
Multi-Factorial Risk Assessment: An Approach

based on Fuzzy Preference Relations

Raúl Pérez-Fernández a, Pedro Alonso b,

Irene Díaz c and Susana Montes d.

aDepartment of Statistics and O.R.,

University of Oviedo.

e-mail: uo205053@uniovi.es

bDepartment of Mathematics,

University of Oviedo.

e-mail: palonso@uniovi.es

cDepartment of Computer Science and A.I.,

University of Oviedo

e-mail: sirene@uniovi.es

dDepartment of Statistics and O.R.,

University of Oviedo

e-mail: montes@uniovi.es

Abstract

The main purpose of this paper is to develop a new method to aggregate the in-
formation given by several experts or criteria about di�erent alternatives in order
to obtain the preferred alternative or alternatives. This method has to take into
account the interaction of the di�erent alternatives and a parameter modelling the
�exibility of this method has to be introduced. More precisely, this method uses
fuzzy preference relations, aggregated by means of weighted ordered weighted av-
eraging aggregation operators (WOWA). For the exploitation phase the extended
weighted voting algorithm is introduced and studied in detail. Finally, the goodness
of this approach is analysed using it to combine di�erent points of view (people,
environment, assets and reputation impact for the company) in the assessment of
risk associated with human reliability.
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1 Introduction

Each year billions of dollars are spent to develop, manufacture, and oper-
ate transportation systems such as aircraft, ships, trains and motor vehicles
throughout the world. During their operational life-time, thousands of lives
are lost annually due to various types of accidents. For example, in the United
States around 42000 deaths occur annually due to automobile accidents only
on highways [16]. In terms of dollars, in 1994 the total cost of motor vehicle
crashes, was estimated to be around $150 billion to the United States economy
[11,16].

In addition, between the 70% and 90% of transportation crashes are produced
as a consequence of human error to a certain degree [16]. Moreover, human
errors contribute signi�cantly to many transportation crashes across all modes
of transportation. For example, according to a National Aeronautics and Space
Administration (NASA) study over 70% of airline accidents involved some de-
gree of human error and according to a British study around 70% of railway
accidents on four main lines during the period 1900-1997 were the result of
human error [1,12,13]. Although the study of human reliability may be traced
back to 1958, but since lates 80s several hundreds of papers on human relia-
bility have appeared. An interesting list can be found in the Appendix of the
classical book of Dhillon [7].

A main topic related to human factors is the concept of risk assessment matrix
(see [6,19]). It is considered useful for studying human reliability in general and
human reliability in transportation systems in particular. The risk assessment
matrix allows the classi�cation of di�erent kind of errors according to their
importance. This classi�cation can help in decision making about the most
important or urgent one.

Usually the risk matrix takes into account only one criterion (most of the
cases: economical impact). However, decision making in a company often con-
siders more than one. Therefore, it is interesting to consider at the same time
more than one di�erent risk matrix, each one associated with a di�erent cri-
teria for consequences (for example, e�ects on people, environment, assets or
reputation).

Thus, a method to combine this information is needed, in order to classify
the errors according to more than one criterion. This is our starting point.
However, we have developed a general method to combine the information
about di�erent alternatives given by several experts or taking into account
several criteria and the choice of the set of the best ones. This method can
be applied in any environment where exists interaction among the di�erent
alternatives or some experts are more reliable than others. This will be done by
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the de�nition of fuzzy preference relations and the use of di�erent aggregation
functions, in particular the weighted ordered weighted averaging operator.

Thus, �rstly the general method is developed and later it is applied to the
particular area we are interested in. In detail, the structure of this paper is as
follows: Section 2 gives an overview of the preliminary de�nitions used in this
article. In Section 3 the group decision making problem matter of this study
and also the proposed method to solve it are presented and its behaviour in
accordance to the used parameter is studied. Section 4 shows our experimental
framework and the experimental analysis carried out for the particular case
of human reliability. We �nish with some conclusions and open problems.

2 Preliminary de�nitions

In this section we carry out a brief introduction to fuzzy preference relations
and aggregation operators. Firstly, we will introduce the type of fuzzy relations
used in this work, together with some speci�c properties. Next, we will recall
the de�nitions of aggregation operators and, in particular, the case of the non-
weighted and weighted ordered weighted averaging aggregation operators.

2.1 Fuzzy preference relations

Initially, in group decision making decision making problems crisp relations are
used to represent the presence or absence of preference between the di�erent
alternatives. However, in real problems, it is hard to measure the preference
between two alternatives and, in some cases, we cannot unequivocally deter-
mine which one is preferred. That is the reason why this concept is generalized
by introducing multivalued relations. This generalization allows us to measure
the degree of preference to which an alternative is preferred to another. A gen-
eral study about multivalued relations can be seen in [9].

There are di�erent kind of multivalued or fuzzy relations, according to di�erent
ways of considering the available information. In particular we are interested
in probabilistic relations (also known as reciprocal or ipsodual relations). In
this paper, as there is no ambiguity, we will call them fuzzy preference relation.

De�nition 1 Given a �nite set of alternatives A, a fuzzy preference rela-

tion P is a mapping P : A × A → [0, 1] such that P (a, b) + P (b, a) = 1 for
any pair of alternatives a and b in A.

The fuzzy preference relation P (a, b) between two alternatives a and b carries
a bipolar semantic, meaning that the interval [0, 1/2) represents preference of
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b over a, the interval (1/2, 1] represents the preference of a over b and the
central value 1/2 represents indi�erence.

In group decision making problems fuzzy preference relations are often repre-
sented as a matrix:

P =


p11 . . . p1n
... . . .

...

pn1 . . . pnn

 ,
where pij = P (ai, aj) denotes the degree to which alternative ai is preferred
to alternative aj.

When comparing fuzzy quantities, the absence of a global de�nition of transi-
tivity could become a problem. In the literature (see [20]), several de�nitions of
transitivity are available. Thus, for fuzzy preference relations, coherent prop-
erties are the following.

De�nition 2 Let P be a fuzzy preference relation on A:

• P is said to be weakly transitive i� ∀(a, b, c) ∈ A3:

P (a, b) > P (b, a) and P (b, c) > P (c, b)⇒ P (a, c) > P (c, a).

• P is said to be acyclic i� ∀(a1, a2, . . . , an) ∈ An:

P (a1, a2) > P (a2, a1), P (a2, a3) > P (a3, a2), . . . , P (an−1, an) > P (an, an−1)

⇒ P (a1, an) ≥ P (an, a1).

As it is logical, a coherent behaviour is necessary to order the alternatives,
and this coherence could be established by any of the previous properties. A
more detailed explanation about transitivity and its importance for ordering
of fuzzy quantities can be seen in [21,22].

2.2 Aggregation functions

In a rather informal way, the aggregation problem consists in aggregating n-
tuples of objects all belonging to a given set into a single object of the same
set.

This is an indispensable tool in many �elds as engineering, economical or
social sciences. By this reason, the theoretical study of aggregation operators
have increased a lot during the last years. A good overview about them can be
found in [4]. In this section we will simply recall the most important de�nitions
for our purposes.
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De�nition 3 Let I be a closed interval in R. An m-ary aggregation oper-

ator or aggregation function is a function

f : Im −→ I

(x1, x2, . . . , xm) −→ f(x1, x2, . . . , xm)

ful�lling the following properties:

• Increasing: f(x1, x2, . . . , xm) ≤ f(y1, y2, . . . , ym) if xi ≤ yi for any i ∈
{1, 2, . . . ,m}.
• Boundary conditions: inf

x∈Im
f(x) = inf I and sup

x∈Im
f(x) = sup I.

In this paper, the particular case of ordered weighted averaging aggregation
operators are considered. They were originally introduced by Yager in [23] to
provide a method for aggregating scores associated with the satisfaction of
multiple criteria.

Formally,

De�nition 4 Let I be a closed interval in R. An ordered weighted aver-

aging aggregation operator (OWA for short) is any aggregation operator
de�ned by

fOWA : Im −→ I

(x1, x2, . . . , xm) −→
m∑
i=1

wixσ(i)

where σ is the permutation that sorts the elements in the following way: xσ(1) ≥
xσ(2) ≥ . . . ≥ xσ(m) and {wi}mi=1 is a family of weights such that wi ≥ 0 and
m∑
i=1

wi = 1.

A complete study about these functions can be found in [24]. Examples of
aggregation functions are the arithmetic or geometric means, minimum, max-
imum, median and the weighted arithmetic mean (WM). All of them, except
the geometric mean and the weighted arithmetic mean, are examples of OWA
functions.

The goal of a group decision making problem is to obtain, through consen-
sus of the experts, the most accepted alternative or set of alternatives. The
widespread idea of using OWA operators in this kind of problems is intuitive
and logical, and it can be improved with the use of linguistic quanti�ers as:
�as many as possible� or �at least half� of the experts. However, sometimes
there are experts more reliable than others, primarily when talking not about
experts but di�erent criteria or points of view. That is the reason why the
WOWA operator is introduced ([18]).
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De�nition 5 Let I be a closed interval in R. A weighted ordered weighted

averaging aggregation operator (WOWA for short) is any aggregation op-
erator de�ned by

fWOWA : Im −→ I

(x1, x2, . . . , xm) −→
m∑
i=1

ωi xσ(i)

where

• {σ(1), . . . , σ(m)} is a permutation of {1, . . . ,m} such that xσ(i−1) ≥ xσ(i)
for all i = 2, . . . ,m and
• the weight ωi are de�ned for all i = 2, . . . ,m as:

ωi = w∗

∑
j≤i

wWMσ(j)

− w∗
∑
j<i

wWMσ(j)

 ,

with w∗ a monotone increasing function that interpolates by means of straight

lines them+1 points

(0, 0), (1/m,wOWA1 ), . . . , (i/m,
∑
j≤i

wOWAj ), . . . , (1, 1)

,
being wWM and wOWA the weighting vectors of dimension m, associated re-
spectively with the weighted arithmetic mean and a OWA operator. That
is, wWM = (wWM1 , . . . , wWMn ) and wOWA = (wOWA1 , . . . , wOWAn ) ful�lling that
wWMi , wOWAi ≥ 0 for all i ∈ {1, 2, . . . ,m} and

∑
i

wWMi =
∑
i

wOWAi = 1.

The WOWA operator is an aggregation operator, i.e. it remains between the
minimum and the maximum and it is increasing in all of its arguments. This
operator can be seen as a generalization of weighted arithmetic mean and
OWA operators.

Example 6 Due to the de�nition of WOWA operator is not very simple, let
us consider an example of application of them.

Let x = (1, 2, 3, 4) be the vector to be aggregated, w∗ the linear interpolation
and consider the weighting vectors wWM = (1/4, 1/4, 1/3, 1/6) and wOWA =
(1/2, 1/3, 1/9, 1/18).

Firstly, the function w∗ is de�ned. In this case, as the linear interpolation is
considered, w∗ is the polygonal line interpolating the points (0, 0), (1/4, 1/2),
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(1/2, 5/6), (3/4, 17/18) and (1, 1). Thus,

w∗(x) =



2x if 0 ≤ x ≤ 1/4,

4/3x+ 1/6 if 1/4 < x ≤ 1/2,

4/9x+ 11/18 if 1/2 < x ≤ 3/4,

2/9x+ 7/9 if 3/4 < x ≤ 1.

Now the weight ω associated to vector x = (1, 2, 3, 4) is computed. Thus,

ω1 = w∗(1/6)− w∗(0) = 1/3,

ω2 = w∗(1/2)− w∗(1/6) = 1/2,

ω3 = w∗(3/4)− w∗(1/2) = 1/9,

ω4 = w∗(1)− w∗(3/4) = 1/18,

and therefore, ω = (1/3, 1/2, 1/9, 1/18). Finally, the aggregated value is ob-
tained fWOWA(1, 2, 3, 4) =

1
3
· 4 + 1

2
· 3 + 1

9
· 2 + 1

18
· 1 = 28/9.

Let us notice that the weight vector ω depends on wWM and wOWA, but it also
depends on the vector to be aggregated, x = (x1, . . . , xm) as we can see in the
next example.

Example 7 In Example 6, the vector to be aggregated was x = (1, 2, 3, 4),
which implied that wWM

σ = (1/6, 1/3, 1/4, 1/4) and from that, it was obtained
that ω = (1/3, 1/2, 1/9, 1/18).

However, if we want to aggregate the vector (0.3810, 0.8889, 0.6154, 0.2353), as
the order of the elements is di�erent, we have that wWM

σ = (1/4, 1/3, 1/4, 1/6)
and therefore, the associated vector of weights is ω = (1/2, 10/27, 5/54, 1/27).

In that case, fWOWA(0.3810, 0.8889, 0.6154, 0.2353) =
1
2
·0.8889+ 10

27
·0.6154+

5
54
· 0.3810 + 1

27
· 0.2353 = 0.7164.

In any case, for any vector x, the associated {ωi}mi=1 is a vector of weights.

Proposition 8 Given an element x ∈ Im, if we consider the vector {ωi}mi=1

associated to x by the expressions introduced in De�nition 5, we have that

ωi ≥ 0,∀i ∈ {1, 2, . . . ,m} and
m∑
i=1

ωi = 1.

Proof. By de�nition, it is immediate that ωi ≥ 0,∀i ∈ {1, 2, . . . ,m} and
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m∑
i=1

ωi = w∗(1)− w∗(0) = 1− 0 = 1. �

3 The group decision making problem applied to the Risk Assess-
ment Problem

In a group decision making problem we have a set of n alternatives A =
{a1, . . . , an}, (n ≥ 2) and a set of m experts E = {e1, . . . , em}, (m ≥ 2).
Each expert provides his preference on the set of alternatives and the goal
of the group decision making problem is to look for the alternative (or set of
alternatives) which is (are) most accepted by the experts. It must be noted that
�di�erent experts� could be understood as both �di�erent people� or �di�erent
criteria�.

The resolution of a group decision making problem, according with the prin-
ciples established in [5], is developed in the following two steps:

(1) Making the information uniform. Each preference ordering of each expert
is transformed into a fuzzy preference relation form.

(2) Application of a selection process. The most accepted alternative by our
experts must be selected.
In addition, the selection process is also applied in two steps:

(a) Aggregation phase. A consensus fuzzy preference relation is obtained
using an aggregation operator.

(b) Exploitation phase. The most accepted alternative from the consensus
fuzzy preference relation is selected.

In the aggregation phase the use of linguistic quanti�ers (for example �as many
as possible�) would be useful to represent the concept of fuzzy majority and
they would allow us to build this collective fuzzy preference relation.

3.1 Making the information uniform

In the Risk Assessment Problem, for each alternative ai, with i = 1, 2, . . . , n,
we have associated a vector with the utility values given by the m experts
about it: vi = (v1i , . . . , v

m
i ). These values vki are real numbers. However, the

assessment of these utility values could be a bit uncertain in the Risk Assess-
ment Problem and working with these utilities could be quite strict. Therefore,
transform utilities into preference relations could provide our method with
more �exibility.
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Our goal is to construct m matrices, P1, . . . , Pm, representing the fuzzy pref-
erence relations associated to each expert in the set {e1, . . . , em}. Therefore,
the problem is to look for a transformation function h allowing us to obtain
the preference value (pkij) measuring the degree of preference of ei over ej, for
an expert ek, depending only on the values of vki and vkj :

pkij = h(vki , v
k
j ), i, j ∈ {1, 2, . . . , n} with i 6= j and k ∈ {1, 2, . . . ,m}.

Intuitively, the greater is the utility value given by the expert to the �rst
alternative (vki ), the greater the preference relation should be. Analogously,
the greater our second utility value vkj is, the lower the preference relation
should be. Therefore, the transformation function h must be increasing in its
�rst argument and decreasing in the second one.

Along this paper, we will consider the following transformation function:

pkij = h(vki , v
k
j ) =

(
vki
)r(

vki
)r

+
(
vkj
)r , i 6= j, r > 0. (1)

It should be remarked that values of r > 1 bene�t high utility values guiding
us to a {0, 1}-value preference relation when r → +∞, and values of r < 1
decrease the di�erences between the risk values guiding us to a 0.5 single
valued preference relation when r → 0. The transformation function de�ned
above is most common. However, other examples of transformation functions
may be found in [5].

It is important to remark that experts can show their preference using utility
values, fuzzy numbers or preference relations. In fact, they do not have to
present them in the same way. These utilities represent a particular case used
in our proposal to model a Risk Assessment Problem in order to obtain a
preference relation which is the real initial point in a group decision making
problem.

3.2 Application of a selection process: Aggregation phase

At this moment, we have m fuzzy preference relations, each of them express-
ing the preference of the respective expert. Thus, next step should be the
�consensus� of the fuzzy preference relations.

Therefore, in this section it is explained how to aggregate the di�erent fuzzy
preference relations related with the di�erent experts. In this kind of problems
the OWA operators are often used and these operators are also related to the
concept of fuzzy quanti�ers. For example, the fuzzy quanti�er �as many as

9



possible� could be a perfect solution to the traditional group decision making
problem based on looking for a �consensus� of di�erent experts. However, in
some cases (for instance in the application of Section 4), we are not just inter-
ested in a �consensus� of the di�erent experts. Sometimes, the most important
characteristic is to be �drastic� in at least one of the di�erent objectives. That
is the reason why the weight vector wOWA = (wOWA1 , . . . , wOWAm ) associated
with the OWA operator must have its components ordered in a decreasing
way, i.e.

wOWA1 ≥ wOWA2 ≥ . . . ≥ wOWAn−1 ≥ wOWAn .

When using an OWA operator, not all the di�erent experts have the same
degree of importance. In the traditional group decision making problem, as-
signing more importance to an expert over another could have a lack of sense
or could derive in hierarchic problems. However, in other cases, it is totally
necessary to assign an importance to each expert. Therefore, a WM operator
could be considered to model this problem.

Thus, WOWA operator will be considered, as they combine these two points
of view according to

pij = fWOWA
(
p1ij, . . . , p

m
ij

)
,

if we have m fuzzy preference relations P1, . . . , Pm associated to the m experts
and the objective is to obtain a fuzzy preference relation P unifying these
previous relations. Each element of the new preference relation, pij, represents
the preference of alternative ai over alternative aj. Moreover, fWOWA (·) is the
WOWA operator with a weight vector wOWA associated to the OWA part and
a weight vector wWM associated to the WM part.

3.3 Application of a selection process: Exploitation phase

Finally, once the �nal fuzzy preference relation is obtained, the di�erent cri-
teria are analysed in order to exploit the information.

In general, the previous steps of the method do not make the �nal fuzzy
preference relation to be acyclic. For example, if we consider the risk vectors
(1, 2, 3, 5), (1, 3, 5, 2) and (1, 5, 2, 3) with the weight vector (1/4, 1/4, 1/4, 1/4)
used in both parts of the WOWA operator, then the application of the above
described steps lead us to the presence of cycles in P . Note that if the order of
the �rst two steps is inverted (�making the information uniform� and �aggre-
gation phase�) then the method does not produce cycles (in fact, in this case it
is a weak transitive method). However, we are not interested in changing this
order, because the procedure obtained does not study the interaction between
the di�erent alternatives and some �exibility is lost.

Therefore, a non-transitive method must be used in this part of the analysis.
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The weighted voting method ([22]) could direct to a more �exible study of
the alternatives, where the importance of each event does not reside in �being
desirable over the most events� but in �being the most desirable over the other
events�.

A natural extension of the weighted voting method is the main goal of this
section. This extended method de�nes a parameter α allowing to model the
importance of �being desirable� or �not being preferred� among the whole
alternative set. This parameter represents the degree of optimism, as we will
see later.

The algorithm proposed is the following.

Algorithm 1 Extended Weighted Voting Method (EWVM)

• Input:

· A fuzzy preference relation P over a set of alternatives A = {a1, . . . , an}
· Fix the parameter α
· Choose an aggregation operator Agg
• Output: A family of non-empty sets Ki
1. Normalize P
2. Separate the �positive preference� (P+) and the �negative preference� (P−)

via
p+ij = max{0, pij − 0.5}
p−ij = min{0, pij − 0.5}

3. Pα = α · P+ + (1− α) · P−
4. B0 = A and k = 0
5. While Bk 6= ∅

For each ai ∈ Bk
Mi = {l ∈ {1, . . . , n} / al ∈ Bk and l 6= i}
I(ai) = Agg

(
pαiMi

)
Kk+1 = aargmaxi{I(ai)}
Bk+1 = Bk\Kk+1

k = k + 1
end

Due to the handling of matrices in the aggregation phase, these matrices could
derive on fuzzy preferences which not ful�l the normalization requirement.
Thus, Step 1 is needed in order to re-obtain a fuzzy preference relation, oth-
erwise, p+ij and p

−
ij have no sense. Some examples of normalization functions

may be found in [5].

In Step 2, p+ij and p−ij represent respectively the values above or below the
preference indi�erence between the alternatives, i.e. preference indi�erence
holds when pij = 0.5.
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On the other hand, when assigning the alternative (or alternatives) with the
highest index to the set Kk, a tie could be achieved, so a deadlock rule could
be established in order to obtain a linear order.

Remark 9 The sets Ki are disjoint sets satisfying
⋃
i

Ki = A for construction.

A total order can be introduced using Algorithm 1, which is de�ned as follows.

De�nition 10 For any set of alternatives A = {a1, . . . , an} we can de�ne the
binary relations �, � and ∼ as follows:

• ai � aj ⇔ ∃Ks,Kt such that ai ∈ Ks, aj ∈ Kt and s < t.
• ai ∼ aj ⇔ ∃Ks such that ai ∈ Ks, aj ∈ Ks.
• ai � aj ⇔ ai � aj or ai ∼ aj.

Proposition 11 For any set of alternatives A = {a1, . . . , an}, the relation
de�ned in De�nition 10 ful�l the following properties:

(1) � and ∼ are re�exive.
(2) ∼ is symmetric and � is antisymmetric.
(3) �, � and ∼ are transitive.
(4) � is a total order.

Proof.

(1) By de�nition of {Ki}i, ∀x ∈ A, ∃Ks such that x ∈ Ks. So, x ∼ x and
therefore x � x.

(2) Let x, y ∈ A and Ki and Kj be the sets satisfying x ∈ Ki and y ∈ Kj.
Therefore, x ∼ y ⇒ i = j ⇒ y ∼ x, i.e., ∼ is symmetric.
On the other hand if x � y, then i ≤ j. Analogously, if y � x, then

j ≤ i. So, if x � y and y � x, then i = j and therefore x ∼ y, i.e., � is
antisymmetric.

(3) Let x, y, z ∈ A and Ki,Kj,Kk the sets satisfying x ∈ Ki, y ∈ Kj and
z ∈ Kk.
If x ∼ y and y ∼ z, then i = j and j = k =⇒ i = k and x ∼ y, i.e., ∼

is transitive.
If x � y and y � z, then i < j and j < k =⇒ i < k and x � y, i.e., �

is transitive.
If x � y and y � z, then i ≤ j and j ≤ k =⇒ i ≤ k and x � y, i.e., �

is transitive.
(4) Let x, y ∈ A and Ki and Kj be the sets satisfying x ∈ Ki and y ∈ Kj.

There are three possibilities i < j, i > j and i = j:
If i < j, then x � y.
If i > j, then y � x.
If i = j, then x ∼ y. �

12



Thus, it is proven that the relation∼ is an equivalence relation and the relation
� is a total order.

Remark 12 Note that for α ∈ [0, 1]:

• If α = 0.5, EWVM coincides with the �weighted voting method�.
• If α < 0.5, the �least dominated� alternative is preferred.
• If α > 0.5, the �most dominating� alternative is preferred.

The meaning of �least dominated� and �most dominating� alternative is shown
in Example 13.

Example 13 Suppose four alternatives a1, a2, a3 and a4. The consensus of
the experts says that the alternatives a1 and a2 are the two most important
alternatives. In particular the alternative a1 is clearly more preferred than the
alternatives a3 and a4, but the alternative a2 is slightly more preferred than
the other three, as we can see in the consensus preference relation:

P =



0.5 0.45 1 1

0.55 0.5 0.6 0.6

0 0.4 0.5 0.5

0 0.4 0.5 0.5


.

Then, is a1 more important than a2? It depends on the degree of optimism we
want to assume. We are going to analyse the two extreme cases of α = 0 and
α = 1.

If α = 0, as P 0 = P−, the preference is given to the �least dominated� alter-
native, obtaining the following indexes (considering the aggregation operator
arithmetic mean):

I(a1) = −0.0167, I(a2) = 0, I(a3) = I(a4) = −0.2.

Therefore, we will classify as the most important alternative a2.

On the other hand, if the preference is given to the �most dominating� alter-
native (with α = 1), as P 1 = P+, the indexes are

I(a1) = 0.3333, I(a2) = 0.0833, I(a3) = I(a4) = 0.

Consequently, the most preferred alternative in this case is a1.

13



3.4 Behaviour of EWVM depending on α

Previously, the extended weighted voting method was introduced and, as it was
detailed, the algorithm depends on parameter α. In this section, it is studied
more in depth the performance of the algorithm according to the values of
α. The objective is to check how the method depends on the parameter α
and how variations in α do not drastically a�ect the �nal result if there is a
signi�cant order between the alternatives.

Therefore, this experiment is divided in two parts. In the �rst part random
matrices are used to study the dependence of EWVM on the parameter and
then, in the second part, matrices with a sense of transitivity between their
respective alternatives are used in order to study the suitable behaviour of
EWVM.

Firstly, a hundred of 100×100 matrices have been randomly generated. These
matrices are supposed to be the fuzzy preference relation between 100 cer-
tain alternatives, so all their components are random values between 0 and 1
satisfying pij + pji = 1 ∀i, j.

Let us study how the output of the method is in�uenced by the value of
parameter α. Therefore, several values of α have been �xed: α1 = 0, α2 = 0.25,
α3 = 0.5, α4 = 0.75 and α5 = 1.

After applying the extended weighted voting method to each matrix with
each level of α, 500 orders of our 100 alternatives are obtained. Spearman and
Kendall coe�cients (see [17]) can be used to measure statistical dependence
between these ordinal variables.

The following matrices represent Spearman (ρ) and Kendall (τ) coe�cients
for the 5 di�erent levels of α. Each element of ρ and τ , represents the cor-
responding averaged (over the values obtained for each one of the 100 initial
matrices) coe�cient between the orders induced by αi and αj:

ρ =



1.0000 0.7894 0.6356 0.4630 0.3305

0.7894 1.0000 0.7990 0.6422 0.5165

0.6356 0.7990 1.0000 0.8103 0.7059

0.4630 0.6422 0.8103 1.0000 0.8531

0.3305 0.5165 0.7059 0.8531 1.0000


,
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τ =



1.0000 0.6230 0.4721 0.3306 0.2321

0.6230 1.0000 0.6323 0.4770 0.3716

0.4721 0.6323 1.0000 0.6464 0.5332

0.3306 0.4770 0.6464 1.0000 0.6945

0.2321 0.3716 0.5332 0.6945 1.0000


.

Note that low values of Spearman and Kendall coe�cients are associated to
the farthest values of α. Therefore, the more di�erent the values of α, the more
di�erent the orders induced. So, EWVM leads us to di�erent orders.

Other question arising is related to the behaviour of EWVM when there is
some transitivity between the preferences of the alternatives. To check it, a
hundred of 100×100matrices have been generated, but not in a random way. In
order to obtain each 100×100 matrix, some utility values have been randomly
generated for every alternative and then the matrices have been constructed
using these values. As there is a �sense of transitivity� in the way we have
constructed these matrices, the behaviour of the alternatives would not be as
chaotic as before and the most obvious orders between our alternatives would
be kept. However, it must be remarked that we are not constructing strictly
transitive matrices, but matrices where the behaviour is �more transitive� than
before.

Finally, EWVM was applied to obtain di�erent preference relation matrices.

The results obtained in this case are:

ρ =



1.0000 0.9976 0.9972 0.9971 0.9970

0.9976 1.0000 0.9999 0.9998 0.9998

0.9972 0.9999 1.0000 1.0000 0.9999

0.9971 0.9998 1.0000 1.0000 1.0000

0.9970 0.9998 0.9999 1.0000 1.0000


,

τ =



1.0000 0.9690 0.9663 0.9651 0.9645

0.9690 1.0000 0.9968 0.9955 0.9948

0.9663 0.9968 1.0000 0.9987 0.9980

0.9651 0.9955 0.9987 1.0000 0.9993

0.9645 0.9948 0.9980 0.9993 1.0000


.

In this case, the values of the coe�cients are higher, therefore there is a
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stronger relation between the orders induced by the di�erent values of α.

Therefore, as shown in the �rst part of the experiment, EWVM absolutely
depends on the parameter α. However, we can observe that, as shown in the
second part of the experiment, under certain conditions of transitivity this
method leads us to similar orders where the di�erences are just in the few
alternatives more likely to move its position when the criteria is ranged from
the �most dominating� to the �least dominated�.

4 Application: Multifactorial Risk Assessment Evaluation

As we commented in the introduction, the developed method was considered
as a solution to a real problem. In this section we will explain this problem
and how the solution is obtained by means of the previous procedure.

In this particular framework, our purpose was to order di�erent human errors
(in this case they play the role of alternatives) in accordance with their impor-
tance for several criteria (which can be considered as experts). Any criterion
will allow us to obtain a fuzzy preference relation associated to the human
errors. The evaluation of the alternatives to obtain this relation is given by
means of risk assessment matrices. These matrices are probably one of the
most widespread tools for studying the risk evaluation problem. They are
mainly used to determine the importance of a risk and whether the risk is
su�ciently controlled or not.

A risk matrix has two dimensions. It represents how severe and likely an
unwanted event is. The combination of probability and severity will give to
any event a place on a risk matrix (there are some events that are more
di�cult, but well come to that later). This is a simple mechanism to ease the
visibility of the most dangerous risks and assist in the decision making process.

Although many standard risk matrices exist in di�erent contexts: US DoD,
NASA, ISO (see [10,15,19]), individual projects and organizations may need
to create their own risk assessment matrix or tailor an existing one. In this
paper, it is considered the standard created for the FASyS project (which is the
Spanish acronym for �Fábrica Absolutamente Segura y Saludable� that means
�Absolutely Safe and Healthy Factory�) [8], since it is the most frequently
considered one in Spain for Transportation Systems.

In our study, the harm severity is categorized as: severe, signi�cant, moderate,
minor, negligible and none. On the other hand, the probability of harm occur-
ring is categorized as: frequent, probable, occasional, remote and improbable.
Therefore, each hazard level is associated with a risk value, which is repre-

16



sented, in this case, by a number. The aforementioned risk assessment matrix
is shown in Table 1.

SEVERITY

None Negligible Minor Moderate Signi�cant Severe

LIKELIHOOD

Frequent 8 16 24 40 64 104

Probable 5 10 15 25 40 65

Occasional 3 6 9 15 24 39

Remote 2 4 6 10 16 26

Improbable 1 2 3 5 8 13

Table 1
Risk assessment matrix.

As it can be seen from the table, the risk matrix has three areas:

• The high probability-high severity area (red) which indicates that an event
categorized in this area needs to be solved immediately, because its conse-
quences would be catastrophic.
• The low probability-low severity area (green) which indicates that the risk of
an event is not high enough to be taken into account, or that it is su�ciently
controlled. No action is usually taken for events in this area.
• The medium category (yellow) is located between these two areas. Any event
that falls in this area needs to be monitored, but giving preference to the
incidents in the red zone.

Even though the risk assessment matrix has a lot of drawbacks, it is still one
of the standard tools used in most risk assessment problems and, if properly
used, it can provide a reasonable solution.

Several organizations use the risk assessment matrix as an essential tool for
classifying the di�erent errors according to their importance. This matrix is
usually based only on the economic impact for the company. However, nowa-
days, other important impacts can be derived from an error, such as reputation
of the enterprise or consequences for people. Moreover, the environmental im-
pact is a growing concern for most of the companies. Thus, these four concerns
(assets, reputation, people and environment) could be analysed by experts in
order to classify the errors. According to that, several di�erent risk assess-
ment matrices should be managed at the same time (one for each way of
consequence) and we would like to obtain an order for the importance of the
possible errors.

Let us suppose six possible errors with the estimation about their likelihood
and severity shown in Table 2 (for simplicity the likelihood is encoded as 1-
improbable, 2-remote, 3-occasional, 4-probable and 5-frequent and analogously
the severity as: 1-none, 2-negligible, 3-minor, 4-moderate, 5-signi�cant and 6-
severe).
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Reputation Assets People Environment

Event code Likelihood Severity

E1 5 2 2 2 1

E2 2 6 1 4 6

E3 1 3 2 4 1

E4 2 4 6 5 1

E5 2 6 4 5 2

E6 5 2 3 3 1

Table 2
Estimation of likelihood and severity of each event.

Therefore, the associated risk vectors for each event are obtained from the risk
assessment matrix, as we can see in Table 3.

Event code Risk vector

E1 (16,16,16,8)

E2 (26,2,10,26)

E3 (3,2,5,1)

E4 (10,26,16,2)

E5 (26,10,16,4)

E6 (16,24,24,8)

Table 3
Risk vectors obtained for each event.

The main drawback of this (necessary) proposal is that there exists no total or-
der when working in R4. If we have an event with a risk vector of (10, 26, 16, 2),
it is clear that it is more important than an event with risk values (3, 2, 5, 1).
But, what happens with an incident whose risk values are (16, 24, 24, 8)? It is
more important in accordance with the second criterion and less important in
accordance with the other three criteria.

This situation led us to work with a partial order in Rn, while needing to obtain
a total order for the set of alternatives. In the previous section a group decision
making problem was considered. If the experts would be the di�erent criteria
to study, we could consider this method to solve this problem. Therefore, in
this case m = 4.

The starting point here are the risk vectors vki shown in Table 3 for the 6 events.
Therefore, proceeding with the �rst step of a group decision making problem,
the information is made uniform, i.e. the four fuzzy preference relations P 1
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(reputation), P 2 (assets), P 3 (people) and P 4 (environment) are constructed.
These preference relations are computed using the Equation 1 with r = 1.

For example, p112 =
16

16 + 26
≈ 0.3810 represents the degree of preference of

event E1 over event E2, in relation with the damages to the reputation of the
enterprise. The four fuzzy preference relations are shown below

P 1 =



0.5000 0.3810 0.8421 0.6154 0.3810 0.5000

0.6190 0.5000 0.8966 0.7222 0.5000 0.6190

0.1579 0.1034 0.5000 0.2308 0.1034 0.1579

0.3846 0.2778 0.7692 0.5000 0.2778 0.3846

0.6190 0.5000 0.8966 0.7222 0.5000 0.6190

0.5000 0.3810 0.8421 0.6154 0.3810 0.5000


,

P 2 =



0.5000 0.8889 0.8889 0.3810 0.6154 0.4000

0.1111 0.5000 0.5000 0.0714 0.1667 0.0769

0.1111 0.5000 0.5000 0.0714 0.1667 0.0769

0.6190 0.9286 0.9286 0.5000 0.7222 0.5200

0.3846 0.8333 0.8333 0.2778 0.5000 0.2941

0.6000 0.9231 0.9231 0.4800 0.7059 0.5000


,

P 3 =



0.5000 0.6154 0.7619 0.5000 0.5000 0.4000

0.3846 0.5000 0.6667 0.3846 0.3846 0.2941

0.2381 0.3333 0.5000 0.2381 0.2381 0.1724

0.5000 0.6154 0.7619 0.5000 0.5000 0.4000

0.5000 0.6154 0.7619 0.5000 0.5000 0.4000

0.6000 0.7059 0.8276 0.6000 0.6000 0.5000


,

P 4 =



0.5000 0.2353 0.8889 0.8000 0.6667 0.5000

0.7647 0.5000 0.9630 0.9286 0.8667 0.7647

0.1111 0.0370 0.5000 0.3333 0.2000 0.1111

0.2000 0.0714 0.6667 0.5000 0.3333 0.2000

0.3333 0.1333 0.8000 0.6667 0.5000 0.3333

0.5000 0.2353 0.8889 0.8000 0.6667 0.5000


.
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Next step is the aggregation of the four matrices to obtain a �nal fuzzy pref-
erence relation P . Let us consider the WOWA operator with a weight vector
wWM = (1/4, 1/4, 1/3, 1/6) associated to the WM part and a weight vector
wOWA = (1/2, 1/3, 1/9, 1/18) associated to the OWA part. Finally, the linear
interpolation was considered as w∗ in this example.

In Example 7, we calculated the element

p12 = fWOWA (0.3810, 0.8889, 0.6154, 0.2353) = 0.7164.

Using the same procedure for each pij, the following consensus fuzzy preference
relation is obtained:

P =



0.5 0.7164 0.8685 0.6383 0.5938 0.4722

0.5873 0.5 0.8456 0.6798 0.5781 0.5653

0.2008 0.3844 0.5 0.2598 0.2142 0.1588

0.5377 0.7206 0.8442 0.5 0.5864 0.4512

0.5427 0.6958 0.8559 0.6358 0.5 0.4987

0.5870 0.7670 0.8916 0.6660 0.6556 0.5


.

Now, we will proceed with the extended weighted voting method. Firstly, the
�nal fuzzy preference relation is normalized dividing the values of pij and pji
by their sum.

P ′ =



0.5 0.5495 0.8122 0.5427 0.5225 0.4458

0.4505 0.5 0.6875 0.4855 0.4538 0.4243

0.1878 0.3125 0.5 0.2353 0.2002 0.1512

0.4573 0.5146 0.7647 0.5 0.4798 0.4039

0.4775 0.5462 0.7998 0.5202 0.5 0.4320

0.5542 0.5757 0.8488 0.5961 0.5680 0.5


.

Then, the �positive preference� (P+) and the �negative preference� (P−) are
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separated.

P+ =



0 0.0495 0.3122 0.0427 0.0225 0.0000

0.0000 0 0.1875 0.0000 0.0000 0.0000

0.0000 0.0000 0 0.0000 0.0000 0.0000

0.0000 0.0146 0.2647 0 0.0000 0.0000

0.0000 0.0462 0.2998 0.0202 0 0.0000

0.0542 0.0757 0.3488 0.0961 0.0680 0


,

P− =



0 0.0000 0.0000 0.0000 0.0000 −0.0542

−0.0495 0 0.0000 −0.0145 −0.0462 −0.0757

−0.3122 −0.1875 0 −0.2647 −0.2998 −0.3488

−0.0427 0.0000 0.0000 0 −0.0202 −0.0961

−0.0225 0.0000 0.0000 0.0000 0 −0.0680

0.0000 0.0000 0.0000 0.0000 0.0000 0


.

Using α = 0.25 we will obtain this weighted matrix:

Pα =



0 0.0124 0.0781 0.0107 0.0056 −0.0407

−0.0371 0 0.0469 −0.0109 −0.0347 −0.0568

−0.2342 −0.1406 0 −0.1985 −0.2249 −0.2616

−0.0320 0.0037 0.0662 0 −0.0152 −0.0721

−0.0169 0.0116 0.0750 0.0051 0 −0.0510

0.0136 0.0189 0.0872 0.0240 0.0170 0


.

Choosing the arithmetic mean as aggregation operator, the following indexes
are obtained:

I(E1) = 0.0132, I(E2) = −0.0185, I(E3) = −0.2120,

I(E4) = −0.0099, I(E5) = 0.0047, I(E6) = 0.0321.

Then, the event E6 is classi�ed at the �rst position (because it has the highest
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index) and we will remove it obtaining the following weighted matrix:

Pα =



0 0.0124 0.0781 0.0107 0.0056 �����−0.0407

−0.0371 0 0.0469 −0.0109 −0.0347 �����−0.0568

−0.2342 −0.1406 0 −0.1985 −0.2249 �����−0.2616

−0.0320 0.0037 0.0662 0 −0.0152 �����−0.0721

−0.0169 0.0116 0.0750 0.0051 0 �����−0.0510

����0.0136 ����0.0189 ����0.0872 ����0.0240 ����0.0170 �0


.

At the next iteration, the indexes for the current 5 alternatives are:

I(E1) = 0.0267, I(E2) = −0.0089, I(E3) = −0.1995,

I(E4) = 0.0057, I(E5) = 0.0187.

Therefore, the event E1 is classi�ed at the second position.

Following with the algorithm until all events are classi�ed, the obtained order
is:

E6 > E1 > E5 > E4 > E2 > E3.

Hence, the company must work the most in solving the event E6 in order to
decrease the risk of accident due to human error.

5 Conclusions and future research

In this work we have presented a procedure for aggregating preference relations
representing the opinion of di�erent experts: the Extended Weighted Voting
Method. The introduction of this method was a key contribution in this pa-
per and it will allow us to obtain di�erent admissible orders. These obtained
orders could be modelled using a parameter α, which measures the degree of
optimism acquired. A deep study of the in�uence of this parameter α was also
shown. Finally, this procedure was used for aggregating risk assessment matri-
ces associated with di�erent criteria. We have particularized on the study of 4
criteria: reputation, assets, people and environment. We have considered this
Human Reliability problem as a group decision making problem, and we have
also used the WOWA operator to search the most accepted alternative, but
considering at the same time the in�uence of the �reliability� of our experts.

In the future we will intend to go deeper into the analysis of this problem.
In particular, we would like to consider di�erent methods in the exploitation
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phase and to introduce linguistic labels in the de�nition of the risk assessment
matrix. This last project could derive on the de�nition of a totally new risk
assessment matrix and in the study of the joint of linguistic labels. Moreover,
we would like to apply our study to real problems and compare our results
with the results obtained with the techniques used nowadays.
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