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Abstract 

The nature of interference sources in signal processing is a key problem in many applied disciplines. These interferences 
are often modelled by random processes, although it has been shown that many models can be favourably modified when 
some of the uncertainty sources are treated as fuzzy experiments. 

Following this spirit, the objective of this paper is to build a mathematical model which explains a set of imprecise 
measurements taken on a physical system. Furthermore, it is assumed that the effect of unmodelled inputs to the system 
can be regarded as a random process, but the imprecision in the measures is better described by means of a possibility 
distribution. (~) 1998 Elsevier Science B.V. All rights reserved. 
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I. Introduction 

In this paper we will study a new method to iden- 
tify fuzzy models  of  discrete systems. We are inter- 
ested in those systems whose dynamics can be defined 
by means o f  a mapping, which relates any physical ly 
possible combination o f  state and input values to the 
values to which the state variables would evolve after 
a fixed amount o f  time. The structure o f  one o f  these 
systems is shown in Fig. 1. 

In practical situations, we need to estimate the men- 
t ioned mapping from a sequence of  sensor readings 
of  state and input to the system. The problem is not 
trivial when these readings are noisy. In that case, we 
need to apply statistical methods to estimate the map- 
ping. Since it is reasonable to think that these statis- 
tical methods depend on the nature o f  the sources o f  
the noise, we will distinguish between two types of  
noise: 

1. The noise originated when some inputs to the 
system are not present in the model. 

2. The noise originated when the readings o f  the 
sensor slightly differ from the true value o f  the 
magnitude being sensed. We will call this effect as 
observation error. 

Let us suppose that we want to identify a system 
and we only know a sequence o f  observations of  state 
and input values, namely 

E = {e~}, 

where e~ = (x~+,, x~, u~ ) and k -- I, 2 ..... n ( i ) 

where, adopting the usual notation, the state will 
be named x and the input u, the asterisk * means 
"observed value" and it is assumed that e~ E X × 
X x U, where X and U are finite sets. The solution 
of the problem should be a set T C X × X × U, graph 
of the mapping that models the physical system (see 
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Fig. 1. Physical system. 
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Fig. 2. Graph of the model of the physical system. 

tion px, u(x')=p(xtlx, u). The set T would be 
{(f(x,u),x,u): f (x ,u)= f x' dpx, u}. 

Otherwise, you can also replace the set T by a fuzzy 
set 3--, the so-called fuzzy graph of  the mapping that 
defines the system. This fuzzy graph is a kind of fuzzy 
model of the system. If we define this fuzzy graph by 
means of its level cuts, 

1 eET~, 
~-(e)=max{~Ir~(e)}, IT~(e)= 0 otherwise, 

(2) 

we can interpret that this kind of fuzzy model is a fam- 
ily of sets {T~}~ for which the assertions 

"ek is in T[ '  

have a "degree of truth" ~, where ~ ranges in an or- 
derable set of  values. Given a pair of fuzzy - or crisp, 
as a limiting case - observations ~r and q / o f  state and 
input to the system, we can obtain a fuzzy restriction 
over the values to which the state can evolve. This 
restriction can be obtained by applying 

= V (3) 
X~ U 

where A and V stand for a t-norm and a t-conorm, 
respectively. 

Many different methods for selecting the set ~- 
have been proposed. Most of the times, a parametric 
family {F0}0 is a priori chosen, and the identific- 
ation is guided to find a model 3b0 that minimizes 
the differences between model-based predictions of 
state and the observed values contained in the set E; cf. 
[1, 7, 12-14, 17]. 

Fig. 2). That is, the identification consists in relating 
the set of observations E with the mapping described 
by the set T. 

Besides, there are many well-known methods 
that perform this operation. For instance, you can 
guess that the observations e~ are outcomes of 
a stationary random process Ck. In that case, we 
should statistically infer the joint probability dis- 
tribution of  ~k, P(~k = (x',x, u)) = p(x',x, u) where 
( x ' , x , u ) E X x X × U .  Then, given a pair (x,u) 
we can obtain a conditional probability distribu- 

2. Deduction of a fuzzy model from numerical data 

We stated that the main differences between the 
behaviour of a physical system and any mathe- 
matical model of it are mainly due to two factors: 
observation noise and unmodelled inputs to the sys- 
tem. One easy, classical treatment for this last factor 
is to assume that some random, null-mean noise is 
being added to the original input (see Fig. 3) and, 
thus, the tuple (xk+l,xk, uk) becomes an instance of 
a random process. We will follow this treatment. Let 
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Fig. 3. Model of a system with unmodelled inputs. 

be this random process, and let us assume that ¢ is 
stationary. 

Under this framework, observe that the observa- 
tion error is the inability of  answering "yes" or "no" 
to the occurrence of  certain outcome of  this random 
process. This new uncertainty could be described by 
a new probability distribution, i.e. p(ele*), but we 
will generalize this treatment to a more general case, in 
which the observation error will be defined by means 
of  a confidence interval. For instance, i f  we sense the 
speed of  an object, and we obtain a sensor reading of  
50 kph, we could say "the true speed is a normal dis- 
tribution, whose mean is 50 and whose variance is a"  
as well as "the speed is 49-51 kph with a 99% confi- 
dence level". The latter case is more general, because 
we are allowing that p(e [ e*) is any distribution whose 
outcomes lie with high probability in the range 49-51.  
Our objective is to define a model which is not tuned 
to a specific probability distribution p(e[e*), but to 
a whole family of  probability distributions. 

3. Fuzzy model of a physical system 

We will show that this last model is a fuzzy model. 
To accomplish this, we first define a confidence inter- 
val like the one mentioned by means of  a set Z and 
a small number e, such that 

p(ek - e; ~ Z) <<. ~. (4) 

Observe that the same can be described by a conso- 
nant bel ief  function with basic probability numbers 

m(Z) = 1 - e  and m(X x X x U) = ~. It is well known 
that consonant belief  functions over discrete spaces 
are possibility measures, which can be described by 
normalized fuzzy sets. Then, each observation can be 
described by the fuzzy set 

= ~1  i f e - e ~ E Z ,  (5) pk(e) 
L e otherwise. 

Now, if  we replace every inexact measurement e~, in 
E by a fuzzy set Pk, we obtain a set {/21 . . . . .  Pn} which 
can be regarded as a sample from a fuzzy random 
variable ~( [5]. 

Lastly, let us define the operation 

eGZ= {e + z:zCZ} 

foranyeCX×X×U,  Z C X × X x U  (6) 

to simplify the notation. Observe that the fuzzy ran- 
dom variable ~ can be expressed in terms of  the fol- 
lowing family of  nested random sets: 

~ X x X x U  i f ~ <  e, 

~ = [. ~ ® Z otherwise. (7) 

Each one of  the non-trivial random sets can be related 
to a fuzzy set J - '  with a membership that equals its one 
point coverage function: ~--'(e) = p(e E ~ @ Z) [9]. 
This procedure is consistent with the probabilis- 
tic method, because when measurements are exact, 
Z = {0}, 3 - '  = p(~ = e) and the membership of  Y '  
reduces to the joint probability of  state, input and 
future state. 

Since J '  determines a fuzzy graph of  compatible 
values of  input, state and output of  the system, it is 
a fuzzy model o f  this system. We will not use directly 
this model, but a set 3-- 

Y- '(e)  
3 - (e )  = 

SUpz c x  x x  x v{Y- ' (z )}  

for all e E  X x X  x U (8) 

which is the set Y-' normalized. 

3.1. Fuzzy models derived from crisp partitions 

There are many practical reasons, mainly related 
to complexity and memory requirements of  computer 
implementations, which favour that the membership 
function of  9 -  can be described by a small number of  
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Fig. 4. Relationships between probabilistic, random-set-based and fuzzy-set-based modelling. 

numerical parameters. Most of the times, memberships way: 
are chosen triangular, trapezoidal or gaussian. Since 
one of these simple membership functions would not N 
be flexible enough to describe complex systems, 3- 
used to be built upon the composition of N fuzzy sets 
5]i, making i=1 

N 

y - = V  ~ .  
i=1 

(9) 

We will also follow this schema. To construct these 
kind of models, we will divide the identification into 
smaller problems, just by partitioning the set E into 
N disjoint sets Ei and then building separately N dif- 
ferent fuzzy models ~ / - -  p(e E ~i ~ Z ) ,  related to N 
different random processes ~i. 

To achieve this objective, we will build a classical 
partition A of E 

A = {gi}iE1, 

E,n .=¢fori j, I={1 ..... N} 
iEI 

(lO) 

for which all elements in every Ei are imprecise obser- 
vations of  the same random variable ¢i. Consequently, 
the sets Ei ~ Z can be regarded as samples of  random 
sets 

~i ={¢i  + z :  z EZ} (11) 

whose coverage functions will determine the 
fuzzy model associated to A in the following 

where 3].(e) = p( e E ~i ) 
SUPxxxxu{P(e E q~i)}" (12) 

Observe that this defines a family of fuzzy models 
and relates every member of this family of models to 
an classical partition of E. In fact, we will see that the 
selection of fuzzy model is linked to an hierarchical 
clustering problem. 

Once we have related every fuzzy model with a clas- 
sical partition, the identification will be solved when 
we select the partition related to the most appropriate 
model. A trivial method of finding it would consist 
in generating all possible partitions of E, testing the 
model related to each one of them and then choos- 
ing the best one. However, the number of partitions 
is too high and this solution has no practical interest. 
In fact, what we really need is a suboptimal algorithm 
that explores only a fraction of the models. 

The chosen algorithm can be briefly described 
as follows: First, we select the partition An= 

e* {{ i)}l<.i<~n, and name its associated model J/n. 
Second, we form all possible pairs of sets in the par- 
tition and merge them, so that (~) simpler models are 
built, each one of them including n - 1 sets. Third, 
we name the best of these models J /n- t  and then we 

n--2 repeat the process. After ~i=0 (nzi) iterations, the 
set of models {~'1 . . . . .  J/gn} will be obtained. Finally, 
we select the best of these models. 
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It lasts to define a procedure to select the best pair 
of sets that will be merged at each step. This will be 
done in the next subsection. 

3.2. Quality of  a model 

The merging of two sets E i always entails a de- 
crease in the complexity of the model, and quite 
often also a decrease in its precision. Any definition 
of the quality of a fuzzy model should pay attention 
to the effects of these two quite different magnitudes: 
degree of model's fitting to data, and complexity of 
the model. It is obvious that a good model should 
balance a low complexity with a high precision. But, 
how can we compare these values? That is, does 
a common unit exist in which complexity and pre- 
cision can be expressed? We think that the answer 
is affirmative: both magnitudes can be measured in 
bits. 

Let I(J[[A ) be the uncertainty involved in the struc- 
ture of the model ~[a and let I(E I JgA) be a measure 
of the deviation of the sample E around this model. 
The joint measure 

]O/C/A) + I(EIJ//A) = I(JP[A,E) (13) 

will then quantify the uncertainty of the description 
of the sample in the context of the model S//A. The 
terms I(J/IA), l(E]dgA) and I(JIA,E) are usually 
referred to in Probabilistic Information Theory as 
syntactic uncertainty, semantic uncertainty and 
description length, respectively. 

All considered models have a common structure, 
so its relative complexity depends only on their pa- 
rameter distribution. Since we are not certain about 
the credibility of the values that parameters can take 
on, and since we know that every ~/  depends on 
a given number of these parameters, the Bemouilli 
indifference principle is applicable and the syntac- 
tic uncertainty could be measured by means of the 
Hartley entropy. For a partition A of N sets, this 
entropy equals 

I(~/[/[A) = logN. (14) 

Regarding I(E [ ~4[A ), if data are unbiased, the more 
precise the model is the most specific it is. To measure 
the nonspecificity we can follow different ways. We 
will choose the method suggested by Klir [6]. This 

method is based on the mean of Hartley's entropies of 
a-cuts of the fuzzy set, i.e., 

/01 g(¢].)  = log #((Yi)~) dc~. (15) 

The mean number of bits needed to measure the 
nonspecificity of one of the fuzzy sets in the model 
is 

+ #(Ei) 
I(EIJIA) = ~ #(E) U(~/). (16) 

Consequently, the description length of the model we 
suggest is given by 

I(E, sga) 

N #(Ei) fl 
= logN + Z log #((J]i)~) dot (17) 

i=1 #(E) Jo 

and this function defines the quality of the fuzzy model 
related to partition A. 

It is worth remarking that in order to choose the 
populations Ei and Ej to be merged, we have to take 
into account that the merging involves an increase of 
semantic uncertainty which is proportional to 

A(~, ~ )  = #(e~ u Ej)U(~,uE,) 

- #(Ei)U(Jii) - # (E j )U(~) .  (18) 

Since the decrease of syntactic uncertainty does not 
depend on this choice, we will select populations Ei 
and Ej minimizing (18). 

It is also remarkable that estimating a fuzzy model 
from a sample of size n only requires to compute the 
function A(n - 1) 2 times, because determining ~// 
from ,//~,._ 1 only requires to recalculate i - 2 values of 
this last function. 

At last, notice that the function A can be regarded 
as a similarity measure, and therefore it is clear that 
the algorithm shown in Fig. 5 is an hierarchical single 
linkage clustering. It is easy to generalize this method 
by using different clustering algorithms with respect 
to this last similarity measure and we have conducted 
some tests in this respect (for instance, we compared 
it with the entropy minimization method NIHC [ 16]). 
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i+--n 
Ai = {{el) ,{e2)  . . . . .  {en}} 
Store I( ~tai, E) 
While i > 1 Do 

Find V, W E Ai 
such that A(~v ,  Y--w) = m i n { A ( ~ ,  3-B): A,B E Ai} 
Ai-1 = (Ai - {V, W}) U {V U W} 
Store I( Jtai, E) 
i+---i--1 

End Of While 
Show ~ / A b e s  t : I (...gAbest , E ) = mini << i <. n l (./gAi , E ) 

Fig. 5. Simplified algorithm of  the modelling procedure. 

There exists some problems in which the single link- 
age does not find the global minimum of the descrip- 
tion length, but a local minimum. We have observed 
that, in these cases, the obtained model comprises 
more regions than the best obtainable model. We think 
that this is not so severe a drawback of the single link- 
age algorithm as it could be if it were concerned with, 
for instance, pattern recognition, but, in any case, the 
work in this problem should continue. 

4. Formulation of  the method for gaussian processes 

The proposed method can deal with f in i t e  sets of 
values for state and input. This limitation does not 
limit too much the applicability of our method (all 
computer implementations of fuzzy models use finite 
precision numbers) but it is not difficult to generalize 
the algorithm to some continuous cases. In particular, 
from now on we will assume that the unknown inputs 
to the system are random and gaussian, and that the 
system is piecewise linear, so that it can be admitted 
that samples e;, are imprecise observations of Ng dif- 
ferent gaussian populations, Ng being unknown. This 
set of assumptions covers many practical situations. It 
is interesting to account that this particularization of 
our method leads to a result closely related to previous 
fuzzy leaming algorithms [2]. 

4.1. M e m b e r s h i p s  f r o m  numer ica l  data 

Let F be the distribution function of an unidimen- 
sional gaussian random variable, with mean 0 and 
standard deviation 1. Let ~ be another random vari- 
able, normal and multidimensional, whose covariance 
matrix is C and whose mean vector is c. 

C is symmetrical and positive definite, so there ex- 
ists an orthogonal matrix B such that 

C = BtVB (19) 

where V is a diagonal matrix, whose elements are the 
eigenvalues of C, 

v = • • . ( 2 0 )  

0 . . .  ~p2 

If we define 

C -  1/2 = B t V -  1/2B (21 ) 

and 

A = V-1 /2B (22) 

so that 

C - 1  = A t . A ( 2 3 )  

then we have that 

A(~ - c) ~ N((),I) (24) 

where I is the identity matrix. 
Let 

2 = inf{t: A ( e  - c)  E [ - t , t ]  q for all e E e ® Z}. 

(25) 

We suggest the random set-based model of the system 
is 

• = ~ ® {z: A ( z  - c) E [--2,2]q}. (26) 

If A(e - c ) =  (q  . . . . .  tq) t, then the associated cov- 
erage function will be given by 

p ( e  E O) = p ( A ( e  - ~) E [--2,2] q) 

= p ( A ( e  - c )  + A ( c  - ~) E [ -2 ,  2] q) 

= p(N(0 , I )  E [ - 2  + tl ,2 + t~] 

× . . .  × [ - -2  + tq, 2 + tq]) 

q 

= H ( F ( t i  + 2)  - F( t i  - 2)), (27) 
i=1 

where F is the distribution function of the standard 
normal distribution. 
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Fig. 6. Approximation factor for gaussian processes. 

Since the membership function of the fuzzy set J -  
associated with @ is 

p ( e  E @) 

Y(e)  = s u p ,  e x x x  xu{P(S E @)} 

for all e E X  x X  x U (28) 

then 

~--(e) = 
1 q 

(2F(2) - 1)q H ( F ( t i  + 4)  - F ( t i  - 4 ) )  
i=l 

(29) 

is our fuzzy model of the system. 
When the observation error is low with respect to 

the probabilistic uncertainty in the model, the obtained 
model is numerically very close to other one in which 
the observation error vanishes and the uncertainty due 
to unmodelled inputs was slightly higher. Let C* be 
the covariance matrix of a random process modelling 
this hypothetical system. 

Observe that there exists a value k(4) such that 

er r (4 )  = sup IF(e  + 4) - F ( e  - 4) 
eE~ 

- (2F(4) - 1)e-(1/2)k(~)e21 <0.05 (30) 

if 4 E [0, 2] (values of k(4) and maximum error of the 
approximation are represented in Fig. 6.) Then, 

~--(e) ,~ 
1 q 

( 2 F ( 4 ) -  1)q H ( 2 F ( 2 ) -  1)e-(1/2)k(2)t2" 
i=1 

(31) 

where 

q 

t~ = t ' t  = ( A ( e  - c ) ) t ( A ( e  - ¢)) 
i=1 

= (e - c ) t (A tA) (e  - c )  

= (e  - c ) t C - l ( e  - c),  (32) 

whence 

3-(e) ,~ e -(1/z)k(~)(e-dc-'(e-c). (33) 

Since the membership of the hypothetical observa- 
tion noise-free system would be 

~-*(e )  = e -(1/2)(e-c)t(C*)-'(e-c) (34) 

it follows that 

c = k ( 4 ) C *  (35) 

when 2 is low. 
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Fig. 7. Coverage functions. Left: high value of 2. Right: low value of 2. 

This result suggests a relationship between the un- 
known variance of the underlying random process and 
the known variance of the observations set E. This re- 
lationship has a key importance in our algorithm, be- 
cause it allows us to infer the value of the parameter C 
of  the random process that underlies the fuzzy model. 

Notice also that, for high values of  2, Y-(e) approx- 
imates to the membership of the crisp set 

{e: A(e - c) C [ -2 ,  2]q}. (36) 

In fact, the value 2 expresses the balance between ran- 
domness and fuzziness in the fuzzy random variable 
~e. Thus, if 2 = 0, the variable ~ is a nonfuzzy ran- 
dom one and it becomes a crisp (nonrandom) set as 
2 ~ co; see Fig. 7. 

The covariance C* can be estimated from the sam- 
ple {eT). However, C = k(2)C* and 2 depends on C, 
which is unknown. C will be estimated then by stating 
a sequence of values 

2i+1 = min{t: Ai(e - e)  E [ - t , t ]  q for all e E c • Z}, 

(37) 

where 

di+lAti+l ~-- k(2i+l ) ( C * ) - I  (38) 

and by using as starting conditions 

21 ---- 0, AI(A1) t = (C*)  -1.  (39)  

The process will be repeated until 2i+1 is close enough 
to 2 i. 

4.2. Semant ic  entropy 

The expression (15) is only applicable to discrete 
universes. We can consider as a natural extension for 
this method the replacement of the cardinality of  the 
a-cuts by their Lebesgue measure, so that Hartley en- 
tropy would be replaced by the upper limit of  the 
Boltzmann entropy of any probability distribution de- 
fined on the a-cut. 

The semantic entropy of the set 3-  can be computed 
as follows: 

/1 fo l V ( J ) =  log(lJ~, l) &x = log(lAl-llx,,[) dc~ 

- l log ]el  + e ( d l / ' , 2 ) ,  (40)  --ff 

where 

1 q 
I I  F(ei + 2) ~A#(e) ---- dV'(el . . . . .  e q ) -  (2F(2) - 1)q i=1 

- F ( e i  - 2). (41) 

Some values of  U(JV, 2) are collected in Fig. 8. 

4.3. Description length o f  a model  

Given a model 

N 

~#A = V J /  
i=1 

(42) 
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k(2) U(X) 

0.00 1.00 0.75q 
0.25 0.98 0.76q 
0.50 0.92 0.80q 
0.75 0.83 0.85q 
1.00 0.73 0.91q 
1.25 0.62 1.00q 
1.50 0.52 1.09q 
1.75 0.42 1.20q 
2.00 0.35 1.31q 
> 2 - q log(22) 

Fig. 8. Values of  k(2) and U(,A/'). 

with N = Ng sets, estimated from a partition A = {E i}  , 

its description length will be 

I(E,  J/A ) 
N 

= l o g N +  Z #(El) [1 i=~ # - - ~ 5 1 ° g l G l + u ( Y ' 2 i ) ) '  (43) 

where the matrix Ci can be inferred from Ei by apply- 
ing (35) and (37) - (39) .  

e9 = (0.867, 0.589), 

ell = ( -0 .83 ,  -0 .912) ,  

e13 = ( -  1.469, -- 1.129), 

e15 = ( -  1.106, -0 .829) ,  

el7 = ( -0 .763 ,  -0 .755) ,  

el9 = ( -  1.088, - 1.259), 

eel = (2.225, 2.474), 

e23 = (1.924, 2.118), 

e25 = (1.658, 2.362), 

e27 = (1.822, 1.583), 

e29 = (1.559, 1.679), 

elo = (1.476, 0.792), 

e12 = ( -  1.413, - 1.265), 

el4 = ( - 1 . 1 2 8 , - 1 . 1 7 9 ) ,  

el6 = ( -0 .509,  - 1.191), 

e18 = ( -  1.324, -0 .665) ,  

e2o = ( -0 .762 ,  - 1.28), 

e22 = (2.345, 1.916), 

e24 = (2.061, 1.874), 

e26 = (2.405, 2.334), 

e28 = (1.513, 1.596), 

e3o = (2.056, 1.533). 

The instrument employed to take the measurements 
guarantees that, 99% of  the times, real values of  the 
variables are in a circle with diameter 0.5 units, and 
centered in the inexact measurement. We wish to es- 
timate a fuzzy model o f  the system's  input-output 
transference relationship. 

It is remarkable that when there is no observation 
noise, the value of  the suggested description length 
differs by an additive constant from an equivalent ex- 
pression in which the semantic entropy was measured 
through Boltzmann's  entropy ofgaussian distributions 
fitting to subsets Ei. Thus, the proposed fuzzy mini- 
m u m  description length criterion reduces to the proba- 
bilistic one when all variables can be exactly observed. 

5. Examples 

5.1. Numerical  example 

The following input-output  samplings of  a physical 
system variables are available: 

el = (0.619,0.695), 

e3 = (1.276, 0.901), 

e5 = (0.704, 0.947), 

e7 = (1.472, 1.329), 

e2 = (1.392, 1.183), 

e4 = (0.764, 1.398), 

e6 = (0.885, 0.646), 

e8 = (0.607, 0.675), 

5.1.1. Solution 
We will consider that all tabulated values are out- 

comes of  a random two-dimensional gaussian process, 
measured with an imprecision characterized by means 
of  the set Z 

Z = {e: e t Z e  ~ 1 }, (44) 

where 

Z = (  160 O ) .  (45) 

I f  the variance of  the random process is C, 
{A(z - c): z E Z} is inside a cubic cell [ - 2 , 2 ]  2, so 
that 

2 = min{t: A(e - c) E [ - t ,  t] 2, e E Z}. (46) 

and since 

(A(e - c ) ) t W ( A ( e  - c))<~ 1 

for W = (A - 1 ) t Z A - I  (47) 
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t h e n  

2 = max{ x/-uii: W -1 = (uij)}. (48) 

If 2 < 2, the membership of the set J -  will be approx- 
imated by 

~--( e ) '~ e -0"Sk(2)et(C)-~ e ~ e -05e'(C*)- t  e, (49) 

where C* is the variance of the inexact sample. Other- 
wise, ~-- degenerates to the crisp set 

~-- = {e: A(e - c) E [-2,  2]2}. (50) 

The semantic uncertainty of the set J -  will be given 
by 

u(J-)--0.5 loglfl + u ( y , 2 )  (51) 

and C* = C  i f 2 > 2 .  

5.1.2. Numerical  results 
First, the model Jg30 is calculated. In this model, 

every region is estimated from one sample. We obtain 
that 

U ( ~ )  = - 1.39 (52) 

N. of  sets Description L. Semantic. U. Syntactic U. 

1 21.9483 21.9483 0 
2 6.80813 -13 .9863 20.7944 
3 16.3077 -16.6507 32.9584 
4 22.0352 -19.5536 41.5888 
5 27.418 -20.8651 48.2831 
6 29.6316 -24.1212 53.7528 
7 32.4765 -25.9008 58.3773 
8 34.1291 -28.2542 62.3832 
9 36.4016 -29.5152 65.9167 

10 37.8247 -31.2529 69.0776 
15 48.2461 -32.9954 81.2415 
20 52.1016 -37.7704 89.872 
25 60.2566 -36.3097 96.5663 
30 60.4471 -41.5888 102.036 

Fig. 10. Uncertainties of  the models. 

for all sets. The model reduces to 30 square-shaped 
crisp sets (see Fig. 9) centered on every sample. The 
description length of this model is given by 

30 

LD= Z 1.(-1.39) + 301og30= 102.04. 
i=1 

(53) 

In the following step, we examine how the semantic 
uncertainty increases as two sets in the partition are 
merged. For instance, when sets 1 and 2 are merged, 
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Fig. 11. Point estimates based on the suggested method. 

the fuzzy set Je,  ue2 has a nonspecificity 

U ( Y )  = 2.44 (54) 

and the increasing of syntactic uncertainty equals 

A1,2 =4.87 + 1.39 + 1.39 =7.64. (55) 

If the process is repeated for all pairs of sets, the 
most favourable result is achieved when sets 1 and 8 
are merged. The lowest gain of syntactic uncertainty 
is A],8 = 0.86. Then, the sets J-1 and ~--8 of the model 
J/30 are discarded and ~--],8 is added to form the 
model ~'29. The whole process is repeated until J[]  
is obtained. 

Syntactic entropy, semantic entropy and descrip- 
tion length of the successive models are tabulated in 
Fig. 10. The chosen model of the system is formed by 
two fuzzy sets, which are 

Yt(x, y) = exp (0.5 (x, 
( 0.33 y ) t  

\0 .29  \ 

and 

,Y--2(x, y)  

= exp (0"5(x' Y)t ( -0.020'09 -0.002 
0.05 

0.29 
0 .33)  (x 'y ) )  

(56) 

(x,y)). 
(57) 

Point estimates based on this model were plotted in 
Fig. 11. These values were obtained by assessing 
crisp values to the input variable, to get fuzzy restric- 
tions over the output space by applying (3). Then, 
the points with maximum membership for each of 
the obtained fuzzy restrictions were related to their 
associated crisp values. The so-formed triplets lie on 
a different plane (which is a linear model of the sys- 
tem) for every set ~-7~. Relating again these planes to 
the projections of their original fuzzy regions over the 
input space, we obtain a bank of Sugeno-type rules, 
whose output was solved in the usual way. 

5.2. Comparison with other methods 

Box-Jenkins gas furnace data set is part of a classi- 
cal problem which is widely used to test performances 
of system identification procedures. This set has been 
used to compare some fuzzy-set-based schemes [13]. 
The performance comparison is based on a point es- 
timate of the output of the system. In this case, this 
estimate was obtained as described in the preceding 
example. 

Assuming that this data set comes from several 
inexactly measured gaussian stationary processes, 
and after applying our method the results gathered 
in Fig. 12 were obtained. We only find a population, 
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