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Interval-Valued GA–P Algorithms
Luciano Sánchez

Abstract—When genetic programming (GP) methods are ap-
plied to solve symbolic regression problems, we obtain a point es-
timate of a variable, but it is not easy to calculate an associated
confidence interval. We have designed an interval arithmetic-based
model that solves this problem. Our model extends a hybrid tech-
nique, the GA–P method, that combines genetic algorithms and ge-
netic programming.

Models based on interval GA–P can devise an interval model
from examples and provide the algebraic expression that best ap-
proximates the data. The method is useful for generating a confi-
dence interval for the output of a model, and also for obtaining a
robust point estimate from data which we know to contain outliers.

The algorithm has been applied to a real problem related to elec-
trical energy distribution. We were asked to search for a model ca-
pable of producing a confidence interval for the total length of elec-
trical line in some Spanish rural villages, given their area and the
number of inhabitants. Classical methods were applied first, and
interval GA–P later. The results of both studies are used to com-
pare interval GA–P with GP, GA–P, classical regression methods,
neural networks, and fuzzy models.

Index Terms—Genetic algorithms, genetic programming,
regression problems.

I. INTRODUCTION

NTERVAL arithmetic-based models can associate the input
of a system with a confidence interval for its output. For ex-
ample, we can relate the height of a man to his weight, and say
that a man whose height is 1.80 m is expected to weigh 80 kg
(exact model) or we could say that, with 90% confidence, a man
whose height is 1.80 m weighs between 75 and 85 kg (interval
model).

There has been some research concerning interval neural
networks [11] and fuzzy models [12], [22], but as far as we
know, interval genetic programming (GP) models have not yet
been studied. GP replaces neural networks and fuzzy models
when we need a readable algebraic expression that describes a
system’s input–output behavior. Interval GP will play the same
role in interval models because it will generate an expression
that relates confidence intervals for the output to values of
the input. We illustrate this fact with numerical and graphical
examples, and also perform a comparison among fuzzy, neural,
classical, GP, GA–P, and interval GA–P models.
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II. I NTERVAL SYMBOLIC REGRESSION

Regression techniques are intended to find an adequate ex-
pression for a function so that, given a variable which de-
pends on the value of a variable, is a good approxima-
tion to . In practice, this means that we knowpairs ,
and we search for a functionsuch that the mean-square error
(MSE)

is minimum [17].
Where the expression ofis not known, the techniques used

to solve the problem are known assymbolic regression. Genetic
programming is one of the methods that has been successfully
applied to solve these kinds of problems [14].

Note that symbolic regression methods findexactestimates
for given , but sometimes we require a confidence interval
that covers the unknown value ofwith a given probability. We
extend the applicability of GP methods to this case: a function
that relates a vector input to a set that contains with
probability is needed. This mapping is aset-valuedfunction.
We make its definition depend on interval parameters, and
use interval arithmetic [13]. For example, one function of the
class we are interested in is , which depends on
one interval parameter , and it is defined as

where “ ” means “product” in interval arithmetic.
There are many different mappingsfor which the prob-

ability that is greater than or equal to our confi-
dence degree, but in general, we will be interested in the map-
ping that makes the expected length of as short as pos-
sible. Let us define a pair of functions and such that

. The numerical problem that we need
to solve is as follows. Given a value of probabilitynear zero
andtwo independent samples that containpairs and

pairs , respectively, find and such that

is minimum and the proportion of elements of thefirst sample
for which is greater than . Observe
that the value of is not known, but it can be estimated.
is not a good estimation of the confidence level becauseand

are correlated with the sample, but we can estimatewith
the second sample, and say thatis the proportion of elements
of this last sample for which .
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Fig. 1. Member of a population in a GA–P algorithm. An individual consists
of an expression and a string of parameters. Internal nodes are operators, and
leaf nodes are either coefficients (k , k , k , k ) or input variables (x). The
crossover can occur in the linear part or in the tree part; thus, expressions and
numeric coefficients evolve concurrently.

III. N UMERICAL OPTIMIZATION METHOD: GA–P ALGORITHMS

GA–P algorithms are an evolutionary computation method, a
hybrid between genetic algorithms (GA) and genetic program-
ming, optimized to perform symbolic regression. A complete
description of the GA–P method can be found in [8]. Briefly,
each element of the population comprises a chain of parameters
(the GA part which governs coefficients) and a tree-based de-
scription of a function (the GP part which controls their expres-
sion) which depends on the encoded parameters. Internal nodes
of the tree are mathematical operators, and terminal nodes can
be instances of the independent variable or pointers to the pa-
rameters. When evaluating an individual, terminal nodes are re-
placed by the value of the parameter to which they point, or by
the value of the input variable they represent (see Fig. 1).

The two basic operations we use to obtain new members of
the population are crossover and mutation. These operations are
independently performed over both parts, and we use the oper-
ations defined in [8].

A. Modifications to GA–P

The multivalued mapping proposed in the last section will
be defined in terms of a function and interval parameters

, making

This definition will be clearer with the following example. Let
. depends on twonumericalparameters

and ; let and with
, , , . Then, and

. This can also be expressed if we write

Fig. 2. Member of a population in an interval GA–P algorithm. Internal nodes
are interval arithmetic operators, and leaf nodes are either intervals ([k ; k ],
etc.) or input variables (x).

. This last definition (that
involves the interval operators “” and “ ”) is very convenient
for extending the GA–P method. We simply allow intervals to
be terminal nodes, and extend the set of operations so that it
includes the interval arithmetic counterparts of every algebraic
operator used in GA–P operations.

The differences between GA–P and interval GA–P are as fol-
lows.

1) Constant Part Codification: We need to represent in-
tervals, each depending on two numbers. We have not
codified and , but rather and . We order
the values so that is next to .

2) Fitness Function: There is an important difference be-
tween usual symbolic regression problems and this one:
the function we wish to minimize does not depend on
evaluations of the expression in the set of examples, but
instead, on the separation betweenand in the points
of that set, and and were defined by means of.
To find the value of , we find the maximum of
inside the allowed range for its parameters:

and the same could be said of . Fortunately, this min-
imum and maximum can be calculated if we use interval
arithmetic operations to implement the evaluation of the
pair , , as noted before.

3) Set of Operators: The proposed representation is based
on the use of interval arithmetic to perform all operations
involved in the expression part (see Fig. 2). That is, we
codify the function in a tree whose terminal nodes point
to interval parameters or input variables. The
internal nodes represent interval operations that can be
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unary or binary. Any unary interval operation depends
on an operation as follows:

and

For example, and .
The definition of the binary operations is similar:

and

where , , and .
The evaluation of the expression for an input value (that
can be a point or an interval) will be an interval.

B. Tuning the Algorithm

A number of decisions must be made when applying GP that
involve the probabilities of the operators, the initial population
composition, and the definition of the fitness function. For a
GA–P algorithm, all of these decisions, as well as others related
to the GA, must be made. We tabulate the precise selections
made in our particular case in the following section. For now,
we only remark on two differences between this method and
the original GA–P.

1) Local Optimization: Local optimization is a technique
used in genetic algorithms to increase the precision of the
solution [19], [20]. GP-based search was also combined
with a local parameter-tuning mechanism employing
statistical search [10]. We use local optimization when
crossover is performed in the chain of parameters, and
the offspring scores in the best half of the current popu-
lation. Simplex search is used instead of more advanced
methods because we do not know the gradient of the
fitness function. Numerical results are given in the next
section.

2) Fitness Function: When solving a constrained opti-
mization problem with GA’s or GP, we can formulate a
fitness function that involves penalties [18] or we can
apply multiobjective methods [7]. We chose the first
method. Suppose that we wish to find an interval model
for which the probability of being covered by the output
is higher than a value, .
We begin by selecting two values and such that

. These values serve to classify models
in three classes: those that cover a fraction higher than

of the examples, those that cover less than ,
and those that cover a fraction between and .
We treat these three classes separately and define the
following.

a) The fitness of an individual covering a fraction of
examples less than to be proportional to the
MSE of a model formed by replacing all interval
parameters and interval inputs in the model by their

midpoints (we choose a proportionality constant so
that the first item holds).

b) The fitness of an individual covering more than
examples to be its mean amplitude (

).
c) The fitness of an individual that covers more than

and less than to be a weighted average
of its MSE as defined in item b) and its mean am-
plitude as defined in item c).

IV. EXAMPLE

The characteristics of the method will be made clear with a
graphical example. We have generated 100 pairs that form a
sawtooth with three line segments to which we have added 5%
of uniformly distributed random noise. GA–P, neural, fuzzy, and
interval GA–P model outputs are shown in Fig. 3. The GA–P
and neural net are exact models, and their output is represented
by the dotted line in the figures. Further, the output of a fuzzy
model is a fuzzy set, which is usually defuzzified to give an
exact output too. We could also use thecuts of these fuzzy
sets, but it may happen that they are not intervals nor include
the dependent variable because the output of a fuzzy model does
not necessarily have a convex membership function.

In contrast, we can estimate the probability for which the
output of interval GA–P contains the dependent variable, and
we can also build an exact model from it, if we replace the in-
terval parameters with values. This exact model can offer bene-
fits over the original GA–P model when there are outliers in the
data (see Fig. 4).

In that figure, we altered two points in the dataset. It is easy
to detect and purge these points in a one-dimensional problem
like this, but it becomes more difficult to detect them when mod-
eling high-dimensional data with small sample sizes. Methods
for handling data sets with outliers are calledrobust[9].

The effect of these two points in GA–P, neural, and fuzzy
models is similar. The neighborhood of the outliers (input values
between 40–50) is incorrectly modeled because the weight of
these two points is very high in the global squared error. In-
terval GA–P models are robust, and they will downweight, and
in some cases, reject erroneous data. The computational effort
is, however, higher. It took 1 h on a personal computer (Pentium
II, 300 MHz) for interval GA–P to finish. The neural net only
needed 30 s, and the fuzzy model [22] and the GA–P about 10
min each.

V. PRACTICAL APPLICATION

The problem described here is solved by different methods,
and the obtained solutions are compared.

A. Preliminaries

Some hundreds of generators, including thermal, nuclear, and
hydroelectric plants, are connected to the Spanish electrical net-
work, along with many different clients, ranking from small do-
mestic consumers to important aluminum or steel producers.

Energy is transported from suppliers to clients by means of
electrical lines of different capacities. We can distinguish be-
tween high-voltage lines (100–400 kV), medium-voltage lines
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Fig. 3. GA–P, neural net, fuzzy, and interval GA–P applied to a simulated function. 5% uniform noise was added. The output of the fuzzy model cannot be
interpreted as a confidence band.

(10–100 kV), and low-voltage lines (<10 kV). The government
expropriated high-voltage lines some years ago because of
antitrust regulations, and formed a company that manages
the high-voltage network. Former owners kept medium- and
low-voltage lines. This regulation forced the distribution
companies (the same companies that own the power generation
plants in Spain) to buy and sell the electrical energy from
the market instead of using their own generation plants, thus
creating separate markets for the generation and distribution of
electrical energy.

On the other hand, the payment that the distribution compa-
nies receive depends not only on the transported energy, but on
indicators like the actual length of medium- and low-voltage
lines being maintained by the company. It is obvious that the
definition of these indicators is of great economic importance.
Recently, some companies argued that the increased population
of some cities prevented the installation of the optimal distribu-
tion network, and that there are many lengthy obsolete networks.
These lengthy networks are being favored over the optimal ones
by a payment that depends on the actual length of line, so their
owners tend not to modernize their installations. A new payment

structure based on new models other than the actual length of
line was proposed.

To discuss this new structure, it was necessary to develop
models of the optimal and actual length of electrical line in-
stalled in cities and villages. In fact, companies have maps of
their lines, but they do not know precisely the kilometers of line
they maintain. They instead use models that relate the charac-
teristics of cities with their expected line length. The task is to
develop new models that could be contrasted with the old ones,
which requires exact models andconfidence intervalsfor our
predictions (i.e., one numerical value plus best and worst case
within a 95% confidence). GA–P methods were chosen because
we can select both the maximum complexity of the final ex-
pression and the desired algebraic operators. Black-box models
(i.e., neural networks, high degree polynomials) were not ad-
mitted, and neither were classical or fuzzy-rule-based models.
However, we did use them to contrast the performance of GA–P
methods.

B. Characteristics of the Model

For the sake of clarity, we restrict attention to one simple
model that relates the low-voltage line length in Spanish villages
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Fig. 4. Simulated dataset with outliers. Two points were altered to show that nonrobust methods (GA–P, neural net, fuzzy) can produce wrong estimatesin the
neighborhood of the outliers.

TABLE I

to their number of inhabitants and their area. The data provided
included the measured line length, the number of inhabitants,
and the mean of the distances from the transformation center to
the three furthest clients in a sample of 491 villages. The ob-
jective was to relate the line length to the other variables, first
by classical methods, and later by applying GA–P methods. We
will also determine a range of values of length for every pair of

client radius so that approximately 95% of the sample data were
within the interval. The nomenclature in Table I was adopted.

C. Application of Classical Methods

Low-voltage electrical networks are arranged in sectors in the
villages that are being studied. A main line passes near all clients
inside the village, and clients are connected to these main lines
by small segments (see Fig. 5).

To construct a simple model, we have assumed the following.

• Village comprises sectors. All sectors in the same vil-
lage cover the same angle . Main lines depart from the
center of the village.

• The density of clients is constant inside every sector.
• All sectors in a village have the same radius, and con-

tain a main line of length , and as many branches as
consumers.

Assuming that customers are uniformly distributed, we can
approximate the total length of line by multiplying the mean
distance between a customer and the nearest main line by the
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Fig. 5. Idealized models of electrical networks in small rural villages. Main lines depart from the center of the village. Consumers are connected by small segments
to the nearest main line. Villages have two, three, or four main lines.

number of inhabitants, and adding to the result the length of the
main lines. Let be the mean length of a branch in village. It
follows that

so the cable length is

and simplifying,

If the angles and the numbers were sufficiently similar,
we could regard them as constants, and estimate them by the
parameters and of a least squares linear regression

to a set of pairs .
We can get a better fit by allowing a certain dependence

among the number of sectors, their amplitudes, and the number
of inhabitants. This can be done by dividing the sample into
classes, and then fitting a linear model to each one (multilinear
model), or we can perform a change of variables followed by
a linear regression on the transformed data. Both cases were
studied, and the best fit was obtained with the exponential
model

We also studied linear regression in two variables (
), quadratic, and cubic models. Numerical results are

given in Table III.

D. Neural and Fuzzy Models

It is interesting to compare black-box methods to GA–P. We
used a multilayer perceptron (with one hidden layer fully con-
nected to input and output layers) and two fuzzy models, one
of them with Mamdani-type rules with approximative modeling

TABLE II
TABLEAU FOR THE LENGTH-OF-LINE PROBLEM

[4], and the other with Takagi–Sugeno–Kang (TSK) rules and
approximative modeling [24]. The conjugate gradient method
was used for the multilayer perceptron [21], the Wang–Mendel
method followed by a genetic tuning [5] that reduces the number
of rules was applied for the Mamdani-type fuzzy model, and
pure genetic learning was used for the TSK model [5]. The
number of neurons in the hidden layer of the neural network
was determined by trial and error to minimize the error on the
test data [15].

Descriptive fuzzy models are designed to linguistically de-
scribe the behavior of the model, but the high number of rules
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TABLE III
COMPARISON OFFITNESS; VARIOUS METHODS

(22) obtained in this case after the genetic tuning makes the de-
scriptive fuzzy model much more difficult to interpret than the
expression obtained with GA–P.

E. GP, GA–P, and Interval GA–P

We applied GA–P algorithms to search for a formula that is
comparable in complexity with the exponential model (see Sec-
tion V-C), while adjusting better to the real data. We restricted
the search to expressions that can be codified in a tree with no
more than 20 nodes, and depending on no more than 10 parame-
ters. Binary operations were sum, difference, product, ratio, and
power. The unary operation was the square root.

We conducted two numerical test benches. First, we com-
pared the best model obtained with GP, GA–P, and interval
GA–P to fuzzy, neural, and classical models; then we made 25
series of 25 runs each, starting GP, GA–P, and interval GA–P
from different, random populations. We ran the algorithm with
and without local optimization, and limiting the maximum
number of nodes to values ranging from 20 to 500. The
parameters of the learning processes are shown in Table II.
The best expressions obtained were compared to the best
models obtained with fuzzy rule learning, neural networks, and
classical methods in Table III.

Mean-square error values are labeled “MSE training” and
“MSE test.” We define “mean-square error” as

The column “Complexity” contains the number of parameters
and nodes in the tree that codifies the model (for example, the
model depends on three parameters, ,
and , and can be codified in a tree comprising nine nodes). For
neural models, the number of weights, and for fuzzy models, the
number of rules are shown. The models with the best numerical

TABLE IV
AVERAGE FITNESS. STEADY-STATE GP

TABLE V
AVERAGE FITNESS. GA–PWITHOUT LOCAL OPTIMIZATION

adjustment were obtained with the locally optimized GA–P and
interval GA–P models.
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TABLE VI
AVERAGE RESULTS. GA–PWITH LOCAL OPTIMIZATION

This kind of comparison poses a problem with the interval
GA–P method, which should not be evaluated on the basis of
MSE since it is not an exact model. We could speak of max-
imum and minimum MSE, but this is not a good indicator of the
model’s performance because it is easy to obtain a minimum
MSE of 0, and the maximum MSE can be much higher than the
average MSE for exact models in the rank of intervalar param-
eters. We decided to build exact models from interval models
by replacing every interval parameter by its midpoint value, and
computing these punctual models only at the points that were
not discarded as outliers. With this information, we can deter-
mine if the deviation produced by the outliers is relevant to the
MSE obtained, as shown graphically in Figs. 3 and 4. The results
indicated that if 2% of points were discardable, a model compa-
rable to a neural network in performance, but not more complex
than a linear one was obtained. If 5% of points can be discarded,
the result widely outperformed the neural network. Of course, a
new neural network could be trained over these 95% points, and
a new comparison could be made, but interval GA–P automati-
cally selects the 5% points that most influence the error. Doing
this selection by hand is a difficult task.

The best model obtained by GP was

The best GA–P model was

where , and the best model obtained with
interval GA–P (2% of outliers allowed) was

hence, the exact model we constructed was

This model depends on two parameters, and can be codified in
a tree of eight nodes. We also have included the results of eval-

TABLE VII
AVERAGE RESULTS. INTERVAL GA–PWITHOUT LOCAL OPTIMIZATION

TABLE VIII
AVERAGE RESULTS. INTERVAL GA–PWITH LOCAL OPTIMIZATION

uating this exact model over the complete training and testing
sets [row “Interval GA–P 98% (outliers not purged)”].

We intended to obtain a model with , and we chose
the values and . The estimation of is

; that is, we estimate that the probability for the range
of the interval GA–P model to include the true value is greater
than 0.975.

With the next set of experiments, we tried to determine how
many times the algorithm fails to find a good solution, and we
also study the effect of the local optimization on a GA–P algo-
rithm. If we compare the results of Tables IV and V, we observe
that standard GA–P is slightly better in this problem, but the
result is not statistically significant ( ). The figures in-
dicate the average MSE over the best 50% and the best 90%
experiments in every series, and the mean number of nodes of
the best individuals obtained. The locally optimized version of
GA–P performs somewhat better (see Table VI).

The canonical GP did not produce good results when we im-
plemented interval models, and we do not include them here.
GA–P results are in Tables VII and VIII. Again, the influence
of the local optimization is noticeable. All of the experiments
were driven with and , and the estimated
coverings are also shown in these tables. Observe that interval
GA–P has a different behavior from those of GP and the original
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GA–P when we increase the number of nodes. Interval GA–P
(both optimized and without optimization) produces smaller ex-
pressions, and the trees in the expressional parts of the best in-
dividuals do not tend to grow up to the maximum allowed limit.

VI. CONCLUDING REMARKS

In this work, we used genetic programming for finding ex-
pressions of variability bands for functions. The bands are based
on sets of examples, and they cover the exact model of the data
with a given probability.

Canonical GP was not used to find these bands, but a hy-
brid method between GA and GP, called GA–P, was adapted
to use interval arithmetic. The method provides the mathemat-
ical expression of an interval model, and this expression can be
converted into an exact model. Interval GA–P is also a robust
method that is less influenced by outliers than canonical GP,
fuzzy models, and neural nets.
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