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Brief Papers

Interval-Valued GA—P Algorithms

Luciano Sanchez

Abstract—When genetic programming (GP) methods are ap- II. INTERVAL SYMBOLIC REGRESSION
plied to solve symbolic regression problems, we obtain a point es- . . . .
timate of a variable, but it is not easy to calculate an associated ~R€gression techniques are intended to find an adequate ex-
confidence interval. We have designed an interval arithmetic-based pression for a functioy so that, given a variabl® which de-
model that solves this problem. Our model extends a hybrid tech- pends on the value of a variah#g, ¢(X) is a good approxima-
nique, the GA-P method, that combines genetic algorithms and ge- tion toY". In practice, this means that we kndVipairs(X;, Y;),

netic programming. . )
Models based on interval GA-P can devise an interval model and we search for a functignsuch that the mean-square error

from examples and provide the algebraic expression that best ap- (MSE)
proximates the data. The method is useful for generating a confi- N
dence interval for the output of a model, and also for obtaining a 1 Z [Y; — g(X)]?
robust point estimate from data which we know to contain outliers. N AN

The algorithm has been applied to a real problem related to elec- =1
trical energy distribution. We were asked to search for a model ca- js minimum [17].
pable of producing a confidence interval for the total length of elec- -y o e the expression gfis not known, the techniques used
trical line in some Spanish rural villages, given their area and the . . .
number of inhabitants. Classical methods were applied first, and {0 Solve the problem are known sgmbolic regressiarGenetic
interval GA-P later. The results of both studies are used to com- programming is one of the methods that has been successfully

pare interval GA—P with GP, GA-P, classical regression methods, applied to solve these kinds of problems [14].

neural networks, and fuzzy models. Note that symbolic regression methods fiexhctestimates
Index Terms—Genetic algorithms, genetic programming, for Y given.X, but sometimes we require a confidence interval
regression problems. that covers the unknown value Bfwith a given probability. We

extend the applicability of GP methods to this case: a function
that relates a vector input’ to a setl’ that containst” with
probability 5 is needed. This mapping issaet-valuedunction.
NTERVAL arithmetic-based models can associate the IanUe make its definition depend on interval parameters’ and
of a system with a confidence interval for its output. For eXsse interval arithmetic [13]. For example, one function of the
ample, we can relate the height of a man to his weight, and s@¥ss we are interested inli§z) = k ® =, which depends on
that a man whose height is 1.80 m is expected to weigh 80 &gle interval parametdr = [1, 2], and it is defined a§(z) =
(exact model) or we could say that, with 90% confidence, aman 2] where ‘©” means “product” in interval arithmetic.
whose helght is1.80m WEighS between 75 and 85 kg (interVBJThere are many different mappin@Sfor which the prob-
model). ability thatY € I'(X) is greater than or equal to our confi-
There has been some research concerning interval neg@hce degreg, butin general, we will be interested in the map-
networks [11] and fuzzy models [12], [22], but as far as wging that makes the expected lengthItf:) as short as pos-
know, interval genetic programming (GP) models have not y&ible. Let us define a pair of functionst and g~ such that
been studied. GP replaces neural networks and fuzzy models) = [¢~(x), g% (x)]. The numerical problem that we need
when we need a readable algebraic expression that describgs gvlve is as follows. Given a value of probabilityear zero
system’s input—output behavior. Interval GP will play the samgndtwoindependent samples that contaimpairs(X;, Y;) and
role in interval models because it will generate an expressian pairs( X}, Y/), respectively, find/~ () andg™ () such that
that relates confidence intervals for the output to values of
the input. We illustrate this fact with numerical and graphical 1 XN - .
examples, and also perform a comparison among fuzzy, neural, N Z (97 (X)) — 97 (X))
classical, GP, GA-P, and interval GA—P models. =1

I. INTRODUCTION

is minimum and the proportion of elements of first sample

. ) i ) forwhichg™=(X;) < Y; < g*(X;)isgreater thain—e. Observe
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Fig. 1. Member of a population in a GA-P algorithm. An individual consistgig. 2. Member of a population in an interval GA—P algorithm. Internal nodes
of an expression and a string of parameters. Internal nodes are operators,s8Gnterval arithmetic operators, and leaf nodes are either intefkals £ ],

leaf nodes are either coefficients( k2, ks, k4) or input variables£). The  etc.) or input variablesx).

crossover can occur in the linear part or in the tree part; thus, expressions an

numeric coefficients evolve concurrently.

[2, 4| @z @ [1, 5] = [22 + 1, 4z + 5]. This last definition (that
involves the interval operatorss” and “@”) is very convenient

GA-—P algorithms are an evolutionary computation method f%r extending the GA-P method. We simply allow intervals to

hybrid between genetic algorithms (GA) and genetic prograr]ﬂ? terminal nodes, an(_j exte_nd the set of operations so tha’F It
ming, optimized to perform symbolic regression. A completj cludes the interval arithmetic counterparts of every algebraic

description of the GA-P method can be found in [8]. Briefly?perator used in GA—P operations, .
each element of the population comprises a chain of parameéerghe differences between GA-P and interval GA-P are as fol-
(the GA part which governs coefficients) and a tree-based o .
scription of a function (the GP part which controls their expres- 1) Constant Part Codification: We need to represent in-
sion) which depends on the encoded parameters. Internal nodes tervals, each depending on two numbers. We have not
of the tree are mathematical operators, and terminal nodes can codifiedk;” andk;", butrathert;” andk;” —&;”. We order
be instances of the independent variable or pointers to the pa- the values so thalt” is next tok;". _
rameters. When evaluating an individual, terminal nodes are re-2) Fitness Function: There is an important difference be-
placed by the value of the parameter to which they point, or by ~ tween usual symbolic regression problems and this one:
the value of the input variable they represent (see Fig. 1). the function we wish to minimize does not depend on
The two basic operations we use to obtain new members of ~€valuations of the expression in the set of examples, but
the population are crossover and mutation. These operations are  iNstead, onthe separation betwgerandg — in the points

independently performed over both parts, and we use the oper-  ©f that set, ang™ andg~ were defined by means df.
ations defined in [8]. To find the value ofg™(x), we find the maximum of,

inside the allowed range for its parameters:

I1l. NUMERICAL OPTIMIZATION METHOD: GA—P ALGORITHMS

A. Modifications to GA-P

+
The multivalued mapping proposed in the last section will g (@)
be defined in terms of a functidky andm interval parameters
[k, k], making

l9™ (=), g7 ()]
= {t € R|t = hg(-’L'),

0 €ky, k> x [k, kL1

= Inﬂ%X{hg(.’L'), mo
and the same could be saidgf. Fortunately, this min-
imum and maximum can be calculated if we use interval
arithmetic operations to implement the evaluation of the
pairgt, ¢g—, as noted before.

3) Set of Operators: The proposed representation is based
on the use of interval arithmetic to perform all operations

AS [kfv kf—] X X [k;m r—i—z]}

This definition will be clearer with the following example. Let

he(x) = 612 + 6. hy depends on twoumericalparameters
6, andf; let 6, € [k7, k] and@y € [ky, kF] with kT =
2,kf =4,k =1,k = 5 Then,g~(z) = 2z + 1 and
g7 (z) = 4z +5. This can also be expressed if we wiliter) =

involved in the expression part (see Fig. 2). That is, we
codify the function in a tree whose terminal nodes point
to interval parameter§:;, &;t] or input variables. The
internal nodes represent interval operations that can be
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B. Tuning the Algorithm
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unary or binary. Any unary interval operatiéh, depends midpoints (we choose a proportionality constant so
on an operatiow,, as follows: that the first item holds).
b) The fitness of an individual covering more than
(1—e2) N examples to be its mean amplitude -

g7)-
Ou(A) = {z € Rlz = 0,(t) andt € A}. c) The fitness of an individual that covers more than
1—¢; and less thath — ¢ to be a weighted average
For examplesin(4) = {z € R|z = sin(¢) andt € A}. of its MSE as defined in item b) and its mean am-
The definition of the binary operations is similar: plitude as defined in item c).
IV. EXAMPLE
Oy(A, B) = {z € Rlz = 0,(t, w) andt € A, u € B} The characteristics of the method will be made clear with a

graphical example. We have generated 100 pairs that form a
whereA, B € I(R), 0,: R — R, ando,: R x R — R. sawtooth with three line segments to which we have added 5%
The evaluation of the expression for an input value (th&f Uniformly distributed random noise. GA-P, neural, fuzzy, and
can be a point or an interval) will be an interval. interval GA—P model outputs are shown in Fig. 3. The GA-P
and neural net are exact models, and their output is represented
by the dotted line in the figures. Further, the output of a fuzzy
model is a fuzzy set, which is usually defuzzified to give an

A number of decisions must be made when applying GP tHfact output too. We could also use theeuts of these fuzzy
involve the probabilities of the operators, the initial populatioféts, but it may happen that they are not intervals nor include
composition, and the definition of the fitness function. For e dependent variable because the output of a fuzzy model does
GA-P algorithm, all of these decisions, as well as others relate@t necessarily have a convex membership function.
to the GA, must be made. We tabulate the precise selection$n contrast, we can estimate the probability for which the
made in our particular case in the following section. For nowutput of interval GA-P contains the dependent variable, and

we only remark on two differences between this method aM¢ can also build an exact model from it, if we replace the in-
the original GA-P. terval parameters with values. This exact model can offer bene-

1)

2)

Local Optimization: Local optimization is a techniquef'ts over the original GA—P model when there are outliers in the

used in genetic algorithms to increase the precision of tﬂglta (ﬁeef.Flg. 4. itered ints in the d It
solution [19], [20]. GP-based search was also combined n that figure, we altered two points in the dataset. Itis easy

with a local parameter-tuning mechanism employin detect and purge these points in a one-dimensional problem
statistical search [10]. We use local optimization whe e this, but it becomes more difficult to detect them when mod-

crossover is performed in the chain of parameters, a]ﬁ nr? h|glh—d|r(;1etn3|o?al qt?]ta V\{l'th small salgle ;sges. Methods
the offspring scores in the best half of the current popuc-)r andiing data sets with outliers are cateus [9].
The effect of these two points in GA-P, neural, and fuzzy

lation. Simplex search is used instead of more advanced o . : !
methods because we do not know the gradient of tIr]*ra_}odels is similar. The neighborhood of the outliers (input values

fitness function. Numerical results are given in the ne%etween 40-50) is incorrectly modeled because the weight of
section these two points is very high in the global squared error. In-

Fitness Function: When solving a constrained opti—f{erval GA-P modgls ?re robust, agdtth?/hwnl down;/v?lght,l a?fd N
mization problem with GA's or GP, we can formulate an shome casEg,hreJelct:terLo;l(:]ous ata. elcomputa |0Fr)1a f or
fithess function that involves penalties [18] or we caf” Owever, higher. 11too on a personal computer (Pentium

Co - LI, 300 MHz) for interval GA—P to finish. The neural net only
apply multiobjective methods [7]. We chose the flrsk
method. Suppose that we wish to find an interval monF_eOIeOI 30 s, and the fuzzy model [22] and the GA-P about 10

forwhich the probability of” being covered by the outputm'n each.
is higher than avalug, P(¢~(X) <Y < g7(X)) > 3.

We begin by selecting two values and ¢; such that

e1 > 1 —f3 > ¢. These values serve to classify models The problem described here is solved by different methods,
in three classes: those that cover a fraction higher thand the obtained solutions are compared.

1 — ¢4 of the examples, those that cover less thane,

and those that cover a fraction betwdene¢; andl —¢,. A. Preliminaries

We treat these three classes separately and define th&ome hundreds of generators, including thermal, nuclear, and
following. hydroelectric plants, are connected to the Spanish electrical net-
work, along with many different clients, ranking from small do-
a) The fitness of an individual covering a fraction omestic consumers to important aluminum or steel producers.
examples less thah— ¢; to be proportional to the  Energy is transported from suppliers to clients by means of
MSE of a model formed by replacing all intervalelectrical lines of different capacities. We can distinguish be-
parameters and interval inputs in the model by theiween high-voltage lines (100-400 kV), medium-voltage lines

V. PRACTICAL APPLICATION
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Fig. 3. GA-P, neural net, fuzzy, and interval GA—P applied to a simulated function. 5% uniform noise was added. The output of the fuzzy model cannot be
interpreted as a confidence band.

(10-100 kV), and low-voltage lines (<10 kV). The governmersdtructure based on new models other than the actual length of
expropriated high-voltage lines some years ago becauselioé was proposed.
antitrust regulations, and formed a company that managedlo discuss this new structure, it was necessary to develop
the high-voltage network. Former owners kept medium- amdodels of the optimal and actual length of electrical line in-
low-voltage lines. This regulation forced the distributiorstalled in cities and villages. In fact, companies have maps of
companies (the same companies that own the power generati@ir lines, but they do not know precisely the kilometers of line
plants in Spain) to buy and sell the electrical energy frothey maintain. They instead use models that relate the charac-
the market instead of using their own generation plants, thigistics of cities with their expected line length. The task is to
creating separate markets for the generation and distributiondefrelop new models that could be contrasted with the old ones,
electrical energy. which requires exact models awdnfidence interval$or our

On the other hand, the payment that the distribution comparedictions (i.e., one numerical value plus best and worst case
nies receive depends not only on the transported energy, buwdthin a 95% confidence). GA—P methods were chosen because
indicators like the actual length of medium- and low-voltageie can select both the maximum complexity of the final ex-
lines being maintained by the company. It is obvious that thession and the desired algebraic operators. Black-box models
definition of these indicators is of great economic importancé.e., neural networks, high degree polynomials) were not ad-
Recently, some companies argued that the increased populativtted, and neither were classical or fuzzy-rule-based models.
of some cities prevented the installation of the optimal distribtHowever, we did use them to contrast the performance of GA—P
tion network, and that there are many lengthy obsolete networksethods.
These lengthy networks are being favored over the optimal ones
by a payment that depends on the actual length of line, so thir Characteristics of the Model
owners tend not to modernize their installations. A new paymentEgor the sake of clarity, we restrict attention to one simple

model that relates the low-voltage line length in Spanish villages
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Fig. 4. Simulated dataset with outliers. Two points were altered to show that nonrobust methods (GA-P, neural net, fuzzy) can produce wrorig #stimates
neighborhood of the outliers.

TABLE | client radius so that approximately 95% of the sample data were
- within the interval. The nomenclature in Table | was adopted.
Symbol Meaning
A; Number of clients in village C. Application of Classical Methods
R; Radius of village ¢ Low-voltage electrical networks are arranged in sectors in the
n Number of villages in the sample villages that are being studied. A main line passes near all clients
I, Line length, village i inside the village, and clients are connected to these main lines
i Estimation of | by small segment; (see Fig. 5). .
L , To construct a simple model, we have assumed the following.

S; Number of sectors in village ¢

« Village i comprisess; sectors. All sectors in the same vil-
lage cover the same andlé;. Main lines depart from the
center of the village.

« The density of clients is constant inside every sector.

« All sectors in a village have the same radfis and con-

to their number of inhabitants and their area. The data provided
included the measured line length, the number of inhabitants,
and the mean of the_dlstahces from thetransformatlon center to tain a main line of lengthk;, and as many branches as
the three furthest clients in a sample of 491 villages. The ob- CONSUmers

jective was to relate the line length to the other variables, ﬁrStAssuming that customers are uniformly distributed, we can

by classical methods, and later by applying GA-P methods. Wgproximate the total length of line by multiplying the mean
will also determine a range of values of length for every pair efistance between a customer and the nearest main line by the
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Fig.5. Idealized models of electrical networks in small rural villages. Main lines depart from the center of the village. Consumers are conmedteddpyents

to the nearest main line. Villages have two, three, or four main lines.

TABLE I
TABLEAU FOR THE LENGTH-OFLINE PROBLEM

number of inhabitants, and adding to the result the length of the
main lines. Letd; be the mean length of a branch in villagét

follows that —
Parameter Decision
d; = 2(1_7;0891) R, Population size 100
30i Tterations 1000 to 5000 (steady state)
so the cable length is Parent selection Tournament
- A 2(1 — cos 6; GA Part encoding Floating point
Li=s|Ri+—d; :SiRi‘f‘AigRi .
s; 36, GA Crossover operator Two points
. e GP Crossover operation Standard
and simplifying,
GA Cross. probability 0.9
li/Ri =s;+ k(97)A7 GP Cross. prob. internal nodes 0.9
If the angle®; and the numbers; were sufficiently similar, GP Cross. prob. leaves 01
we could regard them as constants, and estimate them by th G4 Mutation (individuals) 0.01
parameterd; = § ands; = s of aleast squares linear regression GP Mutation (individuals) 0.01
iR BOVA Expressional part 20 to 500 nodes
Z/ i =5+ ( ) g Maximum number of parameters 10
to a set of pairgx, y) = (4;, l,/R;). Enrichment initial population | best 100 of 1000 evaluations
We can get a better fit by allowing a certain dependence Edition probability 0
among the numbe_r of sectors, their amplitu_des, and the numbe Encapsulation probability 0
of inhabitants. Thl$ can b(_a done by dividing the samplc_a_mto Permutation probability 0
classes, and then fitting a linear model to each one (multilinear L
. Decimation No
model), or we can perform a change of variables followed by ]
a linear regression on the transformed data. Both cases wer ADFs maximum 0
studied, and the best fit was obtained with the exponential Local GA optimization Nelder and Mead's simplex

model

l_Z  _ klAfz. [4], and the other with Takagi—-Sugeno—Kang (TSK) rules and

R approximative modeling [24]. The conjugate gradient method

We also studied linear regression in two variables<(k; A; + Was used for the multilayer perceptron [21], the Wang-Mendel

ks R; + k3), quadratic, and cubic models. Numerical results afgethod followed by a genetic tuning [5] that reduces the number
given in Table IlI. of rules was applied for the Mamdani-type fuzzy model, and

pure genetic learning was used for the TSK model [5]. The

number of neurons in the hidden layer of the neural network
It is interesting to compare black-box methods to GA-P. Weas determined by trial and error to minimize the error on the

used a multilayer perceptron (with one hidden layer fully coniest data [15].

nected to input and output layers) and two fuzzy models, oneDescriptive fuzzy models are designed to linguistically de-

of them with Mamdani-type rules with approximative modelingcribe the behavior of the model, but the high number of rules

D. Neural and Fuzzy Models
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TABLE Il
COMPARISON OFFITNESS VARIOUS METHODS

Method MSE Training | MSE Test Complexity
Linear,2 variables 369 443 9 nodes, 3 par.
Linear,1 variable 365 443 7 nodes, 2 par.
Multilinear, 1 variable, 2 classes 338 458 17 nodes, 6 par.
Exponential 342 426 7 nodes, 2 par.
2th order polynomial 332 393 22 nodes, 6 par.
3rd order polynomial 318 941 53 nodes, 10 par.
3 layer perceptron 2-25-1 312 391 102 par.
W. M. fuzzy model 262 610 22 rules
TSK fuzzy model 272 462 34 rules
GP 336 420 17 nodes, 1 ERC
GA-P 325 399 18 nodes, 1 par.
Interval GA-P 98%(outliers not purged) 341 424 8 nodes, 2 par.
Interval GA-P 98%(outliers purged) 306 385 8 nodes, 2 par.
Interval GA-P 95%(outliers purged) 258 250 11 nodes, 1 par.
(22) obtained in this case after the genetic tuning makes the de- TABLE IV

scriptive fuzzy model much more difficult to interpret than the AVERAGE FITNESS. STEADY-STATE GP

expression obtained with GA-P. MSE Train | MSE Test | Length | Max. Nodes
50% | 337645 425471 | 19.83 20
E. GP, GA-P, and Interval GA-P ’
Wi lied GA_P alaorith h ‘ la that | 90% | 352990 433724 | 19.72 20
e appliec —P algorithms to search for a formula that is 0% | 325714 118703 5 50
comparable in complexity with the exponential model (see Sec-
tion V-C), while adjusting better to the real data. We restricted 0% | 331828 420690 | 49.95 50
the search to expressions that can be codified in a tree with no ~ 50% | 322483 419228 | 96.2 100
more than 20 nodes, and depending on no more than 10 parame-  90% | 329953 421326 97.9 100
ters. Binary operations were sum, difference, product, ratio, and 50% | 315140 418712 | 180.2 200
power. Th((a]I una:jy operation WasI the sguari root. 90% | 323582 422878 | 1866 200
We conducted two numerical test benches. First, we com-
: . T 50% | 310145 418448 | 439.9 500
pared the best model obtained with GP, GA-P, and interval 90(; 390502 420503 45 500
GA-P to fuzzy, neural, and classical models; then we made 25 ?
series of 25 runs each, starting GP, GA-P, and interval GA—P
from different, random populations. We ran the algorithm with TABLE V
and without local optimization, and limiting the maximum AVERAGE FITNESS GA—PWITHOUT LOCAL OPTIMIZATION
number of nodes to values ranging from 20 to 500. The
parameters of the learning processes are shown in Table II. MSE Train | MSE Test | Length | Max. Nodes
The best e>_<pressi.ons obtained were compared to the best 590, [ 334405 420034 19.8 2
mode_ls obtained W_lth fuzzy rule learning, neural networks, and 00% | 341077 427570 195 2
classical methods in Table IlI. 0% | 393006 118001 " P
Mean-square error values are labeled “MSE training” and 0
“MSE test.” We define “mean-square error” as 90% | 320900 | 422577 | 495 50
50% | 318585 425032 98 100
1 X 90% | 326592 424276 96 100
. )
N oG- 50% | 316199 | 423244 | 164 200
=1 90% | 324052 | 424986 | 167 200
The column “Complexity” contains the number of parameters 50% | 304587 424314 | 365.3 500
and nodes in the tree that codifies the model (for example, the  90% | 315218 425058 | 370.1 500

modell = k, A;+k» R;+ks depends on three parametkysk.,
andks, and can be codified in a tree comprising nine nodes). For
neural models, the number of weights, and for fuzzy models, thdjustment were obtained with the locally optimized GA-P and
number of rules are shown. The models with the best numerigaerval GA—P models.
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TABLE VI TABLE VII
AVERAGE RESULTS GA-PWITH LOCAL OPTIMIZATION AVERAGE RESULTS INTERVAL GA—PWITHOUT LOCAL OPTIMIZATION
MSE Train | MSE Test | Length | Max. Nodes W MSE Train | MSE Test | Length | Covering | Max. Nodes
50% | 323832 413292 | 195 20 50% | 310194 208060 | 19.7 96 20
90% | 327486 | 411652 | 19.6 20 90% | 417114 | 364497 | 178 96 20
50% | 305305 412509 | 496 50 50% | 322455 206747 | 36.2 96 50
90% | 313307 | 407980 | 49.2 50 90% | 361595 323370 36 95.7 50
50% | 292196 420247 | 934 100 50% | 288588 288060 | 67.7 95.8 100
90% | 299424 433541 95 100 90% | 340739 306115 | 68.7 95.4 100
50% | 299766 418911 | 1838 200 50% | 324389 284100 | 1356 | 959 200
90% | 307737 | 418483 | 181 200 90% | 372395 320332 | 1195 | 957 200
50% | 289325 | 411468 | 4133 500 50% | 293898 | 268380 | 2562 | 954 500
90% | 299603 | 411117 | 388.5 500 90% | 322030 | 293589 | 204.8 | 956 500

This kind of comparison poses a problem with the interval TABLE VIl
GA—P method, which should not be evaluated on the basis of Averace REsuLTS INTERVAL GA—PWITH LOCAL OPTIMIZATION
MSE since it is not an exact model. We could speak of max-

imum and minimum MSE, but this is not a good indicator of the MSE Train | MSE Test | Length | Covering | Max. Nodes
model’s performance pecause it is easy to obta@n a minimur goor T 983780 273850 18.6 043 20
MSE of 0, and the maximum MSE can be muqh higher than th: 00% | 319651 288816 171 947 20
average MSE for exact models in the rank of intervalar param

eters. We decided to build exact models from interval model. *0% | 269643 249326 42.2 93.1 50
by replacing every interval parameter by its midpoint value, anc 90% | 291323 213217 | 415 93.7 50
computing these punctual models only at the points that wer 50% | 261992 222634 78.2 92.3 100
not discarded as outliers. With this information, we can deter 90% | 282614 243503 74.9 92.9 100
mine if the deviation produced by the outliers is relevant to the 5q0; | 283195 274803 717 93.9 200
MSE obtalnedl, as shown.graph|cally in Figs. 3and 4. Theresult 00% | 311411 288721 815 94.1 200
indicated that if 2% of points were discardable, a model comps 0% | 272910 500210 6.0 "y 500
rable to a neural network in performance, but not more comple ) ’

than a linear one was obtained. If 5% of points can be discarde 90% | 206791 | 273058 | 959 | 938 500

the result widely outperformed the neural network. Of course, a

new neural network could be trained over these 95% points, anc{. hi del h | . q .
a new comparison could be made, but interval GA—P automal E Ing this exact model over the comp ete training and testing
' .sets [row “Interval GA—P 98% (outliers not purged)].

cally selects the 5% points that most influence the error. DomgWe intended to obtain a model with= 0.98, and we chose

th'.?.;:'ggg?ggé’er;iﬁ;isn: ddgﬁcgl;t\?vzlé tpe values; = 0.05 andes, = 0.01. The estimation of? is
y £ = 0.975; that is, we estimate that the probability for the range

of the interval GA—P model to include the true value is greater

Ri + Ai + \/1-06 (\/E + Ri + Rz‘) VRA; + R;. than 0.975.
With the next set of experiments, we tried to determine how
The best GA—-P model was many times the algorithm fails to find a good solution, and we
also study the effect of the local optimization on a GA-P algo-
Rif (f (f (f (\/E + ko)))) rithm. If we compare the results of Tables IV and V, we observe

that standard GA—P is slightly better in this problem, but the
where f(x) = (A;/x)'/?, and the best model obtained withresult is not statistically significant(= 0.05). The figures in-
interval GA-P (2% of outliers allowed) was dicate the average MSE over the best 50% and the best 90%
experiments in every series, and the mean number of nodes of
the best individuals obtained. The locally optimized version of
GA-P performs somewhat better (see Table VI).

The canonical GP did not produce good results when we im-
plemented interval models, and we do not include them here.
GA-P results are in Tables VII and VIII. Again, the influence

[ = 38.5R; - 0.061C4"7") of the local optimization is noticeable. All of the experiments
’ were driven withe; = 0.1 ande, = 0.05, and the estimated
This model depends on two parameters, and can be codifieadtaverings are also shown in these tables. Observe that interval
a tree of eight nodes. We also have included the results of ev@A—P has a different behavior from those of GP and the original

~ (AQ,OGZS)
ie {l ‘l =k RESTT ) ky € [13.56, 53.47),
ks € [0.058, 0.064]} ;

hence, the exact model we constructed was
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GA-P when we increase the number of nodes. Interval GA—P[4]
(both optimized and without optimization) produces smaller ex-
pressions, and the trees in the expressional parts of the best i
dividuals do not tend to grow up to the maximum allowed limit.

(6]

[71

In this work, we used genetic programming for finding ex-
pressions of variability bands for functions. The bands are baseéB]
on sets of examples, and they cover the exact model of the datg]
with a given probability.

Canonical GP was not used to find these bands, but a h
brid method between GA and GP, called GA-P, was adapted
to use interval arithmetic. The method provides the mathemat!!
ical expression of an interval model, and this expression can be
converted into an exact model. Interval GA—P is also a robudt?]
method that is less influenced by outliers than canonical GP[13]
fuzzy models, and neural nets.

VI. CONCLUDING REMARKS

10

(14]

[15]
ACKNOWLEDGMENT

The authors would like to thank I. Couso, from Oviedo Uni- [16]
versity, for numerous comments in connection with the the-[m
oretical development of the method. O. Cordén and F. Her-
rera, from Granada University, applied Wang—Mendel and TSK18]
fuzzy modeling methods to the dataset, and made helpful comig
ments on the paper as well.

[20]

REFERENCES
[21]
[1] D. Adler, “Genetic algorithms and simulated annealing: A marriage pro-
posal,” in Proc. IEEE Int. Conf. Neural Networksol. 2, 1993, pp.
1104-1109.
[2] P.Billingsley,Probability and Measure New York: Wiley Ser. in Prob.
and Math. Statist., 1995.
[3] I. Couso, “La envolvente probabilistica. Definicion y propiedades,” tra- [24]
bajo de investigacion, Departamento de Estadistica e 1.O y D.M., Univ.
Oviedo, Spain, 1997.

(22]

(23]

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 1, APRIL 2000

O. Cordén, “A general study on genetic fuzzy systems Gienetic Al-
gorithms in Engineering and Computer SciengePeriaux, G. Winter,

M. Galn, and P. Cuesta, Eds. New York: Wiley, 1995, pp. 33-57.
——, “Una metodologiéa para el disefio automatico de sistemas basados
en reglas difusas mediante algoritmos evolutivos,” doctoral dissertation,
Departamento de Ciencias de la Computacion e Inteligencia Artificial,
Univ. Granada, Spain, 1997.

A. P. Dempster, “Upper and lower probabilities generated by a random
closed interval,’Ann. Math. Statist.vol. 38, pp. 325-339, 1967.

C. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms
in multiobjective optimization,’Evol. Comput.vol. 3, pp. 1-16, 1995.

L. Howard and D. D’Angelo, “The GA-P: A genetic algorithm and ge-
netic programming hybrid,/EEE Expert pp. 11-15, June 1995.

W. Hardle, Applied Nonparametric RegressionCambridge, U.K.:
Cambridge Univ. Press, 1989.

H. Iba, T. Sato, and H. De Garis, “System identification approach to
genetic programming,” ifProc. 1st IEEE Conf. Evol. Computol. 1,
1994, pp. 401-406.

H. Ishibuchi, H. Tanaka, and H. Okada, “An architecture of neural net-
works with interval weights and its application to fuzzy regression anal-
ysis,” Fuzzy Sets Systiol. 57, pp. 27-39, 1993.

L. Kacprzyk and M. Fedrizzi, Eds.Fuzzy Regression Anal-
ysis Warsaw, Poland: Omnitech, 1984.

A. Kaufmann and M. Gupta, Edsliptroduction to Fuzzy Arith-
metic  New York: Van Nostrand Reinhold, 1984.

J. Koza,Genetic Programming. On the Programming of Computers by
Means of Natural Selection Cambridge, MA: M.L.T. Press, 1992.

C. G. Looneypattern Recognition Using Neural Networks. Theory and
Algorithms for Engineers and ScientistsOxford, U.K.: Oxford Univ.
Press, 1997.

G. MatheronRandom Sets and Integral GeometryNew York: Wiley
Ser. Prob. and Math. Statist., 1975.

B. Lindgren, Statistical Theory London, U.K.: Chapman & Hall,
1993.

Z. Michaliewicz, Genetic Algorithms + Data Structures = Evolution
Programs Berlin, Germany: Springer-Verlag, 1992.

J. M. Renders and H. Bersini, “Hybridizing genetic algorithms with hill-
climbing methods for global optimization: Two possible ways,Pioc.

1st IEEE Conf. Evol. Compuytvol. 1, 1994, pp. 312-317.

J. M. Renders and S. P. Flasse, “Hybrid methods using genetic algo-
rithms for global optimization,JEEE Trans. Syst., Man, Cybern.—Part
B: Cybern, vol. 26, Apr. 1996.

R. Rojas,Neural Networks—A Systematic IntroductiorBerlin, Ger-
many: Springer-Verlag, 1996.

L. Sanchez, “Arandom sets based method for identifying fuzzy models,”
Fuzzy Sets Systol. 3, pp. 343-354, 1998.

G. Shafer, A Mathematical Theory of EvidencePrinceton, NJ:
Princeton Univ. Press, 1976.

T. Takagi and M. Sugeno, “Fuzzy identification of systems and its appli-
cation to modeling and control|EEE Trans. Syst., Man, Cyberwol.
SMC-15, no. 1, pp. 116-132, 1985.



