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Abstract

A new method for applying grammar based Genetic Programming to learn
fuzzy rule based classifiers from examples is proposed. It will produce lin-
guistically understandable, rule based definitions in which not all features are
present in the antecedents. A feature selection is implicit in the algorithm.

Since both surface and deep structure will be learned, standard gram-
mar based GP is not applicable to this problem. We have adapted GA-P
algorithms, a method formerly defined as an hybrid between GA and GP,
that is able to perform a more effective search in the parameters space than
canonical GP do. Our version of GA-P supports a grammatical description
of the genotype, a syntax tree based codification (which is more efficient than
parse tree based representations) and a niching scheme which improves the
convergence properties of this algorithm when applied to this problem.

Keywords: Genetic Programming, Genetic Fuzzy Systems, Fuzzy Classi-
fiers.

1 Introduction

Genetically inducting a fuzzy rule base classifier consists in evolving the definition
of the fuzzy partitions and the surface structure [2]. Linear genotypes use a rigid
codification in which the antecedent of all rules is an “and” combination of as-
serts that relate every feature to a linguistic label. Non linear genotypes, mostly
tree shaped ones —genetic algorithms with this representation are called genetic
programming (GP)— admit a more general structure. It was recently shown that
GP can be regarded as a particular case of GA with variable length representa-
tion, because there always can be found a context free grammar in which every
tree shaped individual corresponds to one valid chain [5]. The version of genetic
algorithms that explicitly deal with chains in a grammar is called grammar based

337



338 L. Sanchez & J.A. Corrales

GP. Many different structures of fuzzy classifiers can be described with grammars,
hence they can be induced with grammar based GP.

Genotype in grammar based GP is the parse tree of the chain, thus genetic
operators act on parse trees. This is rather inefficient in time (chain needs to be
compiled before its fitness is evaluated) and in space (a chain is contained in the
frontier of its parse tree). This overload is significant when searching for moderately
long chains, as is the case in fuzzy classifiers induction. We propose to use a labeled
syntax tree that allows to interpret the chains without the need of compiling them,
resulting in an structure similar to that of strongly typed GP [9]; production rule
names will act as data types.

Fuzzy classifiers depend on a linguistic description (the surface structure) and
fuzzy partitions of features (the deep structure) [12]. Fuzzy partitions are defined by
real numbers. Since grammar based GP is not efficient finding accurate numerical
expressions, it may be helped with other numerical optimization methods. We
will combine it with fixed length, real coded GA in a GA-P algorithm. GA-P is
a graph-based representation (it was formerly defined as an hybrid between GA
and GP [6]) which is more efficient than GP in this task. It will be shown how
to apply GA-P algorithms to fuzzy classifier induction. It is remarked that GP is
regarded as a particular case of GA in this paper, thus GA-P algorithms will in
turn be described as a set of genetic operators that extend GA to certain non linear
genotype. It is also proposed a niching method that improves the convergence rate
of the basic GA-P algorithm.

This paper is organized as follows: first, we will give one precise meaning to the
linguistic representation of a fuzzy rule (section 2). Then we will state the set of
GA operators that give rise to the GA-P algorithm (section 3), along with a niching
scheme efficient for inducting fuzzy rule bases (section 4). By last, numerical results
are shown in which behaviors of GA-P with/without niches and GA-P vs. other
algorithms are compared.

2 Semantic of a fuzzy rule base

The semantic of a fuzzy rule base will be defined, in terms of a fuzzy relation,
by recursively applying the conditions that follow. Recall that a fuzzy classifier is
defined by a fuzzy relation that assigns values between 0 and 1 to tuples of m + 1
values. Each tuple reflects the confidence we have on a combination on linguistic
values of all features corresponds to one of the classes; in other words: the first
value is a linguistic label defined over the first feature, the second value is a label
in the second feature, and so on, until we get the value number m + 1, which is the
class number.

2.1 Single and degenerate fuzzy rules
Let Ej be the linguistic label number “j” in the feature number “”. The rule

“if x; is l;; then class is ¢ with conf. «”
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defines the relation that follows:
R(21,. .. @, ) = {a if ;= Iy and ¢ =
0 otherwise.

The degenerate rule
“if « then class is c¢”

defines the relation

a ife=c
R(z1,. .. Tm,c) = {0 otherwikse

2.2 Semantics of logical expressions in antecedents

If the rules
“if A then class is c¢3”

“if B then class is ¢;”

define the relations R4 and Rp, then the rules
if AAB then class is ¢

if AV B then class is ¢
define the relations
Rynp(x) = min(Ra(x), Rp(x))
Ravs(z) — max(Ra(@), Ru(x))
respectively. As a consequence of this, the rule
“if AN« then class is ci”
describes the same relation as the rule

“if A then class is ¢; with confidence «”.

Therefore, if we allow the presence of logical constants in the antecedents, all
relations can be described by rules with confidence 1. For this reason, we do not
use degrees of confidence in the linguistic expression of the rules.

2.3 Semantics of a concatenation of rules

The concatenation of N rules defined by relations Ry, R, . .., Ry define the relation
R(z) = max{Ri(x),...,Rn(x)}. Two rules with the same consequent can be
combined in one. The construction

if A then class is ¢

if B then class is ¢

is identical to
if AV B then class is ¢
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CLASSIFIER — if CONDITION then class is ¢
if CONDITION then class is co

if CONDITION then class is cp,
LOGICAL-CONS
PARTITION-CONS

CONDITION — ASSERT; | ASSERT, | ... | ASSERT,,
| (CONDITION Vv CONDITION)
| (CONDITION A CONDITION)
|K1|K2|...|KNC

ASSERT; — left-trapezium(xi,Ki;,Ki2 ) |
triangle(xy,Ki1,Ki2,Ki3) |

right-trapezium(xi,Kin,—1,Kin,)

ASSERT,, — left-trapezium(x,,,Kn1,Km2) |
triangle (Xm ,Km1,Km2,Km3) |

right-trapezium(x,, ,Kmn,,—1,Kmn,,)
PARTITION-CONS — K11 ... Kin, - K1 ... K,
LOGICAL-CONS — K; Ko ... KNC

Figure 1: Grammar defining the phenotype of a fuzzy rule based classifier. The
genotype will consist in a acyclic graph built from the syntactic tree of the classifier.
Observe that the linguistic expression comprises so many rules as classes, plus two
chains of real numbers.

3 Fuzzy classifier induction with GAs

Fuzzy rules, as defined in the previous section, have a rather rigid syntax that can
be cast into a context free grammar. This allow us to genetically induce fuzzy rule
bases with the help of genetic algorithms defined over the chains of this grammar.
In particular, we will use GA-P algorithms to search for both deep and surface
structure of the rule base in one stage.

3.1 Representation of a fuzzy rule based classifier

For our purposes, a fuzzy classifier is a valid chain in the context free grammar
defined by the production rules shown in figure 1. N, is the number of classes,
T1,...,T;, are the features and n; the number of linguistic terms in feature 4,
1=1,...,m.

Observe that we allow using the logical connective “or” in antecedents and per-
mit that some features are absent from the antecedent. left-trapezium, triangle
and right-trapezium are trapezoidal or triangular fuzzy memberships defined by
two or three parameters (see Figure 2). All “K™” terminal symbols are real numbers.
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Figure 2: Trapezoidal and triangular membership functions and the meaning of
their arguments.

Since we allow using “or” in the antecedents, there are so many rules as classes.
Observe that we admit “logical constants” in the expression of the antecedent; their
meaning will be explained in the next section. There are two semantic restrictions
over the values of the constants. All genetic operators must preserve them:

1. Constants K; Ky ... Ky, take values between 0 and 1.

2. The lists [Ky1 ... Kiny] -o. [Kin1 .. Kpn,,], are ordered and their values
must be inside the range defined for every one of the features.

For example, the surface structure of a linguistic classifier for which N, = 2,
m =2, n; = 3, ng = 3 and all features range from 0 to 1 is as follows:

if x1 is MEDIUM-1 and x2 is MEDIUM-2 then class is cl1 with conf. 1
if x2 is LOW-2 then class is cl1 with conf. 1
if x1 is HIGH-1 then class is c2 with conf. 0.2

Its deep structure is defined by its surface structure plus the definition of the fuzzy
partitions of both features. For instance:

LOW-1(x1)=trapezium-left(x1,0.1,0.2)
MEDIUM-1(x1)=triangle(x1,0.1,0.2,0.5)
HIGH-1(x1)=trapezium-right(x1,0.2,0.5)
LOW-2(x2)=trapezium-left(x2,0.0,0.5)
MEDIUM-2(x2)=triangle(x2,0.0,0.5,0.8)
HIGH-2(x2)=trapezium-right(x2,0.5,0.8)

We represent the deep structure of this fuzzy classifier by means of the chain that
follows:

if triangle(x1,k11,k12,k13) and triangle(x2,k21,k22,k23)
or trapezium-left(x2,k21,k22) then class is cl

if trapezium-right(x1,k12,k13) and k2 then class is c2

0.7 0.2 0.9

0.1 0.2 0.50.00.50.8
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Figure 3: Phenotype-Genotype representation of the chain shown in section 3.1
following Geyer Schulz’s approach (upper part) and ours (lower part). In Geyer’s
the chain is the frontier of its parse tree and genotype crossover takes place between
subtrees labeled with the same symbol in the root. In our method an acyclic graph
derived from the syntactic tree of chain and GA-P crossover are used. The names
of the production rule that originate each subtree are written in parentheses and
act as types in strongly typed GP.
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Observe that the second rule makes sense in this grammar as a consequence of the
semantics defined in the preceding section, but in human language it should be
read as “if trapezium-right(x1,k12k13) then class is ¢2 with confidence k2”.

The genotype is an acyclic directed graph formed by the syntactic tree of the
chain and an array with the values of all parameters, shown in figure 3. Not all
parameters need to be used; in this example, k1= 0.7 and k2= 0.9 are not referenced
by any rule. This graph must be labeled with the names of the production rules
that originate every subtree, which is a particular case of strongly typed GP [9].

3.2 Crossover and mutation operators

As in strongly typed GP crossover, we only interchange subtrees that are evaluated
to values of the same type. Since we have defined the type of a node as the name
of the production rule which originates it, typed crossover preserves grammatical
correctness (i.e., any crossover of two trees is the syntactic tree of a valid chain
in the grammar). Observe that this crossover can be seen as an extension of the
two-point crossover to tree shaped genotype.

There are not numbers in the terminal nodes of the trees but pointers to an
array (see figure 3). GA-P algorithms merge two kinds of crossover at random: the
usual subtree interchange crossover (see figure 4) and intermediate crossover [10]
between the arrays of real numbers that we have mentioned.

Mutation is defined as the crossover of an individual with a randomly generated
one (i.e., “headless chicken crossover” [7]).

4 A niching scheme for GA-P

We have observed that in the final stages in steady state GA-P it is frequent that
all individuals in population share the same linguistic expression and differ only
in their numeric parameters, thus GA-P converges to a fixed length GA. This is a
consequence of the nature of the GA-P algorithm; when a new linguistic expression
appears, it can not be decided whether it will be a good candidate unless we
optimize their numerical parameters, but this will not be done if its initial fitness
is too low to be inserted in the population. The use of niches seems to be the
natural correction to this behavior. Our implementation differs from standard
niching GA [3] because we consider that species are groups of individuals with
the same linguistic expression and equal or different parameters. We have tried
similarity measures based on edition distance to define niches that contain similar
but not identical individuals, to reproduce concepts as niche radius and fitness
sharing, but they did not produce good results: distances between individuals
and the differences between their fitness values are not correlated, as it occurs in
multimodal numerical optimization, and similar individuals can have very different
fitness values.

The outline of a niching steady state GA-P algorithm is shown in figure 6, and
the meaning of the constants in this pseudo-code is shown in figure 5. To maintain
an adequate number of species we decided to use two functions desired_copies and
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Figure 4: Subtree crossover: Subtrees of parents with the same types (hence origi-
nated by the same production rule) can be interchanged. The array of parameters
is not altered by subtree crossover; there is a specific “chain crossover” operation
that is randomly alternated with subtree crossover.
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Parameter Description
MAX_POP Population size
MAX_ITER Maximum number of fitness evaluations
SIZE_T Tournament size
PROB_MUT Percentage of mutation
PROB_INTRA Percentage of intra-niche crossover
PROB_SUBTREE Percentage of subtree crossover/mutation
N_MAX Size of the largest niche

Figure 5: Parameters in niche GA-P algorithm

niche_GAP
initialize population
while number_of_fitness_evaluations<MAX_ITER
t[1]=randomly selected individual
if (rnd(O<PROB_INTRA) and (size_of_niche(t[1])>=SIZE_T) then
t[2..SIZE_T]=individuals from the same niche as t[1]
sort t by fitness
offspring[1..2]=chain crossover(t[1..2]))
chain mutation of offspring, with prob PROB_MUT
else
t[2..SIZE_T]=individuals selected at random
sort t by fitness
if rnd()<PROB_SUBTREE then
offspring[1..2]=subtree crossover(t[1..2]))
subtree mutation of offspring, with prob PROB_MUT
else
offspring[1..2]=chain crossover(t[1..2]))
chain mutation of offspring, with prob PROB_MUT
end if
end if
insert_and_delete(offspring[1],offspring[2],
t[SIZE_T-1],t[SIZE_T-2])
end niche_GAP

Figure 6: Basic steady state GA-P algorithm
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size_of _niche. The first one relates the index of an individual in the population
(which is ordered by the fitness value) with the maximum number of individuals
with the same tree part as it we want to exist; details about this function will be
given later in this section. The expression size_of niche(a) counts how many
individuals have the same tree part as ’a’. By comparing them, we decide if the
offspring of the crossover operation is inserted or not and also if the losers in the
tournaments are removed or not from the population. This way we dynamically
alter the sizes of all niches as new individuals are generated.

The key of this process is the function insert_and_delete (see figure 7), which
has four arguments. It tries to insert the first two ones into the population and to
delete the last two ones from it. The insertions are not made if the niche which
receives the individual has reached its maximum size, and the deletions are not
made if the niche from which the individual should be removed is smaller than
it should be. We keep track of the number of insertions and deletions, so this
operation does not alter the size of the population. When more insertions than
deletions are made, the excess of individuals (the worst ones in the population are
chosen) is deleted.

To decide whether a niche’s size is adequate we use the function desired_copies,
as we mentioned before. It estimates how many copies of an individual are needed,
depending on its fitness. It makes no sense to keep a large number of copies of an
individual with low fitness, and conversely there should be many copies of good
individuals, to accelerate the search, hence we did not define constant sized niches.
Let nmax be the maximum size of a niche (i.e., the maximum size we allow the niche
that contains the best individual in the population to have) and let us decide that
the niche size of the worst individual in population is 1. We use a linear variation
of size, as given by

n(a) = max <0’ {(nmax — 1)(MAX_POP — Opest) + 1J)

MAX_POP —1

where n is the number of copies of the individual, opes is the ordinal of the best
individual in the same niche as a (if a is going to be the best individual in its niche,
Opest 18 the ordinal that a would have in the population if it was inserted), and P
is the size of the population.

5 Numerical results

In figure 9 some different fuzzy rule learning algorithms are compared to standard
GA-P and niche GA-P over Pima, Cancer and Glass datasets. Dietterich’s 5x2cv
statistical test [4] was used to validate the effect of niching in GA-P algorithms.
In all cases the algorithm was stopped after 5000 evaluations of the fitness func-
tion. Population size (MAX_POP) is 100, tournament size (SIZE_T) is 4, probability
of mutation (PROBMUT) is 0.01, 50% in intra-niche crossover (PROB_INTRA), 50%
of subtree-chain crossover and mutation (PROB_SUBTREE) and maximum niche size
(NMAX) is 10. Niching achieved better mean performance in all tests, but this
difference is not always statistically relevant. It was found that the hypotheses
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insert_and_delete(a,b,c,d)

excess=0

if desired_copies(a) < size_of_niche(a) then
insert a in population
excess=excess+1

end if

if desired_copies(b) < size_of_niche(b) then
insert b in population
excess=excess+1

end if

if desired_copies(c) > size_of_niche(c) then
delete ¢ from population
excess=excess-—1

end if

if desired_copies(d) > size_of_niche(d) then
delete d from population
excess=excess—1

end if

delete the last ’excess’ individuals in population

end insert

Figure 7: Insertion in population with adaptive niching

Figure 8: Number of species in three runs of GA-P, without niches (left) and with
the adaptive niching proposed in this paper (center and right). The size of the
population is 100, the maximum size of a niche is 10 (center) and 50 (right). Vertical
axis shows the percentages of the population that are occupied by individuals with
the same tree part.
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Figure 9: Comparison between the deviation of test error when repeating 10 times
the learning over PIMA, CANCER and GLASS dataset and 5x2cv experimental
framework. From left to right: Grammar based GA-P without niches, niching
GA-P with maximum niche size of 5, 10, 20 and 50. Population size is 100.

“niching is relevant to the algorithm” is not rejected with a confidence of 99%,
87% and 80% for Pima, Cancer and Glass, respectively.

The benchmark defined in [11] was also used to contrast GA-P algorithms when
inducting fuzzy classifiers and to provide numerical data of the expected classifi-
cation error. Every experiment has been repeated 30 times over three different
permutations of the dataset. 75% of samples were used to design the classifier,
25% to test it by cross-validation. In Figure 10 the mean values obtained are
shown for every permutation along with the standard deviations of the experi-
ments. The same framework as in the previous experiment was used except for
population size and the number of iterations. 5 parallel subpopulations of size 100
were defined (migration probability was 1%). The algorithm was stopped after
evaluating 50000 times the fitness function (approximately 10000 evaluations in
every subpopulation).

Data relative to linear and neural classifiers error is taken from [11]. The para-
meter of the k-neighbors classifier was chosen to minimize the classification error
evaluated with leave-one-out. Observe that the dispersion of the results obtained
when training a neural network from different starting points can be higher than
the dispersion of GA-P results (figure 9).

Since a classifier that decides between M classes can always be written with M
rules, counting the number of rules makes no sense here. We have measured the
complexity with the number of nodes in the classifier’s syntax tree instead. Last
column displays the mean number of characteristics a classifier use. The results are
much compact than most fuzzy rule learning algorithms, but results should not be
numerically compared due to different structure of rule bases in the methods that
were studied and this one. The length of the linguistical expression of the final
classifier induced with GA-P is much shorted with lengths of other GA induced
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Dataset | K-NN Linear MLP GA-P Complexity | Variables
Mean Dev | Mean Dev || Mean Dev Nodes Used Total
Cancer-1 1.7 2.93 0.18 1.38 0.49 3.06 1.00 37.7 4.5/9
Cancer-2 4.0 5.00 0.61 | 4.77 0.94 6.30 1.99 36.5 4.4/9
Cancer-3 4.5 5.17 0.00 | 3.70 0.52 4.50 1.79 35 4.4/9
Thyroid-1 | 5.95 6.56 0.00 | 2.38 0.35 4.92 0.94 34.5 4.1/21
Thyroid-2 6.00 6.56 0.00 1.91 0.24 4.80 0.82 37.7 4.5/21
Thyroid-3 6.50 7.23 0.02 2.27 0.32 4.88 0.88 36.6 4.3/21
Pima-1 25.5 | 25.83 0.56 | 24.10 1.91 || 24.92 1.89 34.1 3.7/8
Pima-2 27.6 | 24.69 0.61 | 26.42 2.26 || 29.68 2.05 24.3 3/8
Pima-3 23.5 22.92 0.35 | 22.59 2.23 || 24.29 2.17 25.4 3/8
Glass-1 35.8 | 46.04 2.21 | 32.70 5.34 || 39.62 4.73 73.9 6.7/9
Glass-2 33.9 | 55.28 1.27 | 55.57 3.70 || 42.11 2.78 81 5.8/9
Glass-3 35.0 | 60.57 3.82 | 58.40 7.82 || 41.15 4.72 68.5 5.3/9

Figure 10: Compared results between fuzzy classifiers obtained with GA-P algo-
rithms and statistical and neural classifiers over the benchmark defined in [11].

classifiers’ lengths, often by an order of magnitude.

6 Concluding Remarks

When designing fuzzy rule based classifiers, one of the main concerns is how much
predictive accuracy has to be sacrificed for the sake of intelligibility. Canonical GP
has been previously used to induce surface structure of fuzzy classifiers, but induct-
ing deep structures requires combining it with a numerical optimization method,
like GA-P does. We have shown that GA-P algorithms achieve from data with
good numerical behavior and obtaining compact solutions, and adapted them to
use a grammatical description of a fuzzy classifier and to support a niching scheme
that sustains diversity in steady state GA-P.
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