G(x̃)(0). (15)

Now, let us compare the expressions considered in Eqs. (13) and (15). First, let us recall that the outer fuzzy region
˜OutReg is always included in 	, as we point out in Section 2.3, Eq. (6). In order to compare both fuzzy tests, we will

first restrict ourselves to the case where ˜OutReg coincides with 	 (We provide sufficient conditions in Section 2.3.).
In that case, the membership of the value 0 (acceptance) coincides in both tests, i.e.,

�̃Reg(x̃)(0) = �̃G(x̃)(0).

Thus, the membership value �̃G(x̃)(0) can be also interpreted as the possibility degree of acceptance of the null hypoth-
esis, according to the incomplete perception of the true sample realization. On the contrary, the quantity �̃G(x̃)(1) =
1 − �G(x̃)(0) does not represent the possibility degree of rejection of the null hypothesis, but the necessity degree. In
short:

�̃G(x̃)(0) = Poss(accept) = �̃Reg(x̃)(0),

�̃G(x̃)(1) = Nec(reject) ≤ Poss(reject) = �̃Reg(x̃)(1).

So, both tests would only coincide when the inequality Nec(reject) ≤ Poss(reject) becomes an equality. The fuzzy
set �̃Reg(x̃) is normal by construction (it represents a possibility distribution on the binary set {0, 1}), and hence, such
equality is only satisfied when both tests are crisp.

In order to clarify even more the differences between both tests, we will next analyze them in the particular case
where the imprecise perception of the sample realization x∗ is represented by means of a crisp set � ∈ Rn . In such
situation, each fuzzy test becomes into a set-valued function. On the one hand, our test derived from the inner–outer
approximations is

�Reg(�) =

⎧⎪⎨
⎪⎩

{0} (reject) if �0 ∈ InnReg(�),

{1} (accept) if �0 /∈ OutReg(�),

{0, 1} (inconclusive) otherwise.

On the other hand, Grzegorzewski test becomes into the following crisp test:

�G(�) =
{

{0} (reject) if �0 ∈ OutReg(�),

{1} (accept) if �0 /∈ OutReg(�).

The difference between both set-valued tests is clear: Gregorzewski’s one is never inconclusive, since it does not
distinguish between the situations �0 ∈ InnReg(�) and �0 ∈ OutReg(�) \ InnReg(�). On the contrary, the test �Reg only
takes a decision (accept) in the first case, and it is inconclusive in the second case. Let us illustrate the above ideas with
an example.

Example 3.1. Let us consider again the situation described in Example 2.1 and let us suppose that the mean of the
displayed quantities has been d = 95g. The imprecise perception of the sample realization is represented by the
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Cartesian product � = [d1 − 3, d1 + 3] × · · · × [d25 − 3, d25 + 3]. The outer and the inner confidence regions are
respectively the crisp sets:

OutReg(�) = (88.08, 101.92)

and

InnReg(�) = (94.08, 95.92).

According to this information, if we want to test the hypothesis H0 : E(X∗) = �0 against H1 : E(X∗) � �0 the set-valued
test �Reg takes the following decisions for the respective values �0:

• Reject, for all �0 ≤ 88.08 and �0 ≥ 101.92.
• Accept, for all �0 ∈ (94.08, 95.98).
• Undecided, if �0 ∈ (88.08, 94.08] ∪ [95.92, 101.92).

On the other hand, Grzegorzewski set-valued test would assign the following decision values:

• Reject, for all �0 < 88.08 and �0 > 101.92.
• Accept, for all �0 ∈ [88.08, 101.92].

Now consider the situation described in Example 2.2, and suppose again that the sample mean of the displayed
quantities is 95g (d = 95).

So the outer and the inner fuzzy regions are

˜OutReg(x̃)(y) = sup{x̃(x):y ∈ Reg(x)}

=

⎧⎪⎨
⎪⎩

1 if y ∈ (88.08, 101.92),

0.1 if y ∈ (76.08, 88.08) ∪ (101.92, 113.92),

0 if y < 76.08 or y > 113.92

and

˜InnReg(x̃)(y) =
{

0.9 if y ∈ (94.08, 95.92),

0 otherwise.

If, for instance, we want to test the null hypothesis H0 : E(X∗) = 95.5 against H1 : E(X∗) � 95.5, the fuzzy test
associated to the above fuzzy confidence regions is the following fuzzy subset of {0, 1}:

�̃Reg(x̃)(0) = ˜OutReg(x̃)(95.5) = 1,

�̃Reg(x̃)(1) = 1 − ˜InnReg(x̃)(95.5) = 0.1.

According to this fuzzy test, the possibility of acceptance is 1 and the possibility of rejection is 0.1. In the next section
we will provide a meaningful defuzzification of this kind of tests, and we will also derive a pair of upper and lower
(crisp) approximations of the confidence region from the fuzzy ones. On the other hand, Grzegorzewski’s test would
take the values:

�̃G(x̃)(0) = �̃Reg(x̃)(0) = 1,

�̃G(x̃)(1) = 1 − �̃Reg(x̃)(0) = 0.

The membership value �̃G(x̃)(0) = 1 represents again the possibility of acceptance. Its dual, �̃G(x̃)(1) = 1 −
�̃Reg(x̃)(0) = 0 represents the degree of necessity or certainty of rejection.

Finally, we will briefly discuss the general case, where the fuzzy regions ˜OutReg(x̃) and 	(x̃) do not coincide.
According to Eq. (6), the membership ˜OutReg(x̃) is less than or equal to 	(x̃). Thus, we easily observe that, in general,
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the following inequalities are fulfilled:

�G(x̃)(0) ≥ �Reg(x̃)(0)

and

�G(x̃)(1) = 1 − �G(x̃)(0) ≤ 1 − �Reg(x̃)(0). (16)

Thus, in the general case, the membership value �G(x̃)(0) is just an upper bound for the possibility that the actual
sample belongs to the acceptance region, while �G(x̃)(1) is a lower bound for the necessity value.

4. Crisp inner and outer approximations from fuzzy data: how to “defuzzify”

In Section 3.1, we have recalled the link between confidence regions, tests and p-values in standard statistics. This
formal connection also holds in the fuzzy case, as we have shown in Section 3.2. In fact, we have derived fuzzy tests
from fuzzy inner and outer approximations of confidence regions, and we have shown that they can be interpreted as
possibility distributions over the binary space {0, 1}: the membership values �Reg(x̃)(0) and �Reg(x̃)(1) respectively
represent the possibility of acceptance and the possibility of rejection of the null hypothesis. But in practice, a crisp
decision may be needed. In [4], we have proposed a method to convert the fuzzy p-value associated to a fuzzy sample
realization into an interval in the real line, and given it a justification based on the Theory of Imprecise Probabilities.
Taking into account the connection between p-values, tests and confidence regions, we can also convert a fuzzy-valued
test function into a (crisp) set-valued one, and a pair of fuzzy inner and outer approximations into a pair of crisp ones.
In Section 4.1, we will briefly recall the method proposed in [4] to convert fuzzy p-values into intervals. We will apply
it to “defuzzify” inner and outer fuzzy approximations of confidence regions in Section 4.2.

4.1. Interval representation of fuzzy p-values

Let p�0 denote the p-value function associated to a nested family of �-test functions, (��)�∈(0,1) for H0 : � =
�0 against H1 : � ∈ �1. According to Eq. (8), for a specific sample realization x ∈ R, the value p�0 (x) is defined as
the infimum of the test sizes such that x makes us reject the hypothesis. It can be also interpreted as the probability,
under the null hypothesis, of getting a sample which is “less compatible” with H0 than x is. More formally, the p-value
coincides with the success parameter of the Bernoulli random variable D(x) : Rn → {0, 1} defined by

D(x)(y) =
{

1 if p�0 (y) < p�0 (x),

0 otherwise.

Let now x̃ represent the imprecise perception of a sample realization x∗ ∈ Rn . The fuzzy p-value associated to x∗ [4]
is the fuzzy set:

p̃�0 (x̃)(p) = sup{x̃(x):p�0 (x) = p}, (17)

and it represents the possibility degree that the true critical value p�0 (x∗) coincides with p. Therefore, according to
the above interpretation of a classical p-value as the success parameter of a Bernoulli distribution, the membership
value p�0 (x̃)(p) can be interpreted as the possibility degree that the success parameter of D(x∗) coincides with p, for
each particular p ∈ [0, 1]. In other words, it represents the possibility degree of the Bernoulli distribution B(p), for
each p ∈ [0, 1]. So, the fuzzy p-value univocally determines a second-order possibility measure (a possibility measure
defined over the class of probability measures).

Second-order probabilities and possibilities concern statements of standard probabilities, while standard probabilities
express degrees of belief about occurrence of events. Following Kyburg [16] and Walley [29] both of them can be
combined into a joint probability space, even if they are conceptually different kinds of probabilities. According to
[16], in any concrete application, the conceptual differences will disappear, because that application requires a “single-
case” probability. Hence, any second-order probability can be re-interpreted as a first order one. We will illustrate
Walley’s procedure with a very simple example. We will avoid any formalism, and we will only focus on the intuition
behind. Let us consider the second-order probability measure P that assigns strict positive probabilities only to the
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Bernoulli distributions B(0.2), B(0.5) and B(0.8), according to the following table:

Bernoulli success parameter 0.2 0.5 0.8
probability 0.1 0.2 0.7

The idea behind Walley’s reduction is very simple: it is based on representing the following conditional statement:
If the true success parameter were p, then the probability of the event “success” (represented by the set {1})
would be p.

as a conditional probability as follows:

P({1}|B(p)) = p.

Therefore, according to the Total Probability Theorem, the above second-order probability P can be reduced into a
standard one, P . The new standard probability measure would assign the following probability to the event “success”:

P({1}) = 0.1 · 0.2 + 0.2 · 0.5 + 0.7 · 0.8 = 0.68.

The fuzzy p-value represents a second-order possibility measure, which is, in turn, equivalent to a family of second-
order probabilities. (The family of second-order probabilities which are upper-bounded by it). According to Walley’s
reduction, each second-order probability can be turned into a standard one. In our particular situation, such a standard
probability measure is Bernoulli, and therefore it is represented by means of a single number (the success parameter).
Therefore, according to this procedure, we can transform the fuzzy p-value into a set of values, which can be proved
to be an interval.

Furthermore, it is proved in [4] that such interval can be calculated as follows:[∫ 1

0
inf[ p̃�0 (x̃)]� d�,

∫ 1

0
sup[ p̃�0 (x̃)]� d�

]
. (18)

The extreme points of such interval represent the most accurate bounds for the true p-value, pval(x∗), based on our
imprecise knowledge of x∗. Note that this interval of bounds coincides with the mean value [9] of the fuzzy set p̃�0 (x̃).

4.2. Crisp representation of the inner and outer fuzzy approximations

In the last subsection, we provided each fuzzy sample realization, x̃, with an interval p-value, [p�0
val(x̃), p�0

val(x̃)]. The

extreme points of such interval represent the most accurate bounds for the actual p-value, p�0 (x∗), according to the
incomplete information about x∗ provided by x̃, when we combine second-order probabilities and (usual) first-order
probabilities into the same probability model. On the other hand, we show in Table 1 (third column, third row) the way
to derive confidence regions from critical values in classical statistics. Thus, if we assume that the actual critical value

p�0 (x∗) belongs to the interval [p�0
val(x̃), p�0

val(x̃)], then the confidence region

Reg(p(·)(x),�) = {�:p�(x) > �}

belongs to the family of subsets of the real line {Reg(p,�):p ∈ [p�0
val(x̃), p�0

val(x̃)]}. Such family is determined by the pair
of inner and outer sets:

InnReg(x) = {�:p�0
val(x̃) > �}

and

OutReg(x) = {�:p�0
val(x̃) > �}. (19)

This is the pair of crisp inner and outer approximations of the confidence region Reg(p(·)(x),�) calculated upon the
incomplete information about x∗ given by x̃.
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Now, let us start from a family of nested exact 1 − � confidence regions for �, (Reg�(x))�∈(0,1). We can derive from
it a family of � tests, and we can therefore calculate the associated p-value, p�. We can again derive a 1 − �-confidence
region, Reg′

�(x) = {�:p�(x) > �}. We can easily check that this confidence region coincides with the initial one,
Reg�(x) if it satisfies the following continuity condition:

Reg�(x) =
⋃

>�

Reg
(x).

In such a (very common) case, the crisp inner and outer regions considered in Eq. (19) are interpreted as inner and
outer approximations of the initial confidence region Reg(x∗).

Example 4.1. Consider the container of apples of Examples 2.1 and 2.2. For simplicity, the weight was assumed to
be a normal random variable with known standard deviation � = 10g. For a particular sample realization of size 25,
x∗, and for each � ∈ [0, 1], the interval Reg�(x∗) = (x∗ − 2 · z1−�/2, x∗ + 2 · z1−�/2) is an (exact) 1 − �-confidence
interval. (In the last formula, z1−�/2 denotes the 1 − �/2 quantile of the standard normal distribution.) We can derive a
family of �-tests from the above family of intervals:

�Reg�
(x) =

{
1 if (x − 2 · z1−�/2, x + 2 · z1−�/2) /� �,

0 otherwise.

The associated p-value is given by the formula:

p�(x∗) = inf{�:(x∗ − 2 · z1−�/2, x∗ + 2 · z1−�/2) /� �} = 2

[
1 − 

( |x∗ − �|
2

)]
,

where  denotes the distribution function of the standard normal distribution. Now assume that the fuzzy set x̃ (based
on the information provided by the displayed quantity and the specifications of the scale provided in Example 2.2)
represents the imprecise perception of x∗.

According to Eq. (17), the fuzzy p-value can be calculated as follows:

p̃�0 (x̃)(p) = sup{x̃(x):p(x) = p} = sup

{
x̃(x):2

[
1 − 

( |x − �|
2

)]
= p

}
.

In order to calculate the mean value of the fuzzy set p̃�0 (x̃), we will first determine each �-cut. Let us notice that p�0

is, in this particular example, a continuous function from Rn to R. Therefore, according to [17], if we assume that the
�-cuts of x̃ are compact sets, then their images by the function p�0 do coincide with the �-cuts of the fuzzy set p̃�0 (x̃).
Thus, the �-cut of the p-value is determined by the formula:

[ p̃�0 (x̃)]� =
{

2

[
1 − 

( |x − �0|
2

)]
:x ∈ x̃�

}
, ∀�

and therefore, the maximum and the minimum of each �-cut are given by

min[ p̃�0 (x̃)]� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

[
1 − 

(
|d − �0| + 3

2

)]
if � ≥ 0.1,

2

[
1 − 

(
|d − �0| + 15

2

)]
otherwise,

max[ p̃�0 (x̃)]� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

[
1 − 

(
max

{
|d − �0| − 3

2
, 0

})]
if � ≥ 0.1,

2

[
1 − 

(
max

{
|d − �0| − 15

2
, 0

})]
otherwise.
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The maximum and the minimum of the mean value of the fuzzy p-value are, therefore, the Lebesgue integrals:

p�0 (x̃) =
∫ 1

0
max[ p̃�0 (x̃)]� d�

= 0.9 × 2

[
1 − 

(
max

{(
|d − �0| − 3

2

)
, 0

})]
+ 0.1 × 2

[
1 − 

(
max

{(
|d − �0| − 15

2

)
, 0

})]
,

p�0 (x̃) =
∫ 1

0
min[ p̃�0 (x̃)]� d�

= 0.9 × 2

[
1 − 

(
|d − �0| + 3

2

)]
+ 0.1 × 2

[
1 − 

(
|d − �0| + 15

2

)]
.

According to the interpretation of p�0 (x̃) and p�0 (x̃) suggested in Section 4.1, they are the most committed bounds for

the true p-value p�0 (x∗), according to the incomplete information we have about the sample realization.
Now, we will use the formula given in the third column of the third row in Table 1 to determine a 1 − � confidence

region from critical values:

Reg′
�(x∗) = {�:p�(x) > �}.

We observe that Reg′
�(x∗) = ⋃


>� Reg
(x∗) = Reg�(x∗). Thus, according to the information provided by the fuzzy

sample, and according to the interpretation of p�0 (x̃) and p�0 (x̃) as bounds for the true p-value, p�(x∗), we can provide
a pair of (crisp) outer and inner approximations of Reg(x∗) as follows:

OutReg(x̃) = {�:p�(x̃) > �} and InnReg(x̃) = {�:p�(x̃) > �}.
Let us explicitly calculate the (crisp) inner approximation:

InnReg(x̃) = {�:p�(x̃) > �}

=
{

�:0.9 × 2

[
1 − 

(
|d − �0| + 3

2

)]
+ 0.1 × 2

[
1 − 

(
|d − �0| + 15

2

)]
> �

}

=
{

�:2

[
1 − 

(
0.9 × (|d − �| + 3) + 0.1 × (|d − �| + 15)

2

)]
> �

}

=
{
�:0.9 × (|d − �| + 3) + 0.1 × (|d − �0| + 15) > 1 − �

2

}
=
{
�:−1[0.9 × (|d − �| + 3) + 0.1 × (|d − �0| + 15)] > z1−�/2

}
. (20)

Concerning the interpretation of the above calculations, the interval [p�0 (x̃), p�0 (x̃)] represents the bounds of the
actual p-value, when we combine (according to [16,29]) two different sources of uncertainty into the same model:
(1) randomness, concerning the selection of different apples from the container and (2) ill-knowledge about the state
of the scale (it is under control with probability 0.9 and out of control, with probability 0.1). The crisp inner and outer
approximations represent the most committed “bounds” of Reg(x∗), under this assumption.

5. Concluding remarks and future work

We have extended the notion of confidence region of a parameter to the case where the sample is a collection of
n crisp or fuzzy subsets of the real line. We suppose that each (fuzzy) subset represents some imprecisely observed
quantity, interpreted as a possibility distribution (when the subset is crisp, such possibility distribution is 0–1 valued).
We have defined a pair of inner and outer (fuzzy) confidence regions that represent our knowledge about the confidence
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region determined by the actual sample. So, we complete the puzzle about the relationship between confidence regions,
test functions and p-values within the fuzzy set environment.

We have also provided a pair of crisp approximations of the actual confidence region, and we have provided them with
an interpretation within the theory of imprecise probabilities. They have been calculated according to the Kyburg [16]
and Walley [29] suggestions of converting second-order probabilities into first order ones (by combining “probabilities
about probabilities” and “probabilities about statements” into the same model).
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