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Abstract A generalization of the singular spectral anal-

ysis (SSA) technique to ill-defined data is introduced in this

paper. The proposed algorithm achieves tight estimates of

the energy of irregular or aperiodic oscillations from

records of interval or fuzzy-valued signals. Fuzzy signals

are given a possibilistic interpretation as families of nested

confidence intervals. In this context, some types of

Supervisory Control And Data Analysis (SCADA) records,

where the minimum, mean and maximum values of the

signal between two scans are logged, are regarded as fuzzy

constrains of the values of the sampled signal. The gen-

eralized SSA of these records produces a set of interval-

valued or fuzzy coefficients, that bound the spectral

transform of the SCADA data. Furthermore, these bounds

are compared to the expected energy of AR(1) red noise,

and the irrelevant components are discarded. This com-

parison is accomplished using statistical tests for low

quality data, that are in turn consistent with the possibilistic

interpretation of a fuzzy signal mentioned before. Gen-

eralized SSA has been applied to solve a real world

problem, with SCADA data taken from 40 turbines in a

Spanish wind farm. It was found that certain oscillations in

the pressure at the hydraulic circuit of the tip brakes are

correlated to long term damages in the windmill gear,

showing that this new technique is useful as a failure

indicator in the predictive maintenance of windmills.

1 Introduction

The causes of the mechanical failures in windmill gears are

not fully understood. Many different types of breakage

risks have been studied, but the reasons why similar

windmills, placed in similar locations, have different

behaviors in the long term are not clear yet (Ramesh and

Jithesh 2008). Notwithstanding this, it is assumed that

frequent stoppage and starting of the windmill may result

in broken teeth in gear wheels and pinions, and thus an

anomalous frequency content of the tip brake pressure can

be related to future breakdowns. Therefore, the frequency

analysis of the tip brake pressure might be used for

detecting abnormal stresses in the gear and for anticipating

costly mechanical failures.

Braking produces a sudden descent in the hydraulic

pressure of the corresponding circuit, that quickly recovers

its steady value. In most cases, this pressure is routinely

monitored and logged by Supervisory Control And Data

Acquisition (SCADA) systems. However, braking pulses

are too fast for the operating scan intervals in most SCADA

systems, that average the signals over a period which is

normally much larger than the braking time. Since narrow

pulses are filtered out in this process, there is no enough

information in the records of the brake pressure for char-

acterizing the dynamics of the braking subsystem. This

hinders the use of this type of information for doing pre-

dictive maintenance, unless the sampling rate is increased

or a secondary sensory system is deployed that comple-

ments SCADA data (Martnez-Rego et al. 2011).

An exclusive use of the SCADA data allows for cost-

conscious diagnosis. However, increasing the sampling rate

is not normally feasible. The scan interval in SCADA

systems is determined as a compromise between the

amount of data that must be transferred and the sample rate
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needed for capturing the dynamic behavior of the signals.

In particular, windmill SCADA systems monitor in real

time the temperature, pressure, speed, voltage and current

at different points of the generators (Zaher et al. 2009).

There are some hundreds of signals for each windmill,

justifying a scan interval in the range of minutes. This is an

adequate period for temperatures, but such a rate is too

slow for monitoring electrical magnitudes or hydraulic

pressures in the brakes, for instance.

In practice, there is an intermediate solution that allows

for transmitting a useful part of the frequency contents of

the signal without lowering the sampling period. Some

SCADA systems do not only record the average value of

the signal between two scans, but also its minimum and

maximum values, as shown in the example in Fig. 1. This

figure displays a case where there is a fast oscillation

between two records. The oscillation has a negligible

influence in the average signal, but it is detected when the

minimum and the maximum are also transmitted. The

frequency contents of this compound signal is still

incomplete; we cannot know, for instance, how many

cycles the oscillation lasted, neither the frequency of this

oscillation; this triple logging allows perceiving low fre-

quencies in detail, while the highest frequencies are

imprecisely known. Nevertheless, it can be assumed that

this ill-defined signal still carries enough information for

certain kinds of diagnosis. Consequently, there is an

interest in extending the concept of ‘‘spectral transform’’ to

ill-defined signals, and in particular to those of the type

minimum–average–maximum. It is also relevant to learn

whether this extended spectral transform, when applied to

minimum–average–maximum SCADA records of the tip

brake pressure, can be successfully used for detecting

abnormal oscillations, and correlated with mechanical

failures in the gears of windmills.

The spectral technique chosen for this purpose is the

singular spectrum analysis (SSA) (Ghil 2002). SSA is

suitable for this problem because all the physical magni-

tudes in a windmill are correlated with the wind at the farm.

Wind-originated oscillations are likely to be irregular and

aperiodic, and SSA, which is mostly used in meteorology-

related applications (Allen 1992), is better suited to this task

than Fourier analysis, Gabor transform or wavelets, to name

some (Allen et al. 1996). SSA does not rely on a previously

defined basis of functions, as done for instance in the

mentioned Fourier or wavelet analysis, but produces its own

basis from the available data. As a consequence of this, SSA

can be used for characterizing nearly chaotic signals, as well

as it is useful for separating signal and noise when the

energy of the noise decays with the frequency, where

Fourier analysis is prone to detecting non-existing oscilla-

tions at low frequencies (Allen and Robertson 1996). Both

uses will be discussed in the next section.

Because of this and the other reasons mentioned before,

in this paper SSA will be extended to ill-defined data. In

this respect, certain possibilistic interpretations of fuzzy

values as nested families of confidence intervals (Couso

and Sánchez 2008a) are adequate for this problem, and

therefore fuzzy techniques for spectral analysis are suitable

too. However, while there are previous papers combining

fuzzy logic and SSA (Fang et al. 1993), the use of these

algorithms with vague data is scarce, and mostly centered

in Fourier (Butkiewicz 2006) and wavelet (Ho et al. 2001)

transforms. Up to our knowledge, the problem of extending

SSA to fuzzy data has not been addressed before.

The structure of this paper is as follows: in Sect. 2 SSA

for crisp data is introduced and its suitableness for finding

irregular oscillations and separating signal and noise in the

problem at hand are discussed. In Sect. 3, an extension of

SSA to fuzzy data is described, and illustrated with the help

of synthetical data. In Sect. 4, the case study which moti-

vated this paper, that of finding oscillations in the hydraulic

pressure of the tip brake, and correlating them with long-

term mechanical failures in the generator, is addressed. The

paper is finished with some concluding remarks in Sect. 5.

2 Singular spectrum analysis for characterizing

in frequency a mix of periodic signals and colored

noise

In the following, we will consider that the time series

fXðtÞ : t ¼ 1; . . .;Ng ð1Þ

is a sequence of samples of the variable of interest, whose

mean value is zero. Let us embed this series in a vector

space of dimension M, using lagged copies of the scalar

data,
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Fig. 1 SCADA records of a fast signal (drawn in grey). Values are

logged with a sample period of 100 s. The logged signal (solid black)

comprises the average values of the original series. The fast

oscillation about t = 150 is lost in this discretization, but some

information about it can be kept if the minimum and the maximum

(dotted black) are logged too
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XðtÞ ¼ ðXðtÞ;Xðt þ 1Þ; . . .;Xðt þM � 1ÞÞ ð2Þ

thus

fXðtÞ : t ¼ 1; . . .;N �M þ 1g: ð3Þ

SSA consists in calculating the principal directions of the

sequence of augmented vectors X(t) in phase space. In the

first place, following (Ghil 2002), the covariance matrix

C is estimated as

Cij ¼
1

N � ji� jj
XN�ji�jj

t¼1

XðtÞXðt þ ji� jjÞ ð4Þ

and the eigenelements fðkk; qkÞ : k ¼ 1; . . .;Mg of C are

obtained by solving

Cqk ¼ kkqk: ð5Þ

The eigenvalue kk equals the partial variance in the

direction qk: This is equivalent to form the matrix E whose

columns are the eigenvectors and the diagonal matrix K
whose elements are the eigenvalues kk in descending order:

E0CE ¼ K: ð6Þ

The eigenvectors qk of the lag covariance matrix C are also

called empirical orthogonal functions (EOFs). It has been

shown that pairs of EOFs in quadrature, when associated to

eigenvalues with the same or similar modulus, are the

nonlinear counterpart of a sine-cosine part in the standard

Fourier analysis of linear problems (Ghil 2002).

The principal components (PCs) Ak are obtained by

projecting the time series onto each EOF,

AkðtÞ ¼
XM

j¼1

Xðt � jþ 1ÞqkðjÞ: ð7Þ

In Fig. 2 a realistic function is displayed, that will be

used for illustrating the algorithms in this paper. A 50 Hz

sinusoidal signal was sampled at 100 KHz. Each 100

consecutive samples are averaged, giving an effective

sample rate of 1 KHz. Between samples 100 and 200, a

small signal in the 2nd harmonic is injected, and also

between samples 400 and 500, where both 2nd and 3rd

harmonics are present. Beginning in the 500th sample,

pulses of 10 ls appear at 180 Hz. All these signals are

corrupted by a strong AR(1) red noise, whose energy

decays with frequency; this particular type of noise was

chosen because it is more common in practice than the

white noise assumed in many engineering models, besides

it is much troublesome separating it from the signal. In

Fig. 3, the amplitudes of the eigenvalues kk of the

covariance matrix of this series are shown. The EOFs

associated to the first six eigenvalues are displayed in

Fig. 4, and the first six PCs are shown in Fig. 5. The

embedding size is M = 40.

2.1 SSA for characterizing noisy signals in frequency

It is clear from Fig. 5 that the relevance of the different

components in the spectral transform does not only depend

on the modulus of the corresponding eigenvalue. Observe
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Fig. 2 Realistic synthetic data. The sample period is of 100 KHz,

averaged in blocks of 100 samples. The time series is a combination

of 50 Hz signal and AR(1) red noise, with a chirp of the 2nd harmonic

between samples 100 and 200, another one of 2nd and 3rd harmonics

between samples 400 and 500, and a sequence of pulses of 10 ls at

180 Hz between samples 500 and 1,000. These pulses do not apperar

in the averaged signal (solid black) which mimics the appearance of

the SCADA records of the hydraulic pressure in the tip brake circuit

records in a windmill
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Fig. 3 SSA spectrum: logarithms of the ordered eigenvalues of the

covariance matrix of the series in Fig. 2
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that the first PC in Fig. 5 closely matches the drift of the

signal, that can be attributed to the frequency contents of

the colored noise and thus the coefficient associated to this

base function is not relevant for the diagnosis. Components

4 and 5 do not seem to include information relevant for the

frequency characterization of the signal either. On the

contrary, components 2 and 3 contain most of the 50 Hz

signal, while component 6 shows traces of the higher

harmonics, which we want to detect.

This separation between relevant and not relevant

components cannot be achieved on the basis of their

energies. The eigenvalues displayed in Fig. 3 reveal that

the first five EOFs contain most of the energy of the signal.

However, the information given by this selection would not

be much different than that arising when filtering out those

frequencies that do not match a peak in the power spectral

density (PSD) of the series, as shown in Fig. 6, where the

PSD was computed as the Fourier transform of the auto-

correlation of the signal

acfðsÞ ¼
XN

t¼s

XðtÞXðt � sÞ: ð8Þ

In order to compare the SSA spectrum with the PSD of the

signal, it is useful to match each EOF with a dominant

frequency, obtained by means of a reduced Fourier

transform (Vautard et al. 1992), i.e. the maximum w.r.t. f

of

eðqk; f Þ ¼
PM

j¼1

qkj cosð2pfjÞ
 !2

þ
PM

j¼1

qkj sinð2pfjÞ
 !2

0
@

1
A

1
2

:

ð9Þ
As we have mentioned, a pair of almost identical

eigenvalues associated to the same frequency signals a

periodic oscillation at that frequency (Vautard and Ghil

1989); in this example, this has been signaled by the circles

in Fig. 7. Observe also the similarities between this graph

and the PSD shown in Fig. 6.

Albeit similar, the information provided by the PSD is

not exactly the same as that provided by the SSA eigen-

values. On the one hand, the largest pairs of eigenvalues,

marked in Fig. 7, match the 1st harmonic (q2 and q3) and

the higher order chirps (q6 and q7; q9 and q10), but these

last two groups are much more noticeable in the SSA

transform than they were in the PSD (Fig. 6). On the other

hand, the component with the highest energy (q1) appears

isolated, thus we know it is a trend and not an oscillation,

something that we cannot tell from Fig. 6.
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Fig. 4 SSA spectrum: empirical orthogonal functions associated to the six largest eigenvalues of the example problem described in Sect. 2
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If a procedure for separating a group E of relevant EOFs

was available, then a filtered series could be reconstructed

by combining the PCs associated to the EOFs in E; as

follows (Vautard et al. 1992):

REðtÞ ¼
1

Mt

X

k2E

XUt

j¼Lt

Akðt � jþ 1ÞqkðjÞ: ð10Þ

The values of Mt, Lt and Ut are
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Fig. 5 SSA spectrum: principal components associated to the six largest eigenvalues of the example problem described in Sect. 2

0 100 200 300 400 500

0
1

2
3

4

freq

lo
g(

en
er

gy
)

Fig. 6 Power spectral density of the example function, showing

spikes at 1 and 50 Hz, and also small peaks at 100 and 150 Hz
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ðMt;Lt;UtÞ ¼

ðt; 1; tÞ 1� t�M � 1;
ðM; 1;MÞ; M� t�N �M þ 1;
ðN � t þ 1;
t � N þM;MÞ; N �M þ 1� t�N:

8
>><

>>:

ð11Þ

In Fig. 8, the results of this reconstruction, applied to the

subset of EOFs marked with circles in Fig. 7, is displayed.

Observe that the original signal was recovered with a

fidelity that cannot be obtained with standard filtering

techniques, and this proofs that the information in an small

subset of six EOFs is enough for summarizing the prop-

erties of the signal.

In the next subsection we will describe a procedure for

selecting a subset of EOFs that are statistically relevant for

the problem, according to certain hypotheses about the

properties of the noise.

2.1.1 Determining the statistically relevant components

of the SSA transform

For determining whether a given eigenvalue in the SSA is

relevant in a reconstruction of the signal, we will use sta-

tistical tests. These tests will determine whether the energy

of an isolated component is compatible or not with pure

AR red noise.

Let us assume a first order model, thus our null

hypothesis is that the signal is pure AR(1) red noise,

XðtÞ ¼ a1½Xðt � 1Þ � X0� þ rnðtÞ þ X0; ð12Þ

where n(t) is Gaussian-distributed white noise with zero

mean and unit variance.

The first step consists in estimating the parameters

X̂0; r̂ and â1 from the time series X(t), using a maximum

likelihood criterion (Akaike 1969). In addition to this,

N � S independent realizations of a Gaussian distributed

random variable, also with zero mean and unit variance,

are drawn:

fnsðtÞ; s ¼ 1; . . .; S; t ¼ 1; . . .;Ng: ð13Þ

On the basis of these calculations, a list comprising S

surrogate noise series is generated as follows:

X̂sðtÞ ¼ â1½X̂sðt � 1Þ � X̂0� þ r̂nsðtÞ þ X̂0 if t [ 2

â1½X̂ð1Þ � X̂0� þ r̂nsð1Þ þ X̂0 if t ¼ 1

�

ð14Þ

A covariance matrix Cs is evaluated then for each of the Xs

Ĉs
ij ¼

1

N � ji� jj
XN�ji�jj

t¼1

X̂sðtÞX̂sðt þ ji� jjÞ: ð15Þ

These matrices are projected onto the same basis E of the

original data (Eq. 6), defining in turn S approximately

diagonal matrices K̂s;

K̂s ¼ E0ĈsE; s ¼ 1; . . .; S: ð16Þ

Let us group the diagonal elements of these matrices K̂s

into M sets

Lk ¼ fk̂s
kgs¼1;...;S: ð17Þ

Each of these sets contains S independent realizations of an

estimator of kk (assumming that the null hypothesis is true).

At this point, a confidence interval for each of the M

eigenvalues kk; k ¼ 1; . . .;M; can be produced by bootstrap

estimation. It is remarked that, in this paper, a simple

percentile interval will be used, as bias corrected and

accelerated estimators such as BCa (Efron and Tibshirani

1993) do not alter the selection of EOFs noticeably, how-

ever the numerical procedure would not be substantially

altered if a different estimator is chosen. Therefore, the

1 - 2a percentile interval is defined by the interval Lka that

spans the values between the a and 1 - a percentiles of the

set Lk defined in Eq. 17.

Lastly, the associated statistical test, for a level ð1�
2aÞM; consists in rejecting that the series is pure noise

when some of the kk are not in the mentioned confidence

intervals La. If the null hypothesis is rejected, the set E of

EOFs used for separating signal and noise comprise all the

columns qk of the matrix E whose eigenvalues kk are not

between the a and 1 - a percentiles of the bootstrap dis-

tribution of fk̂s
k; s ¼ 1; . . .; Sg:
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Fig. 8 Upper part synthetic SCADA data with noise. Center SSA-

based filter. Lower part synthetic noise-free data, showing the quality

of the reconstruction
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In Fig. 9, the confidence intervals arising from the

example problem ((1 - 2a)40 = 0.95) have been plotted in

grey, along with the eigenvalues kk of the series. Observe

that the significant EOFs are the pairs ðq2; q3Þ; ðq6; q7Þ and

ðq9; q10Þ; as expected, along with the isolated components

q8; q11; which can be discarded, since they are not asso-

ciated to pairs of conjugated EOFs.

Observe also that the spikes displayed in Fig. 2 are

undetected in the spectral transform, since we have not yet

included the information about the maximum and the

minimum and these short pulses do not have enough

energy for appearing in the averaged signal. The general-

ization of SSA to fuzzy signals, able to exploit the

imprecise frequency contents in min–avg–max signals, will

be introduced in the next section.

3 SSA for fuzzy-valued series

Consider that the elements of the time series are not

accurately perceived but all the information about the value

of X(t) is given by a nested family of confidence intervals,

f½Xl
aðtÞ;Xu

aðtÞ�ga2A ð18Þ

where

a1� a2 ) ½Xl
a1
ðtÞ;Xu

a1
ðtÞ� � ½Xl

a2
ðtÞ;Xu

a2
ðtÞ�

for all a1; a2 2 A;
ð19Þ

and

PðXðtÞ 2 ½Xl
aðtÞ;Xu

aðtÞ�Þ � 1� a for all t ¼ 1; . . .;N:

ð20Þ

Let the possibilistic representation of this information

(Couso and Sánchez 2008a) be the fuzzy-valued time series

f eXðtÞ : t ¼ 1; . . .;Ng; ð21Þ

where

eXðtÞðxÞ ¼ supfa 2 A j x 2 ½Xl
aðtÞ;Xu

aðtÞ�g: ð22Þ

Lastly, let the degree of compatibility between a crisp

series fSðtÞ : t ¼ 1; . . .;Ng and the fuzzy series f eXðtÞg be

defined as

lXðSÞ ¼ min
t
eXðtÞðSðtÞÞ: ð23Þ

C(S) is the lag covariance matrix of the series S:

CðSÞij ¼
1

N � ji� jj
XN�ji�jj

t¼1

SðtÞSðt þ ji� jjÞ: ð24Þ

With the help of the preceding definitions, it is proposed

that the extension to fuzzy data of the SSA technique is a

numerical procedure that inputs a fuzzy times series eXðtÞ
and outputs two results:

1. An orthonormal basis

ðq1; . . .; qMÞ: ð25Þ

2. A vector of fuzzy values

ðek1; . . .; ekMÞ: ð26Þ

These vectors fulfill the following properties:

– The set comprising all the products between the covari-

ance matrices of the series that are compatible with eX ;
and the elements of the mentioned orthonormal basis, is

contained in the set defined by the products of the fuzzy

eigenvalues and the same elements of the basis,
Z

CðSÞqj

ðlXðSÞ j CðSÞqjÞ � ekj 	 qj; j ¼ 1; . . .;M:

ð27Þ

where

eA 	 ðv1; . . .; vmÞ ¼ ð eA 	 v1; . . .; eA 	 vMÞ ð28Þ

and

ð eA 	 kÞðxÞ ¼
eAðx=kÞ k 6¼ 0

0 else:

�
ð29Þ

– The fuzzy sets ekj are the most specific sets fulfilling

Eq. 27. The nonspecificity at level a is measured by the
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0 100 200 300 400 500

-2
0

2
4

6
8

rho(k)

la
m

bd
a(

k)

1

2

3

4

5

6

7

8

9

10

11

12
13
14

1516
1718

19 20
21
22 2324 2526

272829
30
31 323334 35363738 3940

Significant components

Fig. 9 SSA and Monte-Carlo generated confidence intervals for

AR(1) red noise

Singular spectral analysis of ill-known signals and its application

123



nonspecðaÞ ¼
YM

j¼1

ðsup½ekj�a � inf½ekj�aÞ; ð30Þ

thus the sets ekj have to chosen so that nonspec (a) is

minimized for all a 2 A:

The elements qk of the orthogonal basis are therefore

approximations to the EOFs of the unknown lag covariance

matrix C(X), and the sets ekj are fuzzy restrictions of the

eigenvalues of the same matrix. Consequently, the princi-

pal components (PCs) are fuzzy time series eAk; obtained by

projecting the time series onto each EOF,

eAkðtÞ ¼a
M

j¼1

eXðt � jþ 1Þ 	 qkðjÞ ð31Þ

where

ð eA 
 eBÞðxÞ ¼ supfminð eAðaÞ; eBðbÞÞ : aþ b ¼ xg: ð32Þ

Observe also that the fuzzy extension of the SSA here

proposed reduces itself to the crisp version if the elements

of eXðtÞ are singletons.

In the next subsections, we will describe two different

numerical procedures for estimating these approximations

to the eigenvalues and eigenvectors of ill-defined time

series. The first procedure is based on the definition of a

fuzzy-valued lag covariance matrix, and the second one on

preprocessing the series with a Karhunen–Loewe transform

(Rao and Yip 2001).

3.1 Fuzzy lag covariance matrix

A simple approach to solve this problem consists in

extending Vautard and Ghil’s definition (1989) by means

of fuzzy arithmetic operators, and define a fuzzy-valued lag

covariance matrix,

eCij ¼
1

N � ji� jj a
N�ji�jj

t¼1

eXðtÞ 	 eXðt þ ji� jjÞ ð33Þ

where the fuzzy addition has been defined before, and

ð eA 	 eBÞðxÞ ¼ supfminð eAðaÞ; eBðbÞÞ : ab ¼ xg: ð34Þ

For diagonalizing this fuzzy matrix, it will be assumed that

the EOFs of the unknown time series are comparable to

those of the crisp time series whose degree of compatibility

with eX is the highest. In other words, let

S�ðtÞ ¼ arg max
x
eXðtÞðxÞ ð35Þ

be the crisp series formed by the modal points of the fuzzy

time series eX ; and let us admit in the first place that

CðXÞq ¼ kq) CðS�Þq � gq ð36Þ

for suitable real numbers kðqÞ and g(q). Let E�S be the

matrix whose columns are the eigenvectors of S*. For

computing the fuzzy bounds of the eigenvalues, the

proposed approximation is:

ðek1; . . .; ekMÞ � diagðE0S� eCES� Þ; ð37Þ

where the product between matrices with fuzzy terms is

understood as a fuzzy arithmetic-based extension of the

matrix product.

Observe that this technique can be regarded as a general-

ization of the method for obtaining spectrum of the surrogate

series, seen in the preceding section. It is remarked that the

success of this procedure depends on the elements eX of the

fuzzy time series being specific enough for Eq. 36 being

admissible. Otherwise the calculations do not produce specific

enough results for many practical purposes. Following with

the example time series described in the preceding section,

this problem will be shown later in this paper, in the left part of

Fig. 12, where the computations defined in this section have

been applied to a fuzzy series where the support of their terms

is defined by the minimum and maximum of each group of

samples, and whose modal points are the average values of the

data (see a detail of this series in Fig. 10).

3.2 Karhunen–Loewe transform, maximal specificity

of the fuzzy eigenvalues

The second procedure is computationally harder than the

preceding one, but narrower bands for the eigenvalues can be

estimated than those obtained by the fuzzy covariance matrix
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Fig. 10 Time Series. Sample period = 100 KHz, minimum, maxi-

mum and average of the blocks shown in Fig. 2. Detail of samples

between 50,000 and 60,000. The pulses can only be perceived in the

minimum part
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based method. The algorithm that will be described in this

section is based on a transform of the augmented series, so

that its covariance matrix is approximately diagonal.

Let S be the augmentation of the selection S,

SðtÞ ¼ ðSðtÞ; Sðt þ 1Þ; . . .; Sðt þM � 1ÞÞ; ð38Þ

and let E(S) be an orthogonal matrix and KðSÞ a diagonal

matrix, such that

CðSÞ ¼ E0ðSÞ  KðSÞ  EðSÞ ð39Þ

for all S, and let the Karhunen–Loewe (KH) transform of S

be (Rao and Yip 2001)

ZðS; tÞ ¼ EðSÞ  KðSÞ�
1
2  SðtÞ; ð40Þ

thus the sample covariance of Z is the identity matrix.

Lastly, let the augmented fuzzy time series eXðtÞ be defined

eXðtÞ ¼ ð eXðtÞ; eXðt þ 1Þ; . . .; eXðt þM � 1ÞÞ ð41Þ

with

feXðtÞ : t ¼ 1; . . .;N �M þ 1g ð42Þ

and the following transform:

eZðS; tÞ ¼ EðSÞ  KðSÞ�
1
2 	 eXðtÞ; ð43Þ

where the product between a crisp matrix A and a fuzzy

vector eV ¼ ð eV1; . . .; eVMÞ is a fuzzy subset of RM whose

membership function is

½A	 eV �ðVÞ ¼ maxfminf eV1ðv1Þ; . . .; eVMðvMÞg :
ðv1; . . .; vMÞ 2 RM; V ¼ A � ðv1; . . .; vMÞ0g:

ð44Þ

Observe that the matrix operation EðSÞ  KðSÞ�
1
2 is a

rotation followed by a scaling. Each a-cut of the product

EðSÞ  KðSÞ�
1
2 	 eXðtÞ can be efficiently computed by

applying these rotation and scaling operators to the vertices

of the same a-cut of eXðtÞ; the result being defined as the

convex hull of the transformed vertexes.

The lag covariance matrix of Z(S, t) will be the identity

matrix, and the fuzzy extension (seen in the preceding

section) of Vautard and Ghil’s definition of the covariance

of eZðS; tÞ; will be nearly diagonal. This allows for a more

efficient numerical approximation of the covariance of the

fuzzy time series, where the fuzzy multiplication is avoided

in favor of the square operator. Let eCjjðeZðSÞÞ; j ¼ 1. . .;M

be the jth term of the diagonal of the covariance of eZðS; tÞ;
assuming that this matrix is diagonal, the definition in

Eq. 33 can be approximated by

eCjjðeZðSÞÞ �
1

N �M þ 1
a

N�Mþ1

t¼1

ProjjðeZðS; tÞÞ
� �2

ð45Þ

where the projection and square operators are defined as

follows:

ðProjj
eZÞðuÞ ¼ maxfeZðxÞ j x 2 RM; u ¼ xjg ð46Þ

ð eA2ÞðxÞ ¼ maxf eAðaÞ j x ¼ a2g ð47Þ

thus

ðek1ðSÞ; . . .; ekMðSÞÞ ¼ KðSÞ 	 ð eC1ðeZðSÞÞ; . . .; eCMðeZðSÞÞÞ0:
ð48Þ

The requisite that the nonspecificity of the fuzzy eigen-

values is minimized is achieved by finding the crisp time

series S, lX(S) [ 0, such that the value defined in Eq. 30 is

minimized for each value of a. The optimization algorithm

used for finding this series will be detailed later.

3.2.1 Graphical example

In Fig. 11, there is a graphical explanation of the steps

taken for the computation of the nonspecificity of a fuzzy

time series, given the eigenvectors matrix. For an easier

interpretation of the figures, an embedding M = 2 has

chosen, thus the a-cuts of the elements of the augmented

series eXðtÞ are rectangles. For making a simpler repre-

sentation, only one of these cuts is displayed.

The upper left part of the figure shows the terms of the

augmented series (rectangle shaped cuts, are mentioned).

In the first place, the covariance matrix of the centerpoints

of these terms is diagonalized. The directions of its

eigenvectors are represented by the black perpendicular

axis in this upper left part. It is remarked that the algorithm

proposed in this paper will ultimately produce a different

set of eigenvectors for this problem; the directions of these

last eigenvectors are shown by the red axes.

If the eigenvectors of the ill-defined series were those

obtained by diagonalization of the covariance of the cen-

terpoints, then the result of applying the KH transform to

the imprecise data would be the graph shown in the upper

center part, where each rectangle is transformed into a

rhomboid (see Eq. 44). For obtaining the a-cut of the

approximately diagonal fuzzy covariance of this data

(Eq. 45), the interval-valued variances of the projections of

these rhomboids are computed. This amounts to enclosing

each rhomboid in a rectangle (upper part, right) and com-

puting the pair or variances of the sets of the least favorable

corners (the most distant points to the origin, as shown in

the lower left part of the same figure) and the nearest points

to the origin (not marked in the figure). These interval-

valued variances are computed as follows:

r2
j ¼

1

N
a

N

t¼1

fx2 : x 2 projj
eZag ð49Þ

(see also Eq. 45) and the covariance matrix of the

transformed augmented series is approximated by the

diagonal matrix CðeZÞ; where
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½CjðeZÞ�a ¼ r2
j : ð50Þ

In the lower, center part of the same figure the KH

transform with respect to the optimal selection (those

eigenvectors for which the specificity of the fuzzy

eigenvalues is maximum) is plotted, which in this case

amounts to a clock-counterwise rotation of the eigenvectors

of the centerpoints (upper left part, axis colored in red, as

mentioned before) so that the romboids in the KH transform

of the data are aligned with the vertical axis, therefore the

projection on the vertical axis is shorter, and the increase in

the horizontal projection is balanced by the vertical

reduction, making for an higher specificity, implicit in the

lower, right part of the figure.

3.2.2 Numerical search of the eigenvectors maximizing

the specificity

The method described in this section inputs an orthonormal

matrix E and a fuzzy time series eX ; and outputs both a set

of fuzzy eigenvalues ekj and the nonspecificity nonspecðaÞ
of each a-cut. The proposed extension of SSA to fuzzy data

requires determining a matrix E* for which nonspecðaÞ is

minimum for all a, as mentioned.

E* is not an arbitrary orthogonal matrix, but it must be the

eigenvector matrix of a crisp series S* fulfilling lX(S*) [ 0.

Therefore, in this paper the optimization is intended to find a

crisp series, contained in the support of eX ; such that the vector

of nonspecificities for all the considered values of a is not

worse than that of a different series. Multicriteria Genetic

algorithms are well suited for this task, and therefore the well-

known NSGA-II algorithm (Deb et al. 2002) was chosen. The

decisions taken are summarized in the list that follows:

1. Coding: Each individual represents a time series S(t)

with N 0 terms, where N 0 �N: Real coding is used,

where the allelles bt; t ¼ 1; . . .;N 0; are real numbers

between 0 and 1, and

SðtÞ ¼ min suppð eXðtÞÞ þ btðmax suppð eXðtÞÞ
�min suppð eXðtÞÞÞ ð51Þ

2. Genetic operators: Standard arithmetic crossover and

mutation (Michaelewicz 1994).

3. Fitness function: A vector comprising the list of the

values ‘‘nonspecðaÞ’’, a 2 A obtained when the eigen-

vector matrix that diagonalizes the lag covariance matrix

of the series S which is represented by the individual is

used. The dominance relation between fitness vectors is

as follows:
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Fig. 11 Steps in the determination of the eigenvectors producing the lowest nonspecificity
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fgaga2A � fcaga2A () ga� ca for all a 2 A;

and ga�\ca� for some a� 2 A

ð52Þ

3.3 Determining the statistically relevant components

of the fuzzy SSA transform

The bootstrap tests defined in Sect. 2.1.1 are now extended to

imprecise data. The null hypothesis is the same as before: the

signal is pure AR(1) red noise (see Eq. 12) and their param-

eters X̂0; r̂ and â1 are estimated from the modal points of the

fuzzy time series eXðtÞ:Again, S surrogate series are generated

and a confidence interval for each of the M eigenvalueskk; k ¼
1; . . .;M; is produced by bootstrap estimation.

The statistical test associated to these confidence inter-

vals has to take into account that the values kk are not

precisely known, but they are perceived through the fuzzy

estimations ekk described in the preceding section. There-

fore, an statistical test for low quality data is needed

(Couso and Sánchez 2011a, b).

Recall that Lkb is the interval spanning the values between

the b and 1 - b percentiles of the set Lk defined in Eq. 17.

For a given a-cut and a level (1 - 2b)M, it is not rejected that

the series is pure noise if the a-cuts of all the ekk are com-

pletely contained in the mentioned confidence intervals, i.e.

½ekk�a � Lkb for all k: ð53Þ

Otherwise, the null hypothesis is rejected if

½ekk�a \ Lkb ¼ ; for some k; ð54Þ

and the test is not conclusive if neither Eqs. 53 or 53 are

met. This can also be expressed by means of a fuzzy

p-value (Couso and Sánchez 2008b; Couso and Sánchez

2011b; Denœux et al. 2005); consider that the null

hypothesis is rejected if the p-value is lower than a given

bound, and this p-value is a fuzzy set whose a-cut is an

interval [b*, b*] where

b� ¼ supfb j ½ekk�a � Lkb for all kg; ð55Þ

b� ¼ supfb j ½ekk�a \ Lkb 6¼ ; for all kg: ð56Þ

If the null hypothesis is rejected, or the test is

inconclusive, the most conservative set E of EOFs used

for separating signal and noise comprise all the columns qk

of the matrix E whose eigenvalues ekk fulfill

suppðekkÞ 6� Lkb: ð57Þ

In turn, for evaluating the criterion ‘‘similar amplitudes

at the same frequency’’, used for detecting oscillations, the

set of possible distances between two fuzzy eigenvalues ekk

and ekr is the fuzzy set

dðekk; ekrÞðtÞ ¼ maxfminðekkðkÞ; ekrðlÞÞ : dðk; lÞ ¼ tg
ð58Þ

and in the particular case where the supports of these sets

are considered, then (a) we discard that two amplitudes are

similar if the minimum of the preceding set is higher than a

given bound, (b) we assume that they are the same if the

maximum is smaller than the bound and (c) we cannot

decide otherwise.

Summarizing, the outline of the whole procedure is as

follows:

1. Estimate a set of values for the noise parameters which

is compatible with the modal points of the fuzzy data.

2. Generate N surrogate time series according to these

different noise parameters.

3. Initialize M set-valued counters.

4. Determine the confidence intervals Lkb, with (1 -

2b)M = 0.95.

5. Determine whether the spectrum of the experimental

data is contained, intersects with, or has disjoint sets of

values for each frequency under study. Add 0; f0; 1
Ng or

1
N to the kth counter, respectively.

6. Go to step 4 and repeat N times.

7. If the product of the maximum values of the counters

is lower than 0.05, reject the hypothesis (i.e. assume

that the time series is not noise). If the product of the

minimum values of all the counters is higher than 0.05,

do not reject that the signal is AR noise. In other cases,

the test is not decisive.

8. Find the EOFs whose counters are different than zero

and reconstruct the signal with this information.

3.4 Realistic example

The SSA spectrum plotted in Fig. 9 for a crisp time series

is easily generalized to a fuzzy time series. In the proposed

approach, the EOFs are crisp, but the eigenvalues are

fuzzy, thus each point in these figures can be replaced by

a vertical bar spanning the range of the corresponding

component.

According to this, the SSA spectrum of the ill-defined

signal plotted in Fig. 2 is shown in Fig. 12. In the left part

of this figure, the fuzzy lag-covariance matrix-based

approximation was used. In the right part, the Karhunen–

Loewe approximation, with genetic reduction of the

nonspecificity, was applied instead. Observe that the

uncertainty of the eigenvalues is noticeably reduced in this

last approach, with respect to the first approximation. There

is still information enough about the oscillations (as

marked by the circles), and the pulse of width 20 ls at

180 Hz appears for the first time (marked by the arrow).
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Observe also that the imprecision grows with the fre-

quency, as commented in the introduction, and there are

also aliases of the 180 Hz component. In short, fuzzy SSA

has been able to detect traces of signals located over the

Nyquist frequency of the equivalent sample rate, as the

mentioned pulse of width 20 ls.

In the following section, we show with the help of a

practical application how this procedure can be used for

characterizing the frequency content of data given by

triplets (minimum, average, maximum), as happens with

the practical problem that inspired this transform.

4 Case study

Assessing the breakdown risks of windmills from SCADA

data is a cost effective measure, nonetheless limited by the

low dynamic quality of the available data. In the case at

hand, we are interested in discovering evidence that helps

to predict mechanical failures (bearings and gear box

damage). We analyzed data from 40 fixed pitch windmills,

collected between the years 2006 and 2009.

The interval rate of the SCADA data of the studied wind

farm is of 10 min, and minimum, average and maximum of

different electrical variables, rotor speed, temperatures and

hydraulic pressures are logged. In this study, we are

interested in the hydraulic pressure of the tip brake circuit

(see Fig. 13). This signal is relevant to our diagnostic

because frequent stoppage and starting of the windmill may

result in broken teeth in gear wheels and pinions (Ramesh

and Jithesh 2008), and thus an anomalous frequency con-

tent of the tip brake pressure might be related to future

breakdowns. Having said that, braking produces a sudden

descent in the hydraulic pressure, that quickly recovers its

steady value. Narrow pulses are filtered out when 10 min

of data are averaged, and therefore there is not information

enough in the average pressure for characterizing the tip

brake dynamics. It is needed to complement the data with

the ‘‘minimum’’ signal, which detects whether there has

been at least one brake action in the last scan interval. This

fact justify the use of SSA for imprecise data in this

context.

In Fig. 14 we have displayed the bounds of the eigen-

values found with interval SSA, as proposed in this paper,

applied to the SCADA data of the brake pressure, with

respect to the prevalent frequency of the EOFs. These
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Fig. 12 Fuzzy-SSA based in the use of fuzzy covariance matrices (left part) and the iterative reduction of the nonspecificity (right part), applied

to the same fuzzy time series

Fig. 13 Upper part Tip brake. Lower part Teeth of the Intermediate

pinion broken as a result of frequent stoppage and starting of the

windmill [images taken from (Stiesdal 1999) (Ramesh and Jithesh

2008)]
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signals were captured in 2006, shortly after the windmills

were first put into service. The left part corresponds to a

windmill that has not suffered relevant mechanical problems

to date. The center signal was taken in a windmill whose

gear box had to be replaced in 2009; observe that there is a

noticeable increase of the energy at mid-frequencies.

In order to determine whether there is a significant

correlation between the SSA spectrum and the breakdowns

of the generators, we have used the statistical test men-

tioned in the preceding section for deciding whether the

energy at the band of interest is higher or not than that of

AR(1) red noise. We have generated 100 surrogate series

for each generator, with parameters estimated from the

average signals. Periods comprising 144 samples of con-

tinuous coupling of the generator and the electrical network

(1 day) were evaluated, and the size of the augmented data

is M = 24 (4 h). The graph corresponding to the the sec-

ond windmill is displayed in the right part of Fig. 14. The

results of the test have been used to design a simple clas-

sifier: if the energy between 0.00025 and 0.0004 Hz is

significantly higher than that of AR(1) noise (with

parameters estimated from the average data), then the

windmill is marked as ‘‘risk of failure’’, otherwise the

windmill is marked as ‘‘normal’’. The confusion matrix of

the resulting classifier is in Table 1; observe that the whole

dataset has been used to compute the confusion matrix, as

no parameters were learned.

The results suggest that some of the generators in the

farm there might have undergone damage in 2006 when

first put into service, perhaps because of wind turbulences

or an incorrect functioning of the tip brakes; the gear boxes

of the affected generators failed three years later. However,

the set of data is too small and new studies are needed for

further supporting this hypothesis.

5 Concluding remarks

When the interval rate of SCADA data is large, the

frequency contents of the signal is limited and quick

changes cannot be detected. Adding the minimum and

the maximum values of the variable during each interval

is an alternative to increasing the sample rate, but con-

ventional spectral techniques cannot exploit this triple

signal.

In this paper an extension of SSA to fuzzy-valued time

series was proposed, that allows to recover an imprecise

spectrum from compound signals, as well as others that can

be given a possibilistic interpretation as a nested family of

confidence intervals. This spectrum can be compared with

those of different kinds of noise, and the relevant compo-

nents of the signal isolated by means of statistical tests for

imprecise data. These significant components can in turn be

used for improving the signal to noise ratio, or for

describing the series, as done in the practical application

that motivated this paper, where different sequences of

pulses in the tip brake pressure of a windmill have been

characterized and then classified, allowing the diagnosis of

the gearbox by examining the frequency spectrum of a

sequence of braking pulses, in a case where the length of

these pulses was shorter than the resolution of the recorded

data.

0e+00 2e-04 4e-04 6e-04 8e-04

-4
-2

0
2

4
6

la
m

bd
a(

k)
1

2

3
4

5

6

7
8

9
10

11

12

1314
15

16

17 18
19 20

21

22
23

24

25

26

27
28

29

30

31
32

33
34

35

36

3738
39

40

0e+00 2e-04 4e-04 6e-04 8e-04

-6
-4

-2
0

2
4

6

rho(k)rho(k)

la
m

bd
a(

k)

1

2

3

4

5678
91011

12
13

14 1516 17
18 19 20

21 22

23
24

25

26

27

28

29303132
333435

36
37

38 3940

0e+00 2e-04 4e-04 6e-04 8e-04

-1
0

-5
0

5
10

rho(k)

la
m

bd
a(

k)

1

2

3
4

5678
91011

12
13

14 1516 1718 19 20

21 22

23 24

25

26

27
28

29303132
333435

36
37

38 3940

Fig. 14 SSA of tip brake pressure data in 2006 for windmills that

were without mechanical problems between 2006 and 2009 (left) and

for one whose gear box had to be replaced in 2009 (center). Right

surrogate AR(1) data used for judging the relevance of the differences

of energy between the signal and red noise

Table 1 Confusion matrix of a classifier based in the comparison

between the tip brake pressure and red noise

Mechanical failures Normal

Predicted ‘‘risk of failure’’ 67% 9%

Predicted ‘‘normal’’ 34% 91%

Number of windmills 6 34
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