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Abstract. In this paper a robust estimation of the optical flow field that preserves the boundaries
of the movement is shown. Arising from the techniques based on the Optical Flow Constraint (OFC),
an estimation that takes several measures around a given pixel, discarding the erroneous ones, has
been developed. This is done performing a bidimensional clustering of the velocities obtained from the
intersection of couples of OFCs. In this way the clustering is done in the velocity space and not in the
(slope, intercept) parameter space of the OFCs. Finally, a hierarchical implementation that has less

error, when large displacements are present in the image, is shown.
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1. INTRODUCTION

There are basically three ways to perform the calculation of the optical flow field: cor-
relation based techniques, frequency based techniques and gradient based techniques.

Correlation based techniques [1] try to maximize a measure of similarity between
patches (taken from two consecutive frames) centered in a given pixel. The displacement
that maximizes the selected measure divided by the time interval between the acquisi-
tion of the frames is the velocity of the pixel. These approaches are computationally
expensive, except those that use custom VLSI chips.

Frequency based techniques use a set of tuned spatiotemporal filters to search for
the velocity of a pixel [7]. Other researchers [4] are in the opinion that this is the most
precise approach, but it is very expensive in terms of computational cost too.

Gradient based techniques use the well known “optical flow constraint” (OFC) shown
in equation 1 in order to compute the optical flow [8].

8f:g@+g@:8+fu+gv:V(f)-? (1)
ot Oxdt Oydt Ox Jy

This equation makes the assumption that intensity changes in a sequence of images are
due only to the movement of the objects in the scene: a single pixel will have constant
brightness in the different positions that it takes during the sequence. Unfortunately, the
”aperture problem” (see [9]) states that there is no way to recover the complete optical
flow vector using only local (one pixel) information. Some authors try to solve the
aperture problem with the incorporation of some kind of global information, involving
a process of regularization [8]. Some researchers perform a clustering of the OFCs
themselves in order to find the most reliable one. Once obtained, the corresponding
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Fig. 1. Left: Clusters of intersections of OFCs pairs. Most of them belong to a dominant cluster, but
a few ones can deviate the estimation if they are not rejected. Center and Right: Intersections
of OFCs taken from real images: systems obtained from pixels with similar velocity (left) are
grouped together in a well defined cluster. When two velocities are present (right) the least
squares deviated estimation (1) is far from the dominant cluster (2).

normal flow to that OFC is obtained [12] [11]. Another alternative is to analyze the
measurements in the space of the velocities, that is, performing an estimation of the
velocity with the results of many systems of OFC equations. Each system of equations
is obtained from one pair of pixels (see figure 1) or fitting the data to a model in order
to estimate the velocity. In this way, the analysis is performed directly in the domain
of the data that we want to recover, that is, the u, v space [14]. In this paper the last
approach is followed.

2. ROBUST ESTIMATION OF OPTICAL FLOW

Usually, in real sequences of images, there are many independent moving objects. In this
situation, the problem of occluding surfaces arises: places where the velocity changes
suddenly from one pixel to another. In this case it is not possible to use approaches like
[8] because the global smoothness criterion does not hold in those boundaries. Other
authors [10] propose to relax the smoothness criterion in those places where the gradient
is high, smoothing the flow along the contour but not through the contour. But the
problem remains: the OFC has two unknowns, it is necessary to take measurements
from at least two pixels. If the pixels are chosen from objects with different velocities,
the solution to the system of equations obtained will give an erroneous velocity. The
analysis of the velocity distributions presented in a neighborhood of each pixel (in the
direction addressed in [14]) is necessary to determine which velocities are supposed to
be correct and which one is the dominant velocity in the neighborhood.
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The idea behind our approach could be summarized on three steps:

1. For each pixel we consider a neighborhood of a given size. For each possible couple
of pixels, we solve the system of equations given by the OFC applied to the couple
of pixels, discarding solutions whose module exceeds a given constant as errors. We
discard also the solutions of systems whose condition number is too high.

2. After this, we compute the bidimensional histogram of the velocity distribution. We
filter the data with a Gaussian kernel in order to erode the isolated peaks.

3. The velocity that corresponds to the maximum is an estimation by itself but, to
improve the precision, we perform another estimation: for every data that is closer
to the maximum than a given percent of it, we search for the gravity center of them.
This is our final estimation.

Note that in [14] all couples of used OFCs share one component with the central
pixel of the neighborhood. In that way, the clustering is performed along the OFC
corresponding to the central pixel, reducing the complexity of the estimation but making
the quality of the estimation strongly dependent on how reliable the data on a single pixel
is. This situation is shown in figure 2 . If the clustering is performed along the central
pixel OFC, the estimation is deviated from the cluster obtained from the intersection of
all possible pairs of OFCs. Since there is no “a priori” information on how reliable a given
OFC is, to depend on a single OFC does not seem to be convenient. Another approach
[11] consists on finding the most reliable OFC and obtaining an optical flow estimation
from that single line, without performing any intersection between pairs of constraints.
This is done by performing the clustering in the (slope,intercept) parameter space of
the OFCs, using Combinatorial Hough Transform (see figure 3). This is achieved by
estimating the distribution of two parameters that defines the characteristic line along
most of the pairs (slope, intercept) lie. One of the parameters is obtained from the
(slope,intercept) pair corresponding to the central pixel with the same data from the
other pixels in the neighborhood. The other one is obtained from the first parameter
with the data of each pixel of the neighborhood. With these parameters, an estimation
of optical flow is obtained directly.

In the previous approaches, the amount of data is ¢ — 1, being ¢ x ¢ the size of
the neighborhood. In our approach the amount of data is the number of possible pairs
of OFCs in the neighborhood, that is § (c* —1). This means that if we perform an
estimation with the same amount of data, our approach uses sets of pixels that are more
dense than the ones used in the other approaches. For instance, in a neighborhood of
15 x 15, 224 measurements are made if the clustering is done along the central pixel
OFC. With a neighborhood of 5 x 5 our approach performs 300 measurements. Because
of this, the basic assumption of these methods, the closer the pixels are, more similar
the velocities are, holds better in our approach.

In this work we use all the possible couples of OFCs because we believe that if the
assumption in [14] holds (pixels that are near in space have similar velocities) then it

2
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Fig. 3. Clustering of (slope,intercept) space parameters of OFC.
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Fig. 4. Plot of the density value (x axis) versus the error of the estimation (y axis) as defined in [13]
and later in this paper. As it can be seen, there is a decreasing tendency in the figure.

must be applied to every pixel in the neighborhood (the estimation must be obtained
from every possible pair of OFCs in the neighborhood, not only the ones with the central
pixel.) We suggest performing a bidimensional clustering in the (u,v) space, using all
the possible intersections of OFCs that belong to a neighborhood of a pixel.

It is clear that the straight application of the enumerated steps would be compu-
tationally expensive. But, if we realize that the mentioned steps are no more than an
estimation of the mode of the velocity field, we can optimize our algorithm by replacing
the vote scheme with the numerical search of the maximum of a estimation of the density
function of the velocity field, thus avoiding the explicit computation of the histogram.

We have analyzed two different methods to perform the mode estimation: (1) k-
neighborhood estimators and (2) a compact support kernel. In both cases it is possible
to reduce the computations as follows: after the first step, the solutions to the system
of OFCs are stored into an array with three columns: the components of the velocity (x
and y), and the number of votes. The key point here is to order the array: If we use, for
instance, a pyramidal kernel with a square basis of size “d”, we can compute the value
of the density function in a point stored in row “i”, (u;,v;) by evaluating the kernel
function in the points (w;i—1,vi—1), (Wi—2,vi—2),... and (Uit+1, Vyt1), (Wit2,Vit2),. .. for
which |u; — u;| < d/2. For the k-neighborhood method, the reasoning is similar. The
method returns the velocity of the point in the array in which the value of the density
function is maximum, which is a good approximation to the true point in which the
density function is maximum. The value of the density is also useful, because it is a
measure of the reliability of the estimation. For example, in Figure 4 the mode density
value (z axis) is plotted versus the error of an experiment (y axis) for all points in the
sequence “MysineC-16". Clearly it can be seen that, as the value of the density grows,
the error decreases.
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3. HIERARCHICAL ESTIMATION OF OPTICAL FLOW

In equation 1 it is shown how the velocity is related with the spatiotemporal derivatives.
Due to the use of this equation, the spatiotemporal derivatives must be estimated in
every one of the pixels in the sequence of images from which we want to compute the
optical flow field. In [8] the derivatives are computed from the data in a spatiotemporal
neighborhood of size 2 x 2 x 2

In the following, let ¢ and j stand for rows and columns of each frame, and k index
for frame number.

If the displacement of a given pixel is such that from frame to frame it falls out of
the neighborhood like the one in [8] then we can see an inconsistency: we are capable
of computing the derivatives without knowing the values of the involved pixels in the
second frame. If we obtain a displacement for the pixel in (i,5) of (2,2), then it falls
out of the neighborhood and so, the derivatives were calculated with values that are not
related with the pixels in the first frame.

It is necessary to develop a method to overcome the problem of derivatives estimation
when the displacements are bigger than the neighborhood size. This leads us to a
hierarchical implementation [5][1][6] of our algorithm. A hierarchical approach consists
of two stages. First, the computations are performed with a zoomed out version of
the images, that is a coarser resolution version. Then the results at this stage are
extrapolated to a finer resolution. In this way we have a coarse estimation of the optical
flow at this new resolution. This can be done with the use of equations 2 and 3, for an
image of size m x n for each 4,j/i € [1, F] A j € [1, 3] we have:

U1EEi—1§*2,(]—(1)*2)) | )

U((t—1)*2+1,(j —1) %2 o

DG De (o Deotn [ =2*00) @)
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V- 1)e2,Gotyazsn (= 2*V00d) 3)
Vi((i—1)%2+1,(j —1) 2 +1)

Vs

where U, and V5 are the velocities obtained from the sequence with a given resolution
and U; and V; are the coarse estimation of the velocities with twice the resolution. The
key idea is that we can find a scale where the displacement is lower than the size of the
neighborhood, so at that resolution the derivatives estimation can be performed without
the commented inconsistency. This is, if we use a neighborhood of size (21 +1) x (21 + 1)
with { in 1,2,3,... and the maximum displacement is A in a m X n image (m = 2% and
n = 2° for simplicity) then there exists ¢ such that ¢ < a and ¢ < b, ¢ in 1,2,3, ... such

that if we reduce the size of the image to 5z x gt then at that scale the maximum dis-
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placement is §, with § = zc < [ and then, the mentioned inconsistency does not happen.
With the full data at higher resolution the coarse estimation is refined, in order to make it
a better approximation of the optical flow field. This is achieved using the coarse estima-
tion to perform a better estimation of spatiotemporal derivatives, getting the equations
4,5,6, where (i, j, k) is the current pixel.The estimation is performed using a neighbor-
hood of size (21 + 1) x (204 1). k stands for frame number and the true displacement of
that pixel is (D, D) such that D, > [ and D, > [. The estimation at lower resolution
is (dy, d,) and the coarse estimation of the movement of the pixel is (2dy,2d,). Let be
(diy,di,) the integer part of the coarse estimation, this is the displacement that must be
taken into account to compute the derivatives in equations 4,5 and 6. The relationship
between the sign of  and y axis and the increment/decrement of rows and columns is
as follows, = positive axis is in the direction of increasing columns and y positive axis is
in the direction of decreasing rows.

(i,5,k) =

(16 + 1K)+

i+ 1= dip,j + dig, k+1)+

P LG LR) T+ 1 —dig,j+ 1+ dig, k+1))—
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5i (10,5, k) +1(i,j + 1,k)+
Ii+1,5,k)+I(+1,7+1,k))
As we can repeat this procedure at any resolution, a recursive formulation of the
algorithm is suggested, as it is shown in the following pseudo code:

hierarchical_of (sequence) is
if size (sequence) < threshold then
of=of _simple(sequence)
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else
sequence2=reduce (sequence)
of=hierarchical_of (sequence?2)
of=extended (of)
of=refined(of)

end if

where of _simple(sequence) is a non hierarchical estimation of optical flow, extended (of)
corresponds to equations 2 and 3 and refined (of) corresponds to an optical flow esti-
mation using equations 4, 5 and 6 to compute the spatiotemporal derivatives. That is,
the hierarchical optical flow calculation consists of the following: if the size of the image
is smaller than a threshold, then a simple (one stage) calculation of the optical flow is
performed. If the size of the image is bigger than the same threshold, then the sequence
is reduced in size to half of the rows and columns. At this point, hierarchical_of
is called recursively. When the algorithm comes back from this call, the optical flow
obtained is extended to the actual size of the image using 2 and 3, and after that it is
refined at this level of resolution using 4, 5 and 6.

4. RESULTS

4.1. Qualitative results

In top left corner of figure 6 it is shown the optical flow field (obtained using a least
squares (L.S.) estimation over a 929 neighborhood) from the sequence of images in figure
5, where two sinusoidal patterns move with velocities (1, —1) (pattern in the left) and
(—1,1) (pattern in the right).

There are errors and the velocities seem (erroneously) to change smoothly. The same
occurs in the top and right corner of the figure, where the results of the approach in [11],
OFC Parameter Clustering, are shown. In the left down corner of figure 6 the results for
the algorithm in [14] (named Schunck) are shown. Finally in the right and down corner
of the same figure the same experiment is performed with the algorithm presented here
(named Kernel).

The boundaries of the movement are better preserved due to the robustness of the
estimator and because the window used in the estimation can be made smaller than in
the other techniques that perform the clustering with central pixel data for the same
amount, of measurements.

The estimation here presented fails in two cases. First when the central pixel of
the neighborhood lies on a surface that moves in a different way than most of the other
pixels in the neighborhood. This happens in 90 degrees corners, for instance. In this case
the dominant cluster belongs to a different object than the central pixel. Second, if the
central pixel of the neighborhood belongs to one surface in first frame and to another,
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Fig. 5. Two frames of the test sequence used to show how our algorithm preserves the boundaries of the

movement.
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Fig. 6. In the right and down corner of this figure the optical flow obtained with our method is shown.
From left to right and up to down are the results for L.S. estimation, the OFC Parameter
Clustering algorithm and Schunck algorithm are shown. This test was especially designed to
show how our approach preserves the boundaries of the movement.

occluded by the former, in the second frame.
Apart from these situations, the estimation of the velocity is much better than the one
obtained from L.S. estimation and other techniques based on a regularization constraint

Machine GRAPHICS & VISION vol. 2, no. 4, 1993, pp.



10 Mode based hierarchical optical flow estimation

[8]. The reason is that our approach discards the measures obtained from couples of
pixels that have different velocities or have OFCs almost parallel (so the solution of the
system is not reliable.)

4.2, Quantitative results, non hierarchical algorithm.

We will define the error as the sum of the modulus of the differences between correct
and obtained velocities as in [13]. The test sequences used in these series of test were
“ Translating tree”, “Diverging tree”, “Yosemite flight through”, “Rotating sphere”,
“Diverging office” and “Street”. The first three are the well known sequences used in
[3] to test the performance of various algorithms. The sequences are semi-synthetic, real
images manipulated to give the illusion of movement in the scene or by the camera. The
last three were proposed in [2] as an alternative to perform the same task. The “Rotating
sphere” sequence shows a rotating sphere over a static sinusoidal pattern, the “Diverging
office” shows a view of an office, the camera moves towards the monitor of a computer.
The sequence “Street” shows an outdoor scene. We choose this sequences to perform the
analysis published in [3]. The source code used in the test of Anandan’s algorithm is the
same used in [3]. To test Schunck algorithm [14] and OFC Parameter Clustering [11] we
used our own implementation. In table 1 numerical values of the error are compared to
Anandan algorithm [1], OFC Parameter Clustering [11] and Schunck algorithm [14]. We
choose the first algorithm because in [3] it shows a good overall behavior compared with
the other algorithms that compute the optical flow at each pixel (100% density) as our
algorithm does. The other two algorithms are related to the one shown here, as explained
in section 2. The neighborhood size was 5 x 5 both for Anandan’s algorithm and for our
approach. For the other approaches the size of the neighborhood was 15 x 15. The size
of the neighborhoods was chosen in order to provide the algorithms a sufficient amount
of data (comparable to the quantity used in our approach) to perform the estimation
as proposed in OFC Parameter Clustering algorithm [11] and Schunck algorithm[14].
The estimator here presented performs better than Anandan’s algorithm in the case of
the “Translating tree”, “Diverging tree” and “Diverging office” sequences. In the case
of “Rotating sphere” our approach performs better than OFC’s parameter clustering.
In the case of “Yosemite flight through” and “Street”, Anandan’s algorithm performs
slightly better. The K-neighbor approach is slightly worse than the Kernel estimator,
but it is also more computationally efficient.

4.3. Quantitative results, hierarchical algorithm

In order to show how the hierarchical algorithm performs better than the non hierarchical
one when there are large velocities in the sequences, the input sequence must contain
objects moving in such way. This can be done easily with the usual sequences: discarding
one frame from each group of three multiplies the velocities by two; discarding two frames
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Tab. 1. The error obtained in the test by Kernel estimator and k-neighborhood, compared to Anandan’s
algorithm [1], OFC Parameter Clustering [11] and Schunck algorithm [14] divided by 104.

Sequence Anandan Schunck OFC param. kernel k-neigh.
clustering
Trans. tree 4.4438 3.9809 6.7663 2.3039 2.4032
Div. tree 1.5067 3.5310 2.8188 1.4246 1.5195
Yosemite 10.154 16.09 15.580 10.985 11.287
Rot. Sphere 2.4696 1.8011 1.0137 0.6612 0.7408
Office 2.1625 5.1679 3.8374 1.9104 2.1828
Street 1.8539 5.8890 4.7729 2.1046 2.4034

from each group of four multiplies the velocities by three, and so on. In table 2 the results
of the experiments where one frame of each group of three was discarded are shown. As
it can be seen, when the sequence is sampled in time with a bigger acquisition interval
between frames, all the algorithms increase the error, but the increment of the error
is bigger for Anandan’s algorithm than for the Kernel approach. This becomes more
evident if sequences with bigger velocities are used in the experiments. In table 3 the
experiments where two of each group of four frames are discarded (so the velocities are
multiplied by three) are shown. As it can be seen, in this case, the hierarchical algorithm
performs better than Anandan’s algorithm and even than the non hierarchical one in all
the sequences except than “Rotating Sphere” sequence.

Tab. 2. The error obtained in the test by non hierarchical Kernel algorithm and hierarchical Kernel,
compared to Anandan’s algorithm [1], OFC Parameter Clustering [11] and Schunck algorithm
[14] divided by 10%. Experiments with velocities multiplied by two.

Sequence Anandan Schunck OFC param. Non Hierar.
clustering hierar.
Tras. tree 8.8364 11.451 10.041 5.6818 5.9323
Div. tree 3.3408 5.3881 5.6539 2.6279 2.5138
Yosemite 22.018 23.994 28.099 19.761 18.784
Rot. Sphere 4.0091 2.8263 5.2662 1.1153 1.1268
Office 4.1539 7.6367 9.0805 3.8541 3.4233
Street 6.9549 7.5094 10.079 5.7681 4.5005
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Tab. 3. The error obtained in the test by non hierarchical Kernel algorithm and hierarchical Kernel,
compared to Anandan’s algorithm [1], OFC Parameter Clustering [11] and Schunck algorithm
[14] divided by 10*. Experiments with velocities multiplied by three.

Sequence Anandan Schunck OFC param. Non Hierar.
clustering Hierar.
Tras. tree 13.375 15.758 14.177 10.067 9.5772
Div. tree 5.8071 7.0964 7.5708 4.1595 3.8966
Yosemite 33.688 34.274 38.893 34.046 32.765
Rot. Sphere 6.1136 5.2483 7.3555 2.7218 2.2945
Office 7.3861 9.6053 11.4065 6.1911 5.3540
Street 11.424 8.9061 13.413 9.7437 8.8084

5. Conclusions and future work

In this paper a new approach to optical flow field computation is shown. The algorithm
here presented is robust due to the use of the mode as an estimator of the velocity with
more probability of being correct. In this way, the algorithm preserves the boundaries
of the movement because the basic assumption holds when most of the pixels in the
neighborhood move with similar velocity. This is done within a smaller neighborhood
than other approaches. This assumption only fails in the situations explained in 4.1. The
efficiency of the algorithm can be improved in two areas: first, many of the calculations
performed with the data in a neighborhood can be reused when velocities are computed in
adjacent pixels, because only one row (or column) of data changes. Second, as mentioned
in 2, the velocities are sorted in an array to improve the efficiency in the computation of
the mode. If the incoming data is sorted separately from the reused data, the efficiency
of the sorting stage is increased too.
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