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Abstract

Ordering sets is a long-standing open problem due to its remarkable importance
in many areas such as decision making, image processing or human reliability. This
work is focused on introducing methods for ordering finitely generated sets as a gen-
eralization of those methods previously defined for ordering intervals. In addition,
these orders between finitely generated sets are also improved to present orders be-
tween finite interval-valued hesitant fuzzy sets. Finally, finite interval-valued hesitant
fuzzy preference relations are introduced and used to define a new order between
finite interval-valued hesitant fuzzy sets.
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1 Introduction

Since Zadeh introduced fuzzy sets to model the uncertainty associated to the
concept of imprecision ([36]), several extensions of fuzzy sets have been intro-
duced: interval-valued fuzzy sets ([13,27,37]), Atanassov’s intuitionistic fuzzy
sets ([1,2]), hesitant fuzzy sets ([18,25,30]), typical hesitant fuzzy sets ([5]),
fuzzy sets of type 2 ([38]), etc. In particular, interval-valued fuzzy sets have
been deeply studied. For example Zhang et al. develop in [40] an adjustable
approach to interval-valued intuitionistic fuzzy soft sets and define the concept
of weighted interval-valued intuitionistic fuzzy soft set. In [24] the problem of
the interval-valued fuzzy sets synthesis is studied.

All these extensions have received an increasing interest in different fields such
as classification ([14,28]), human reliability ([23]), image processing ([7]). In
particular, there are a lot of works focused on solving decision making prob-
lems using extensions of fuzzy sets. We highlight the works developed in [32],
where the aggregation of hesitant fuzzy information is studied. In addition,
in [39] new aggregation operators are utilized to develop techniques for multi-
ple attribute group decision making with hesitant fuzzy information. Liu and
Sun in [21] develop a generalized power hesitant fuzzy ordered weighted aver-
age operator to aggregate hesitant fuzzy numbers. Finally, Chen et al. in [11]
introduce interval-valued hesitant preference relations to describe uncertain
evaluation information in group decision making processes.

Therefore, an order between the objects of these extensions is necessary to
properly implement these applications. Several orders have been studied and
defined between fuzzy sets during the last 20 years ([10,12,20,22,35]).

Regarding ordering for interval-valued fuzzy sets, Barrenechea et al. in [3]
develop a construction method for interval-valued fuzzy preference relations
from a fuzzy preference relation. They represent the lack of knowledge or ig-
norance that experts suffer when they define the membership values of the
elements of that fuzzy preference relation. In addition, they propose a gener-
alization of Orlovsky’s non dominance method to solve decision making prob-
lems using interval-valued fuzzy preference relations. Bustince et al. in [9]
address the problem of choosing a total order between intervals. Their proce-
dure is based on studying firstly the additivity of interval-valued aggregation
functions. Then, they treat the problem of preserving admissible orders by
linear transformations. Finally they study the construction and properties of
interval-valued ordered weighted aggregation operators by means of admissible
orders.

Nevertheless, despite this kind of sets are reaching the spotlight in recent years,
orders between hesitant fuzzy sets (and their extensions) have not been deeply
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explored yet. Actually, to the best of our knowledge, literature about orders
between hesitant fuzzy sets (and their extensions) is sparse, even if there exists
some works which have dealt with orders for typical hesitant fuzzy-sets ([4,5]).

The goal of this paper is twofold. Firstly, finite interval-valued fuzzy sets,
which are a natural extension of typical hesitant fuzzy sets, are introduced.
This kind of sets could immediately derive on lots of applications in several
fields such as, for example, group decision making. For instance, this new kind
of sets could model, at the same time, experts and criteria.

Furthermore, as those new sets are defined by a membership function which
is the union of disjoint closed intervals (finitely generated sets), the study of
these finitely generated sets turns into one of the key points of this paper.
Therefore, this kind of sets is deeply analysed and the concept of αsg-point is
introduced. This αsg-point measures, according to a parameter, the degree of
optimism adopted when comparing finitely generated sets.

On the other hand, when using finite interval-valued hesitant fuzzy sets in
group decision making, we will need to define a way of comparing these sets.
Hence, several orders between finite interval-valued hesitant fuzzy sets are
introduced in the last sections of this paper. To that end, αsg-projections and
finite interval-valued hesitant fuzzy preference relations are introduced.

The structure of this paper is as follows: Section 2 gives an overview of the pre-
liminary definitions used in this paper. In addition, some methods for ordering
real intervals are also reviewed in order to improve them for ordering finitely
generated sets in Section 3. Section 4 is devoted to construct several orders
between finite interval-valued hesitant fuzzy sets. Finally, some conclusions
and open problems are analysed in Section 5.

2 Preliminary definitions

This section is devoted to briefly introduce several well-known basic concepts
and to fix the notations used in this paper.

2.1 Fuzzy sets and their extensions

Definition 1 ([36]) A fuzzy set A over X is an object:

A = {(x, µA(x))|x ∈ X},

where µA : X → [0, 1] is called membership function.
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The set of all ordinary fuzzy sets that can be defined on the universe [0, 1] is
denoted by F ([0, 1]).

By abuse of notation, in the literature the membership function is frequently
denoted by A insted of µA.

In some cases, the uncertainty measured by the fuzzy sets is not enough or it
does not fit with the nature of the problem. In other cases, it is not possible
to find an accurate way to define the membership functions. In these cases,
it is common to make use of the so-called extensions of fuzzy sets. The most
relevant ones are defined below.

Definition 2 ([1]) An Atanassov’s intuitionistic fuzzy set A on the universe
X is defined as

A = {(x, µA(x), νA(x))|x ∈ X},
where µA, νA : X → [0, 1] satisfy

µA(x) + νA(x) ≤ 1, ∀x ∈ X.

Here µA and νA define, respectively, the degree of membership and the degree
of non-membership of the element x to the set A.

Definition 3 ([27]) An interval-valued fuzzy set A on the universe X is de-
fined by a mapping

A : X → L([0, 1]),
such that the membership degree of x ∈ X is given by A(x) = [A(x), A(x)] ∈
L([0, 1]), where A : X → [0, 1] and A : X → [0, 1] are, respectively, mappings
defining the lower and the upper bound of the membership interval A(x) and
L([0, 1]) denotes the set of all closed subintervals in [0, 1]. The class of all
interval-valued fuzzy sets on X is denoted by IV FS(X).

In [1], it is proven that Atanassov’s intuitionistic fuzzy sets are equivalent
to interval-valued fuzzy sets and we can work with either obtaining the same
results. However, conceptually do not model the same problem ([29]). Both are
commonly used in literature and the one which suits better with the nature
of the problem is usually utilized.

We can further generalize fuzzy sets allowing the membership degrees to be
another fuzzy set.

Definition 4 ([38]) A fuzzy set of type 2 A on the universe X is defined by
a mapping

A : X → F ([0, 1]).

Remark 1 Note that interval-valued fuzzy sets are a particular case of fuzzy
sets of type 2, where the membership degree of each element is given by the
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characteristic function of a closed subinterval of [0,1].

Another extension may be defined for which the membership of the elements
of the set could be any subset of the interval [0, 1].

Definition 5 ([30]) A hesitant fuzzy set A on the universe X is given by

A = {(x, µA(x))|x ∈ X},

where the membership function takes values in the power crisp set of [0, 1]. We
will denote the set of all hesitant fuzzy sets on X by H(X).

Remark 2 In fact, hesitant fuzzy sets were already introduced in 1976 by
Grattan-Guinness in [18] with the name of set-valued fuzzy sets.

For most applications, a specific kind of hesitant fuzzy sets is usually utilized.
The membership functions of this subfamily of hesitant fuzzy sets are not any
subset in [0, 1], we reduce to the case where we have a finite union of singletons.

Definition 6 ([4,5]) A typical hesitant fuzzy set A on the universe X is a
hesitant fuzzy set where for each x ∈ X, µA(x) can be expressed as a finite
union of singletons in [0, 1]. We will denote the set of all typical hesitant fuzzy
sets on X by TH(X).

However, in this paper, we introduce a generalization of this kind of sets
considering closed intervals instead of singletons.

Definition 7 A finite interval-valued hesitant fuzzy set A on the universe X
is given by

A = {(x, µA(x))|x ∈ X},
where, for each x ∈ X, the membership function µA(x) can be expressed as a
finite union of disjoint closed intervals in [0, 1]. We will denote the set of all
finite interval-valued hesitant fuzzy sets on X by FIV H(X).

Note that typical hesitant fuzzy sets are a particular case of finite interval-
valued hesitant fuzzy sets when the closed intervals are restricted to be sin-
gletons. Furthermore, finite interval-valued hesitant fuzzy sets are a particular
case of hesitant fuzzy sets when the membership functions are restricted to be
finite unions of disjoint closed intervals.

It must be remarked that finite interval-valued hesitant fuzzy sets are not the
same defined by Chen et al. in [11]. In that case, as the interval intersection is
not empty, the membership functions are not formally defined as a subset of
[0, 1]. Moreover, as they are different types of sets, they will model different
kinds of real life problems. For instance, in a group decision making problem,
on the one hand, Chen et al.’s sets can model a problem where several members
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of a family express their preferences on a set of candidates. On the other
hand, finite interval-valued hesitant fuzzy sets can model a problem where
preferences, for any reason, are not given in a convex form. Such an example
can happen when both alternatives are known to be non-indifferent but we do
not know which of the two alternatives is preferred to the other.

Furthermore, finiteness cannot be considered as a mere constraint on the whole
set because, as we know, there are lot of properties easily applied to finite sets
that are not translatable to infinite sets.

These finite unions of disjoint closed intervals are going to be called finitely
generated sets and are going to be deeply analysed below.

Definition 8 The class of n-finitely generated sets in the interval [0, 1] is:

FGn([0, 1]) = {J ⊆ [0, 1]|J = I1∪. . .∪In for some disjoint I1, . . . , In ∈ L([0, 1])},

where L([0, 1]) is the set of all closed subintervals in [0, 1].

Definition 9 The class of finitely generated sets in the interval [0, 1] is:

FG([0, 1]) =
+∞⋃

n=1

FGn([0, 1]).

Remark 3 L([0, 1]) = FG1([0, 1]) ⊆ FG([0, 1]).

Moreover, it is trivial to prove the following proposition.

Proposition 1 Let I ⊆ [0, 1]. Then, the following statements are equivalent:

• I ∈ FG([0, 1]).
• There exists a unique value n ≥ 1 such that I ∈ FGn([0, 1]).

Remark 4 Let I ∈ FG([0, 1]). As a consequence of Proposition 1, the unique
value n ≥ 1 such that I ∈ FGn([0, 1]) is denoted by nI .

By definition, it is also trivial to prove the following equivalence.

Proposition 2 Let A ∈ H(X). Then, the following statements are equivalent:

• A is a finite interval-valued hesitant fuzzy set.
• µA(x) ∈ FG([0, 1]) ∀x ∈ X.

Once finite interval-valued hesitant fuzzy sets and finitely generated sets are
introduced, we study how an order of finite interval-valued hesitant fuzzy sets
could be defined. For this purpose, we need to start by introducing some
methods to order finite generated sets and, for that, we will recall several
methods to order real intervals (see [8,34]).
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2.2 Ordering intervals

This section focuses on the most widespread methods to order real intervals.
We will recall their definitions and main relationships among them.

2.2.1 Bounds comparison

The comparison of the bounds can be done in four different ways.

Definition 10 ([15]) Let A = [a1, a2] y B = [b1, b2] two real intervals, then

(1) B strongly dominates A iff b1 > a2.
(2) B maxi-min dominates A iff b1 > a1.
(3) B maxi-max dominates A iff b2 > a2.
(4) B weakly dominates A iff b2 > a1.

Note that condition (1) implies all the others and condition (4) is implied by
all the others. However, it is not possible to establish an implication between
conditions (2) and (3).

A

a1

a2

Bb1 b2

•

•

•

•

(1)

(2)

(3)

(4)

Fig. 1. Graphical interpretation of Bounds comparison.

Fig. 1 shows a graphical interpretation of these orders. It presents the rect-
angle generated by the Cartesian product of the two intervals A and B. Each
vertex of the rectangle represents one of the four ways of dominance defined
by this method. According to the graphical interpretation, we can say that a
dominance holds if its respective vertex is below the straight line x = y. For
example, in the particular case of Fig. 1 only condition 4 holds.

In literature, Bustince et al. ([8]) proposed an improved version of maxi-min
and maxi-max dominance, which constructs linear orders. These improved
versions are called lexicographical orders and are defined as follows:
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Definition 11 ([8]) Let A = [a1, a2] y B = [b1, b2] two real intervals, then

A ≤Lex1 B ⇔ a1 < b1 or (a1 = b1 and a2 ≤ b2).

A ≤Lex2 B ⇔ a2 < b2 or (a2 = b2 and a1 ≤ b1).

Besides, observe that strong domination does not define an order, because in
general, it is not true that [a, b] ≤ [a, b].

Analogously, weak domination does not define an order since in this case,
transitivity does not hold [0.6, 0.7] < [0, 1] and [0, 1] < [0.2, 0.5], but [0.6, 0.7]
is not smaller than [0.2, 0.5].

2.2.2 Midpoint comparison

This method consist in comparing the midpoint of the two intervals A =
[a1, a2] and B = [b1, b2]:

Definition 12 ([19]) Let A = [a1, a2] y B = [b1, b2] two real intervals, then

A ≤M B ⇔ a1 + a2 ≤ b1 + b2.

A

a1

a2

Bb1 b2

•M

Fig. 2. Graphical interpretation of Midpoint comparison.

Coming back again to the graphical interpretation, in this case A ≤M B if the
center of the rectangle, M , is below the straight line x = y (see Fig. 2).

Clearly this does not define an order, since two different intervals may have
the same midpoint. Therefore, in 2006, Z.S. Xu and R.R. Yager ([34]) consider
an improved version of this method where they transform it in an order:

Definition 13 ([34]) Let A = [a1, a2] y B = [b1, b2] two real intervals, then

A ≤Y X B ⇔ a1 +a2 < b1 + b2 or (a1 +a2 = b1 + b2 and a2−a1 ≤ b2− b1).

8
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2.2.3 Lattice order

One of the most widespread methods in the literature is the lattice order. This
method is the toughest one but, regardless of the adopted point of view, it
can be understand as the most intuitive one.

Definition 14 ([17]) Let A = [a1, a2] y B = [b1, b2] two real intervals, then

A ≤lo B ⇔ a1 ≤ b1 and a2 ≤ b2.

Note that this is a partial order. Looking at the graphical representation (see
Fig. 3) A ≤lo B if the straight line between the “maxi-min” and “maxi-max”
point is below the straight line x = y.

A

a1

a2

Bb1 b2

•

•

maxi-min

maxi-max

Fig. 3. Graphical interpretation of Lattice order.

Remark 5 Lattice order coincides with having at the same time the maxi-max
dominance and the maxi-min dominance.

2.2.4 Admissible linear orders

A distinguished family of orders for intervals is the set of admissible orders.
This family contains all the linear orders refining the lattice order.

In 2013, Bustince et al. ([8]) generalize some admissible linear orders for in-
tervals using aggregation functions, in general, and the weighted means Kα,
in particular. For each α ∈ [0, 1], the mapping Kα : [0, 1]2 → [0, 1] was defined
by Atanassov ([2]):

Kα(a, b) = a+ α(b− a).

The order introduced by Bustince et al. is defined as follows

9
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Definition 15 ([8]) Let A = [a1, a2] and B = [b1, b2] be two closed real in-
tervals in L([0, 1]), and two parameters α, β ∈ [0, 1] , α 6= β. Then A ≤α,β B
iff:

Kα(a1, a2) < Kα(b1, b2) or (Kα(a1, a2) = Kα(b1, b2) and Kβ(a1, a2) < Kβ(b1, b2)).

Remark 6 Bustince et al. ([8]) prove that

• If α ∈ [0, 1[, then all the admissible orders ≤α,β with β > α coincide. This
admissible order is noted as ≤α,+.
• If α ∈]0, 1], then all the admissible orders ≤α,β with β < α coincide. This

admissible order is noted as ≤α,−.

Remark 7 Some of the previously considered linear orders can be recovered
as admissible linear orders defined in terms of the Kα operators:

• Lexicographical orders with respect to the first (≤Lex1) and the second co-
ordinate (≤Lex2) are recovered by orders ≤α,β as the orders ≤0,+ and ≤1,−,
respectively.
• Xu and Yager’s order ≤Y X is recovered by orders ≤α,β as the order ≤0.5,+.

By definition, the following remark is trivial.

Remark 8 Let ≤lo and ≤α,β be the orders previously introduced. Then,

≤lo =⇒ ≤α,β ∀α, β ∈ [0, 1].

3 Ordering finitely generated sets

The precedent section was a review of several methods used in the literature
to order intervals. However, in this section we will try to create an improved
version of these methods allowing us to order finitely generated sets.

The main problem we must deal with is the position we adopt with the de-
generated intervals in our finitely generated sets. Do they have the same im-
portance as the non-degenerated ones? In this paper we are going to assign
the same weight to these two types of intervals. This is due to the fact that
focusing in the non-degenerated could derive on “almost surely” orders where
the intervals of measure zero do not take part in the order.

An easy example to show our position about the degenerated intervals could
be analysing I = [0.3, 0.4] and J = [0.1, 0.2] ∪ {1}. If we consider I ≥ J , then
we do not take into account the degenerated intervals. On the other hand, it
is possible to consider there is a doubt in how to order I and J . This is the
point of view considered in this paper.

10
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3.1 αsg-point order

In the previous section we have introduced the mapping Kα which gives us
the α-point of an interval. This section is focused on the generalization of this
concept to finitely generated sets. The idea is to distribute the interval [0, 1]
where the parameter α takes its values in as many subintervals as intervals has
the finitely generated set (n). Then, each subinterval of [0, 1] will be associated
to an interval of the finitely generated set and the parameter α will be rescaled
to select the corresponding α-point. However, a problem may arise when α =
i/n (i ∈ {1, . . . , n− 1}), do we select the right end of the first interval or the
left end of the second one? Therefore, besides the parameter α, a direction
must be fixed too.

This section is divided in two parts, first of all we will introduce the concept
of αsg-point and secondly we will use it to define the αsg-point order.

3.1.1 αsg-point of a finitely generated set

As we have said, our aim is to generalize the concept of α-point of an interval
to finitely generated sets. However, in this new case, besides the parameter α a
direction must be fixed, too. Therefore, our parameter will be in [0, 1]×{−,+},
but for simplicity we will denote this set by [0, 1]{−,+}.

Definition 16 Let αsg1, βsg2 ∈ [0, 1]{−,+}. A linear order on [0, 1]{−,+} is de-
fined as:

αsg1 ≤ βsg2 ⇔ α < β or (α = β and (sg1, sg2) 6= (+,−)),

αsg1 = βsg2 ⇔ α = β and sg1 = sg2,
αsg1 < βsg2 ⇔ α < β or (α = β and (sg1, sg2) = (−,+)).

Proposition 3 Let ≤ be the relation introduced in Definition 16. Then, ≤ is
a linear order on [0, 1]{−,+}.

Proof.

• Reflexivity.

α = α and (sg, sg) 6= (+,−) ∀αsg ∈ [0, 1]{−,+}.

• Antisymmetry. Given αsg1, βsg2 ∈ [0, 1]{−,+} satisfying

αsg1 ≤ βsg2 and βsg2 ≤ αsg1.

Then,
α = β and (sg1, sg2) 6= (+,−) 6= (sg2, sg1).

11
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Therefore
(sg1, sg2) = (−,−) or (sg1, sg2) = (+,+).

Thus
sg1 = sg2 and αsg1 = βsg2.

• Transitivity. Given αsg1, βsg2, γsg3 ∈ [0, 1]{−,+} satisfying

αsg1 ≤ βsg2 and βsg2 ≤ γsg3.

Then,

α < γ or α = β = γ and (sg1, sg2) 6= (+,−) 6= (sg2, sg3).

Thus,
(sg1, sg3) 6= (+,−) and therefore αsg1 ≤ γsg3.

• Linear. Given αsg1, βsg2 ∈ [0, 1]{−,+}, as α, β ∈ [0, 1], then α < β or α = β
or β < α. In the first and third cases we can conclude αsg1 < βsg2 and
βsg2 < αsg1, respectively.
When α = β, if (sg1, sg2) = (−,−) or (sg1, sg2) = (+,+) then αsg1 =

βsg2; if (sg1, sg2) = (−,+) then αsg1 < βsg2, and if (sg1, sg2) = (+,−) then
βsg2 < αsg1. Thus, ≤ is a linear order. �

Remark 9 Note that this order coincides with the lexicographical order with
respect to the first coordinate on [0, 1]× C, where C is the two-element chain
{−,+} with respecto to the order − < +.

Once the order in [0, 1]{−,+} is introduced, some properties which are the basis
of this paper are proven.

Proposition 4 Let β ∈ [0, 1]. There does not exist an αsg ∈ [0, 1]{−,+} satis-
fying β− < αsg < β+, where β−, β+ ∈ [0, 1]{−,+}.

Proof. Assume that there exists αsg ∈ [0, 1]{−,+} satisfying β− < αsg < β+,
where β−, β+ ∈ [0, 1]{−,+}.

β− < αsg implies β ≤ α. On the other hand, αsg < β+ implies α ≤ β.
Therefore, α = β.

However, as β− < αsg, sg 6= − and, as αsg ≤ β+, sg 6= +. Thus, there does
not exist an αsg ∈ [0, 1]{−,+} satisfying this condition. �

Once an order in [0, 1]{−,+} is defined, we can tackle the study of the finitely
generated sets introducing the concept of αsg-point, which is just a general-
ization of the α-point of an interval.

Before this generalization is given, we need to introduce a map, which will be
denoted by Υ. It will allow us to determine the selected interval of the finitely
generated set where we will consider the αsg-point.

12
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Definition 17 Let n be a natural number and αsg ∈ [0, 1]{−,+}.The function
Υ : [0, 1]{−,+} × N→ N is defined in the following way:

Υ(0−, n) = Υ(0+, n) = 1,

Υ(1−, n) = Υ(1+, n) = n,

Υ( i
n

−
, n) = i ∀i ∈ {1, . . . , n− 1},

Υ( i
n

+
, n) = i+ 1 ∀i ∈ {1, . . . , n− 1},

Υ(αsg, n) = i ∀α satisfying i−1
n
< α < i

n
when i ∈ {1, . . . , n}.

Definition 18 Let A =
nA⋃

i=1

Ii be a nA-finitely generated set and αsg ∈ [0, 1]{−,+}.

The αsg-point of the finitely generated set A is defined as

Kαsg(A) = inf(IΥ(αsg ,nA)) + α′
(
sup(IΥ(αsg ,nA))− inf(IΥ(αsg ,nA))

)
,

with α′ = nA · α−Υ(αsg, nA) + 1 ∈ [0, 1].

Remark 10 Values of α ∈ {0, 1} always induce the same αsg-points ∀sg ∈
{−,+}. Therefore, we consider 0− = 0+ and 1− = 1+.

The following example shows how these αsg-points are obtained.

Example 1 Let A = [0, 0.2]∪ [0.3, 0.4]∪ [0.7, 1] ∈ FG([0, 1]) and αsg = 0.25+.

We can easily see that nA = 3 and therefore

Υ(αsg, 3) =





1 if α < 1
3
or αsg = 1

3

−
,

2 if 1
3
< α < 2

3
or αsg ∈ {1

3

+
, 2

3

−},
3 if 2

3
< α or αsg = 2

3

+
.

Moreover, 0 < 0.25 < 1
3
. Then, Υ(0.25+, 3) = 1 and, by Definition 18,

α′ = n · α−Υ(αsg, n) + 1 = 3 · 0.25− 1 + 1 = 0.75.

Thus,

Kαsg(A) = inf(IΥ(αsg ,n)) + α′
(
sup(IΥ(αsg ,n))− inf(IΥ(αsg ,n))

)
=

= inf(I1) + 0.75(sup(I1)− inf(I1)) = 0 + 0.75(0.2− 0) = 0.15.

13
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Note that when working with intervals, the αsg-point of an interval is exactly
the classical α-point and the direction turns unnecessary.

Proposition 5 Let A ∈ L([0, 1]) and α ∈ [0, 1]. Then,

Kα−(A) = Kα+(A) = Kα(A).

Proof. Let us calculate Kα−(A) and Kα+(A), considering Definition 18:

Υ(α−, 1) = Υ(α+, 1) = 1,

α′ = n · α−Υ(αsg, n) + 1 = 1 · α− 1 + 1 = α ∀sg ∈ {−,+},

Kαsg(A) = inf(IΥ(αsg ,n)) + α′
(
sup(IΥ(αsg ,n))− inf(IΥ(αsg ,n))

)
=

= inf(I1) + α(sup(I1)− inf(I1)) = Kα(A). �

Proposition 6 Let A ∈ FG([0, 1]), then Kαsg(A) ∈ A ∀αsg ∈ [0, 1]{−,+}.

Proof. Consider A =
nA⋃

i=1

Ii ∈ FG([0, 1]).

If α /∈ {0, 1
nA
, . . . , nA−1

nA
, 1}, then Kαsg(A) is a strict convex combination of the

left and the right ends of one of the intervals {Ii}nAi=1. Let suppose, without
loss of generality, this interval is Ij. As each strict convex combination of two
points is between both, then Kαsg(A) ∈ Ij ⊆ A.

If α ∈ {0, 1
nA
, . . . , nA−1

nA
, 1}, then Kαsg(A) is one of the bounds of the intervals

{Ii}nAi=1. As the intervals are closed, then Kαsg(A) ∈ A. �

The following proposition shows how to obtain an αsg-point by rescaling other
two αsg-points in the same interval.

Proposition 7 Let A ∈ FG([0, 1]) and let IA be some of the disjoint intervals
which compose A. Let αsg1, βsg2, γsg3 be three elements in [0, 1]{−,+} such that
αsg1 < βsg2 < γsg3 and Kαsg1(A), Kβsg2(A), Kγsg3(A) ∈ IA. Then Kβsg2(A) =

Kαsg1(A) +
β − α
γ − α (Kγsg3(A)−Kαsg1(A)).

Proof. Let IA be the ith interval of A (i ∈ {1, . . . , nA}).

As Kαsg1(A), Kβsg2(A), Kγsg3(A) ∈ IA, we have:

Kαsg1(A) = inf(IA) + (nA · α− i+ 1) (sup(IA)− inf(IA)) , (1)
Kβsg2(A) = inf(IA) + (nA · β − i+ 1) (sup(IA)− inf(IA)) , (2)
Kγsg3(A) = inf(IA) + (nA · γ − i+ 1) (sup(IA)− inf(IA)) . (3)
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Then, substituting Kαsg1(A) and Kγsg3(A):

Kαsg1(A) +
β − α
γ − α (Kγsg3(A)−Kαsg1(A)) =

inf(IA) + (nA · β − i+ 1) (sup(IA)− inf(IA)) = Kβsg2(A).�

As every interval is determined unequivocally by its two ends, it makes sense
to study the points that determine unequivocally a finitely generated set. Intu-
itively, these points are the ends of the intervals forming the finitely generated
set. However, these points can be expressed as certain αsg-points: the grid
points.

Definition 19 Let n ∈ N. A n-grid is defined as:

G(n) = {i− 1

n

+

| i = 1, . . . , n}
⋃
{ i
n

−
| i = 1, . . . , n}.

Taking into account the previous definition, it is necessary to remark a few
points.

Remark 11 Let n ∈ N and G(n) a n-grid. Then,

• G(n) ⊆ [0, 1]{−,+}.
• #G(n) = 2n.

A few important properties of n- grids are shown in the following propositions.

Proposition 8 Let n,m ∈ N. Then,

G(n) ⊆ G(m) ⇔ n|m

where n|m represents that n is a divisor of m.

Proof. It is straightforward just considering that ∀i ∈ {1, . . . , n} there exists
j ∈ {1, . . . ,m} such that i

n
= j

m
and this is equivalent to n|m. �

Proposition 9 Let n,m ∈ N. Then,

1

n

sg

∈ G(m) ⇔ n|m.

Proof. If 1
n

sg ∈ G(m), then we can express 1
n
as j

m
, with j ∈ {1, . . . ,m}.

Finally, m = n · j and therefore n|m.
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If n|m, by Proposition 8, G(n) ⊆ G(m). Finally, as 1
n

sg ∈ G(n), we conclude
1
n

sg ∈ G(m). �

n-grids are going to be fundamental in the analysis of finitely generated sets.
In the following definitions we are going to see a characterization of a finitely
generated set using a certain n-grid.

Definition 20 Let A be a finitely generated set and n a natural number. The
set of n-grid points of A is defined as the set of all the αsg-points of A for any
αsg ∈ G(n) and it is denoted by Kn(A). Thus,

Kn(A) = {Kαsg(A) | αsg ∈ G(n)}.

Definition 21 Let A be a nA-finitely generated set. The nA-grid points,KnA(A),
are called fundamental points of A.

It is immediate that the fundamental points of any set A determine unequiv-
ocally a nA-finitely generated set.

When working with finitely generated sets, some operations between them are
often required. In the interval case the basic arithmetic operations can be done
just considering the two ends of both intervals. Let us study now how many
points are needed in the finitely generated case.

Definition 22 Let n,m ∈ N. The n,m-grid is defined as:

G(n,m) = G(n) ∪G(m).

Taking into account the previous definition, it is necessary to remark a few
points.

Remark 12 Let n,m ∈ N and G(n,m) a n,m-grid. Then,

• G(n,m) ⊆ [0, 1]{−,+}.
• #G(n,m) = 2(n+m− g.c.d.(n,m)), where g.c.d. denotes the greatest com-

mon divisor.

Proposition 10 Let n1, n2, n ∈ N, then

G(n1, n2) = G(n) ⇔ min(n1, n2)|max(n1, n2) and max(n1, n2) = n.

Proof. Let us suppose G(n1, n2) = G(n1) ∪ G(n2) = G(n). Therefore,
G(n1) ⊆ G(n) and G(n2) ⊆ G(n). By Proposition 8, n1|n and n2|n.

In addition, we know that 1
n

+ ∈ G(n). As G(n) = G(n1)∪G(n2), 1
n

+ ∈ G(n1)

or 1
n

+ ∈ G(n2). Therefore, by Proposition 9, n|n1 or n|n2, i.e. n1 = n or
n2 = n.
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Conversely, let us suppose without loss of generality that n1 ≤ n2, i.e. min(n1, n2) =
n1 and max(n1, n2) = n2.

If n1|n2 then, by Proposition 8, G(n1) ⊆ G(n2) and, as G(n1, n2) = G(n1) ∪
G(n2), then G(n1, n2) = G(n2) = G(n). �

An important and intuitive property of the grid points is showed in the follow-
ing proposition. It demonstrates the continuity of the finitely generated sets
between two consecutive grid points with different direction.

Proposition 11 Let A,B ∈ FG([0, 1]), then if β+
i−1, β

−
i are two consecutive

elements of G(nA, nB) there exist two intervals IA and IB satisfying:

Kαsg(A) ⊆ IA and Kαsg(B) ⊆ IB, ∀αsg ∈ [β+
i−1, β

−
i ].

Proof. If γ+
i−1, γ

−
i are two consecutive elements of G(nA), by definition of

αsg-point there exists an interval IA satisfying:

Kαsg(A) ⊆ IA ∀αsg ∈ [γ+
i−1, γ

−
i ]. (4)

As G(nA) ⊆ G(nA, nB), if β+
i−1, β

−
i are two consecutive elements of G(nA, nB),

there exist two consecutive elements of G(nA), γ+
j−1, γ

−
j , satisfying:

[β+
i−1, β

−
i ] ⊆ [γ+

j−1, γ
−
j ]. (5)

Finally, joining (4) and (5), if β+
i−1, β

−
i are two consecutive elements ofG(nA, nB),

then:
Kαsg(A) ⊆ IA ∀αsg ∈ [β+

i−1, β
−
i ].

Analogously, we proceed in the same way with B. �

Once we have introduced and studied in detail the concept of αsg-points, we
will see how to use it to define an order on the class of the finitely generated
sets.

3.1.2 αsg-point order

In this subsection we construct an index-based method to order finitely gen-
erated sets using the concept of αsg-point.

Definition 23 Let A,B ∈ FG([0, 1]) and a fixed αsg ∈ [0, 1]{−,+}. Then, a
relation on FG([0, 1]) is defined as:

A ≤αsg B ⇔ Kαsg(A) ≤ Kαsg(B),
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A =αsg B ⇔ Kαsg(A) = Kαsg(B),
A <αsg B ⇔ Kαsg(A) < Kαsg(B).

Proposition 12 Let ≤αsg be the relation introduced in Definition 23. Then,
∀αsg ∈ [0, 1]{−,+}, ≤αsg is an order on FG([0, 1])/ =αsg , where FG([0, 1])/ =αsg

denotes the quotient space with respect to the equivalence relation =αsg .

Proof. Let us consider αsg is a fixed point in [0, 1]{−,+}.

• Reflexivity. Let A ∈ FG([0, 1]). We have that Kαsg(A) ≤ Kαsg(A) and,
therefore A ≤αsg A.
• Antisymmetry. Let A,B ∈ FG([0, 1]). A ≤αsg B and B ≤αsg A imply,

respectively, Kαsg(A) ≤ Kαsg(B) and Kαsg(B) ≤ Kαsg(A). Thus, Kαsg(B) =
Kαsg(A) and therefore A =αsg B.
• Transitivity. Let A,B,C ∈ FG([0, 1]). A ≤αsg B and B ≤αsg C imply,

respectively, Kαsg(A) ≤ Kαsg(B) and Kαsg(B) ≤ Kαsg(C). Thus, Kαsg(A) ≤
Kαsg(C) and therefore A ≤αsg C. �

In Figure 4 we can see a graphical interpretation of this order. The position of
the point (Kαsg(B), Kαsg(A)) below or above the straight line x = y determine,
respectively, if A ≤αsg B or B ≤αsg A.

•

•

•

•
A

Kαsg (A)

B
Kαsg (B)

Fig. 4. Graphical interpretation of αsg-point order for finitely generated sets.

Remark 13 Note that we are defining orders in a quotient space. These or-
ders can also be seen as weak orders in the main space without taking into
account the quotient space.

Remark 14 This order generalize the midpoint comparison method when re-
stricted to intervals (α = 0.5). Similarly, we can generalize the maxi-min
dominance with α = 0 and the maxi-max dominance with α = 1.

The following subsection is devoted to construct a lattice order for finitely
generated sets.
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3.2 Lattice order

We can obtain a lattice order for finitely generated sets that generalizes the
lattice order for intervals using the αsg-point.

Definition 24 Let A,B ∈ FG([0, 1]). Then, a relation on FG([0, 1]) is de-
fined as:

A ≤lo B ⇔ Kαsg(A) ≤ Kαsg(B) ∀αsg ∈ [0, 1]{−,+},

A =lo B ⇔ Kαsg(A) = Kαsg(B) ∀αsg ∈ [0, 1]{−,+},

A <lo B ⇔ Kαsg(A) < Kαsg(B) ∀αsg ∈ [0, 1]{−,+}.

Proposition 13 Let ≤lo be the relation introduced in Definition 24. Then,
≤lo is an order on FG([0, 1]).

Proof.

• Reflexivity. Let A ∈ FG([0, 1]). We have that Kαsg(A) ≤ Kαsg(A) ∀αsg ∈
[0, 1]{−,+} and, therefore A ≤lo A.
• Antisymmetry. Let A,B ∈ FG([0, 1]). A ≤lo B and B ≤lo A imply, re-

spectively, Kαsg(A) ≤ Kαsg(B) and Kαsg(B) ≤ Kαsg(A) ∀αsg ∈ [0, 1]{−,+}.
Thus, Kαsg(B) = Kαsg(A) ∀αsg ∈ [0, 1]{−,+} and therefore A = B.
• Transitivity. Let A,B,C ∈ FG([0, 1]). A ≤lo B and B ≤lo C imply, re-

spectively, Kαsg(A) ≤ Kαsg(B) and Kαsg(B) ≤ Kαsg(C) ∀αsg ∈ [0, 1]{−,+}.
Thus, Kαsg(A) ≤ Kαsg(C) ∀αsg ∈ [0, 1]{−,+} and therefore A ≤lo C. �

Remark 15 In (FG([0, 1]),≤lo) the lowest finitely generated set would be 0 =
[0, 0] and the greatest finitely generated set would be 1 = [1, 1], due to they are
the only finitely generated sets satisfying, respectively, Kαsg([0, 0]) = 0 and
Kαsg([1, 1]) = 1 ∀αsg ∈ [0, 1]{−,+}.

In the interval case, the lattice order can be studied considering only the two
ends of both intervals. In the same way, in the improved case, the study of
every αsg-point of the finitely generated set is not needed and we can reduce
the analysis to a certain number of points.

Theorem 1 Let A and B be two finitely generated sets, then the following
statements are equivalent:

(1) A ≤lo B.
(2) Kαsg(A) ≤ Kαsg(B) ∀αsg ∈ [0, 1]{−,+}.
(3) Kαsg(A) ≤ Kαsg(B) ∀αsg ∈ G(nA, nB).

Proof. (i)⇔ (ii) by definition of lattice order for finitely generated sets.
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(ii)⇒ (iii) is obvious due to G(nA, nB) ⊆ [0, 1]{−,+}.

(iii)⇒ (ii) Let αsg ∈ [0, 1]{−,+}, and β+
i−1, β

−
i the two consecutive elements of

G(nA, nB) satisfying αsg ∈ [β+
i−1, β

−
i ].

We have that Kβ+
i−1

(A) ≤ Kβ+
i−1

(B) and Kβ−i
(A) ≤ Kβ−i

(B). And we want to
prove that Kαsg(A) ≤ Kαsg(B).

By Proposition 11, as β+
i−1, β

−
i are two consecutive elements of G(nA, nB), then

there exists IA and IB two intervals satisfying:

Kβ+
i−1

(A), Kβ−i
(A) ⊆ IA.

Kβ+
i−1

(B), Kβ−i
(B) ⊆ IB.

By Proposition 7, as αsg ∈ [β+
i−1, β

−
i ] and IA and IB are intervals we have:

Kαsg(A) = Kβ+
i−1

(A) +
α− βi−1

βi − βi−1

Kβ−i
(A),

Kαsg(B) = Kβ+
i−1

(B) +
α− βi−1

βi − βi−1

Kβ−i
(B).

Finally, using Kβ+
i−1

(A) ≤ Kβ+
i−1

(B) and Kβ−i
(A) ≤ Kβ−i

(B) in these two
equations we arrive to Kαsg(A) ≤ Kαsg(B). �

In Figure 5 we can see a graphical interpretation of this order. By Theo-
rem 1 we can say that A ≤lo B (with A and B two finitely generated sets)
if and only if Kαsg(A) ≤ Kαsg(B) ∀αsg ∈ G(nA, nB), i.e. all the points
(Kαsg(B), Kαsg(A)) , αsg ∈ G(nA, nB) are below the straight line y = x. In
the particular case of Figure 5, A��≤loB because points 1 and 3 are above the
straight line y = x. It may be remarked that these two points are respectively
related with αsg = 0+ and αsg = 1

3

+.

It is direct to prove the relation between “lattice order” and “αsg-point order”
which is shown in the following proposition.

Proposition 14 Let ≤lo and ≤αsg be the orders of finitely generated sets pre-
viously introduced.

≤lo =⇒ ≤αsg ∀αsg ∈ [0, 1]{−,+}.

We can observe a toy example of both orders right after.

Example 2 Let A = [0, 0.2] ∪ [0.3, 0.4] ∪ [0.7, 1] and B = [0.3, 0.4]. Note that
either A,B ∈ FG[(0, 1)].
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•

•

•1
•2

•
3

•7, 8

• 4 • 5
• 6

A

B

Fig. 5. Graphical interpretation of lattice order for finitely generated sets.

We can easily see that, for instance, when αsg = 0+,

K0+(A) = 0,

K0+(B) = 0.3.

Therefore, as K0+(A) = 0 ≤ 0.3 = K0+(B), A ≤0+ B.

More generally, for any αsg ≤ 0.5−, we can observe that:

A ≤αsg B.

On the other hand, for any αsg ≥ 0.5+, we can observe that:

B ≤αsg A.

Therefore, we can conclude that A 6≤lo B and B 6≤lo A.

4 Ordering finite interval-valued hesitant fuzzy sets

In this section we are going to generalize the methods to order finitely gen-
erated sets in order to classify finite interval-valued hesitant fuzzy sets. To
that end, a fuzzy preference relation needs to be used. Some examples are
the proposed by Chen and Lu ([10]), Dubois and Prade ([12]), Kundu ([20]),
Nakamura ([22]) or Yuan ([35]). However, it must be remarked that the right
choice of a preference relation is not the aim of this paper.

Definition 25 ([16]) Given a finite set of alternatives A, a fuzzy preference
relation R is a mapping R : A×A → [0, 1] such that R(A,B) +R(B,A) = 1
for any pair of alternatives A and B in A.
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This kind of relations are also known in the literature as probabilistic, re-
ciprocal or ipsodual relations, depending on the environment we are working
([6]).

In addition, transitivity for fuzzy preference relations needs to be defined in
order to have good properties in this extension. There are many definitions
of transitivity between fuzzy preference relations (reader can refer to [31] for
further details about fuzzy preference relation transitivity). However, the one
which fits better with our problem is the following:

Definition 26 Let R be a fuzzy preference relation on A. Then R is called
consistent iff ∀(x, y, z) ∈ A3:

R(x, y) ≤ R(y, x) and R(y, z) ≤ R(z, y)⇒ R(x, z) ≤ R(z, x).

As we have defined the fuzzy preference relations satisfyingR(A,B)+R(B,A) =
1 for any pair of alternatives A and B, the following corollary is straightfor-
ward.

Corollary 1 Let R be a fuzzy preference relation on A. Then R is consistent
iff ∀(x, y, z) ∈ A3:

R(x, y) ≤ 0.5 and R(y, z) ≤ 0.5⇒ R(x, z) ≤ 0.5.

In the following result we can notice that there exists at least one consistent
fuzzy preference relation on any family of fuzzy subsets.

Proposition 15 If the finite set of alternatives A is formed by fuzzy sets,
that is, if A ⊆ F (X), the family of consistent fuzzy preference relations on A
is not empty.

Proof. Let C : F (X)→ R be the function assigning the middle point of the
support for each fuzzy set. The fuzzy preference relation R(A,B) = C(A)

C(A)+C(B)

is consistent.

R is a fuzzy preference relation because

R(A,B) +R(B,A) =
C(A)

C(A) + C(B)
+

C(B)

C(A) + C(B)
= 1.

Let us prove that R is consistent. It is straightforward to see that R(A,B) ≤
R(B,A) is equivalent to C(A) ≤ C(B). Therefore,

R(A,B) ≤ R(B,A) and R(B,C) ≤ R(B,A) imply that C(A) ≤ C(B) and
C(B) ≤ C(C). Thus, C(A) ≤ C(C) and therefore R(A,C) ≤ R(C,A), i.e. R is
consistent. �
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We are going to consider two different families to generalize the orders for
finitely generated sets to finite interval-valued hesitant fuzzy sets: “local or-
ders” and “global orders”. These two families differ in the way they analyse
the αsg-projections: local orders focus on each αsg-projection, but global orders
analyse all the αsg-projections together.

4.1 Local orders

In a fixed point x ∈ X, a finite interval-valued hesitant fuzzy set A satisfies
that its membership µA(x) is a finitely generated set. Therefore, all these
methods seen for ordering finitely generated sets can be extended to finite
interval-valued hesitant fuzzy sets. In that case, we are not going to consider
the whole membership functions but a fixed αsg-point in each point. This is
the concept of αsg-projection which is going to be introduced right after.

Definition 27 The αsg-projection of a finite interval-valued hesitant fuzzy set
A, PA

αsg , is defined by the following membership function:

µ(x) = Kαsg(µA(x)) ∀x ∈ X.

Remark 16 Note that each αsg-projection of a finite interval-valued hesitant
fuzzy set is a fuzzy set.

Remark 17 The set of all αsg-projections of a finite interval-valued hesitant
fuzzy set A is set A in itself, i.e.

A =
⋃

αsg∈[0,1]{−,+}
PA
αsg .

Proposition 16 Let A,B ∈ FIV H(X), x ∈ X and αsg ∈ [0, 1]{−,+}. Then,

PA
αsg(x) ≤ PB

αsg(x) ⇔ µA(x) ≤αsg µB(x).

Proof. By definition of αsg-projection, PA
αsg(x) = Kαsg(µA(x)). On the other

hand, by definition of αsg-point order, µA(x) ≤αsg µB(x) if Kαsg(µA(x)) ≤
Kαsg(µB(x)). Thus, both conditions are equivalent. �

4.1.1 αsg-point order

Once αsg-projections have been introduced, an order between finite interval-
valued hesitant fuzzy sets could be determined.
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Definition 28 Let A,B ∈ FIV H(X) and R a consistent fuzzy preference
relation. Then, the following relation on FIV H(X) could be defined:

A ≤αsg ,R B ⇔ R
(
PA
αsg , P

B
αsg

)
≤ 0.5,

A =αsg ,R B ⇔ R
(
PA
αsg , P

B
αsg

)
= 0.5,

A <αsg ,R B ⇔ R
(
PA
αsg , P

B
αsg

)
< 0.5.

Proposition 17 Let αsg be in [0, 1]{−,+} and let R be a consistent fuzzy pref-
erence relation. The relation ≤αsg ,R introduced in Definition 28 is an order on
FIV H(X)/ =αsg ,R, where FIV H(X)/ =αsg ,R denotes the quotient space with
respect to the equivalence relation =αsg ,R

Proof.

• Reflexivity. Let A ∈ FIV H(X). Then, PA
αsg ∈ F (X) and, by definition of

fuzzy preference relation, R
(
PA
αsg , P

A
αsg

)
= 0.5. Therefore, A ≤αsg ,R A.

• Antisymmetry. Let A,B ∈ FIV H(X). Then, PA
αsg , P

B
αsg ∈ F (X). On the

other hand, if A ≤αsg ,R B and B ≤αsg ,R A, then R
(
PA
αsg , P

B
αsg

)
≤ 0.5 and

R
(
PB
αsg , P

A
αsg

)
≤ 0.5. Therefore, as R(A,B)+R(B,A) = 1, R

(
PA
αsg , P

B
αsg

)
=

0.5. Thus, A =αsg ,R B.
• Transitivity. Let A,B,C ∈ FIV H(X). Then, PA

αsg , P
B
αsg , P

C
αsg ∈ F (X). On

the other hand, if A ≤αsg ,R B and B ≤αsg ,R C, then R
(
PA
αsg , P

B
αsg

)
≤ 0.5

and R
(
PB
αsg , P

C
αsg

)
≤ 0.5. Then, as R is consistent, R

(
PA
αsg , P

C
αsg

)
≤ 0.5 and

therefore, A ≤αsg ,R C. �

4.1.2 Lattice order

Along this paper we have analysed different orders for intervals and finitely
generated sets and we have already seen the extension of “αsg-points order” to
finite interval-valued hesitant fuzzy sets, so it seems intuitive to think about
an expansion of “lattice order” to finite interval-valued hesitant fuzzy sets.

Definition 29 Let A,B ∈ FIV H(X) and R a consistent fuzzy preference
relation. Then, the following relation on FIV H(X) could be defined:

A ≤LO,R B ⇔ R
(
PA
αsg , P

B
αsg

)
≤ 0.5 ∀αsg ∈ [0, 1]{−,+},

A =LO,R B ⇔ R
(
PA
αsg , P

B
αsg

)
= 0.5 ∀αsg ∈ [0, 1]{−,+},

A <LO,R B ⇔ R
(
PA
αsg , P

B
αsg

)
< 0.5 ∀αsg ∈ [0, 1]{−,+}.

We can see that this relation is actually an order in the following proposition.

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Proposition 18 Let R be a consistent fuzzy preference relation. The relation
≤LO,R introduced in Definition 29 is an order on FIV H(X)/ =LO,R, where
FIV H(X)/ =LO,R denotes the quotient space with respect to the equivalence
relation =LO,R.

Proof.

• Reflexivity. Let A ∈ FIV H(X). Then, PA
αsg ∈ F (X) ∀αsg ∈ [0, 1]{−,+}

and, by definition of fuzzy preference relation, R
(
PA
αsg , P

A
αsg

)
= 0.5 ∀αsg ∈

[0, 1]{−,+}. Therefore, A ≤LO,R A.
• Antisymmetry. Let A,B ∈ FIV H(X). Then, PA

αsg , P
B
αsg ∈ F (X) ∀αsg ∈

[0, 1]{−,+}. On the other hand, if A ≤αsg ,R B and B ≤αsg ,R A ∀αsg ∈
[0, 1]{−,+}, then R

(
PA
αsg , P

B
αsg

)
≤ 0.5 and R

(
PB
αsg , P

A
αsg

)
≤ 0.5 ∀αsg ∈

[0, 1]{−,+}. Therefore, as R(A,B) + R(B,A) = 1, R
(
PA
αsg , P

B
αsg

)
= 0.5

∀αsg ∈ [0, 1]{−,+}. Thus, A =LO,R B.
• Transitivity. LetA,B,C ∈ FIV H(X). Then, PA

αsg , P
B
αsg , P

C
αsg ∈ F (X) ∀αsg ∈

[0, 1]{−,+}. On the other hand, if A ≤αsg ,R B and B ≤αsg ,R C ∀αsg ∈
[0, 1]{−,+}, then R

(
PA
αsg , P

B
αsg

)
≤ 0.5 and R

(
PB
αsg , P

C
αsg

)
≤ 0.5 ∀αsg ∈

[0, 1]{−,+}. Then, as R is consistent, R
(
PA
αsg , P

C
αsg

)
≤ 0.5 ∀αsg ∈ [0, 1]{−,+}

and therefore, A ≤LO,R C. �

It is direct to compare this order with the previous one in the following propo-
sition.

Proposition 19 Let ≤LO,R and ≤αsg ,R be the orders between finite interval-
valued hesitant fuzzy sets introduced in Definition 28 and 29, respectively.
Then,

≤LO,R ⇒ ≤αsg ,R ∀αsg ∈ [0, 1]{−,+}.

We can observe a toy example illustrating local orders right after.

Example 3 Let X = [0, 1] be the universe where we define A,B ∈ FIV H(X).
Let A be defined by the following membership function:

µA(x) =





1 If x ∈ [0.2, 1],

0 If x ∈ [0, 0.2).

Analogously, let B be defined by the following membership function:

µB(x) =




{0} ∪ {1} If x ∈ [0, 0.7),

[0.2, 0.8] ∪ {1} If x ∈ [0.75, 1].

Let C : F (X)→ [0, 1] be the function assigning the middle point of the support
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for each fuzzy set. We will consider the consistent fuzzy preference relation:

R(U, V ) =
C(U)

C(U) + C(V )
.

We can observe that A is a fuzzy set and, therefore, for any αsg ∈ [0, 1]{−,+},

PA
αsg = A.

On the other hand, the family of PB
αsg is defined by the following membership

functions:

For any αsg ≤ 0.5−, µPB
αsg

(x) =





0 If x ∈ [0, 0.7),

0.2 + 1.2α If x ∈ [0.7, 1].

For any αsg ≥ 0.5+, µPB
αsg

(x) = 1.

Therefore,

For any αsg ≤ 0.5−, C(PB
αsg) = 0.85 and C(PA

αsg) = C(A) = 0.6.

For any αsg ≥ 0.5+, C(PB
αsg) = 0.5 and C(PA

αsg) = C(A) = 0.6.

Finally, we can see that, if αsg ≤ 0.5−,

R
(
PA
αsg , P

B
αsg

)
=

C(PA
αsg)

C(PA
αsg) + C(PB

αsg)
=

0.6

0.6 + 0.85
≤ 0.5

Therefore,
A ≤αsg ,R B.

Analogously, we can see that, if αsg ≥ 0.5−,

R
(
PA
αsg , P

B
αsg

)
=

C(PA
αsg)

C(PA
αsg) + C(PB

αsg)
=

0.6

0.6 + 0.5
≥ 0.5

Therefore,
A 6≤αsg ,R B.

We can conclude that, as A ≤αsg ,R B. is not hold for every αsg,

A 6≤LO,R B.

4.2 Global orders

Finally, we are going to introduce global orders. This kind of orders are charac-
terized by their global analysis of all the αsg-projections. Instead of comparing
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the αsg-projections of the pair of finite interval-valued hesitant fuzzy sets for
any αsg, they obtain a finite interval-valued hesitant fuzzy preference relation
for each finite interval-valued hesitant fuzzy set and then they compare both
relations.

4.2.1 Finite interval-valued hesitant fuzzy preference relation order

Let us introduce finite interval-valued hesitant fuzzy preference relations, which
are going to allow us to obtain a new order between finite interval-valued hes-
itant fuzzy sets.

Definition 30 Given a finite set of alternatives A, a finite interval-valued
hesitant fuzzy preference relation R is a mapping R : A × A → FG([0, 1])
such that R(A,B) is symmetric to R(B,A) in relation to the point 0.5 for any
pair of alternatives A and B in A.

Remark 18 Note that R(A,B) and R(B,A) are finitely generated sets. There-
fore, being symmetric in relation to the point 0.5 would be that Kαsg(R(A,B))+
K(1−α)sgc (R(B,A)) = 1 ∀αsg ∈ [0, 1]{−,+}.

Remark 19 In [11], Chen et al. introduced interval-valued hesitant fuzzy pref-
erence relation. However, they did not consider finiteness, which is absolutely
necessary in order to consider αsg-points. In addition, in their definition they
did not consider finite unions of disjoint closed intervals but finite unions of
closed intervals. The absence of disjointedness could seem insignificant, but
makes both definitions really different when dealing with them. Furthermore,
considering αsg-points do not make sense with their proposal. For instance,
R(A,B) = {[0.3, 0.6], [0.4, 0.7]} would not be a finite interval-valued hesitant
fuzzy preference relation in our sense, but it would be a (finite) interval-valued
hesitant fuzzy preference relation in Chen et al.’s sense.

In addition, a way of transitivity between finite interval-valued hesitant fuzzy
preference relations must be established. We have generalized the consistency
between fuzzy preference relations in the following definition.

Definition 31 Let R be a finite interval-valued hesitant fuzzy preference re-
lation on A and ≤∗ an order between finitely generated sets. Then, R is called
≤∗-consistent iff ∀(x, y, z) ∈ A3:

R(x, y) ≤∗ R(y, x) and R(y, z) ≤∗ R(z, y)⇒ R(x, z) ≤∗ R(z, x).

From the following proposition we can notice that the family of ≤∗-consistent
finite interval-valued hesitant fuzzy preference relations is not empty.

Proposition 20 If the finite set of alternatives A is formed by finite interval-
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valued hesitant fuzzy sets, that is, if A ⊆ FIV H(X), the family of ≤∗-
consistent finite interval-valued hesitant fuzzy preference relations on A is not
empty.

Proof. Let C : FIV H(X) → R be the function assigning the middle point
of the support for each fuzzy set. The following finite interval-valued hesitant
fuzzy preference relation is ≤lo-consistent:

R(A,B) =





[ C(A)
C(A)+C(B)

, 1
]

If C(A) > C(B)
[

1
4
, 3

4

]
If C(A) = C(B)

[
0, C(A)
C(A)+C(B)

]
If C(A) < C(B)

.

R is a finite interval-valued hesitant fuzzy preference relation because, by
construction, R(A,B) = 1−R(B,A), i.e. R(A,B) is symmetric to R(B,A) in
relation to the point 0.5.

Let us prove thatR is≤lo-consistent. Firstly, we need to prove thatR(A,B) ≤lo
R(B,A) is equivalent to C(A) ≤ C(B). This is straightforward considering that
we have three possibilities for R(A,B) and R(B,A) (a ∈ [0, 0.5)):

(1) R(A,B) = [0, a] and R(B,A) = [1− a, 1].
(2) R(A,B) = [0.25, 0.75] and R(B,A) = [0.25, 0.75].
(3) R(A,B) = [1− a, 1] and R(B,A) = [0, a].

In the first two cases R(A,B) ≤lo R(B,A) and C(A) ≤ C(B) are satisfied and
in the third case none of both is fulfilled. Therefore, R(A,B) ≤lo R(B,A) is
equivalent to C(A) ≤ C(B).

Finally, R(A,B) ≤lo R(B,A) and R(B,C) ≤lo R(B,A) imply that C(A) ≤
C(B) and C(B) ≤ C(C). Thus, C(A) ≤ C(C) and therefore R(A,C) ≤lo
R(C,A), i.e. R is ≤lo-consistent. �

Once we have defined these two concepts a new order between finite interval-
valued hesitant fuzzy sets could be introduced.

Definition 32 Let A,B ∈ FIV H(X), ≤∗ an order between finitely gener-
ated sets and R a ≤∗-consistent finite interval-valued hesitant fuzzy preference
relation. Then, the following relation on FIV H(X) could be defined:

A ≤∗,R B ⇔ R (A,B) ≤∗ R (B,A) ,

A =∗,R B ⇔ R (A,B) =∗ R (B,A) ,

A <∗,R B ⇔ R (A,B) <∗ R (B,A) .
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Proposition 21 Let ≤∗ be an order between finitely generated sets and let
R be a ≤∗-consistent finite interval-valued hesitant fuzzy preference relation.
The relation ≤∗,R introduced in Definition 32 is an order on FIV H(X)/ =∗,R,
where FIV H(X)/ =∗,R denotes the quotient space with respect to the equiva-
lence relation =∗,R.

Proof.

• Reflexivity. Let A ∈ FIV H(X). Then, by definition of finite interval-
valued hesitant fuzzy preference relation, R (A,A) ∈ FG([0, 1]). Therefore,
R (A,A) ≤∗ R (A,A). Thus, A ≤∗,R A.
• Antisymmetry. Let A,B ∈ FIV H(X). Then, by definition of finite interval-

valued hesitant fuzzy preference relation, R (A,B) , R (B,A) ∈ FG([0, 1]).
If A ≤∗,R B and B ≤∗,R A, then R (A,B) ≤∗ R (B,A) and R (B,A) ≤∗
R (A,B). As≤∗ is an order between finitely generated sets, then R (A,B) =∗
R (B,A) and therefore, A =∗,R B.
• Transitivity. Let A,B,C ∈ FIV H(X). Then, by definition of finite interval-

valued hesitant fuzzy preference relation, R (A,B) , R (B,C) ∈ FG([0, 1]).
If A ≤∗,R B and B ≤∗,R C, then R (A,B) ≤∗ R (B,A) and R (B,C) ≤∗
R (C,B). As R is a ≤∗-consistent hesitant fuzzy preference relation, then
R (A,B) ≤∗ R (B,C) and therefore, A ≤∗,R C. �

In the following we present a toy example illustrating global orders.

Example 4 Let X = [0, 1] be the universe where we define A,B ∈ FIV H(X).
Let A be defined by the following membership function:

µA(x) =





1 If x ∈ [0.2, 1],

0 If x ∈ [0, 0.2).

Analogously, let B be defined by the following membership function:

µB(x) =




{0} ∪ {1} If x ∈ [0, 0.7),

[0.2, 0.8] ∪ {1} If x ∈ [0.75, 1].

Let C : F (X)→ [0, 1] be the function assigning the middle point of the support
for each fuzzy set. We will consider the order on finitely generated sets ≤lo
and the ≤lo-consistent fuzzy preference relation:

R(U, V ) =





[ C(U)
C(U)+C(V )

, 1
]

If C(U) > C(V )
[

1
4
, 3

4

]
If C(U) = C(V )

[
0, C(U)
C(U)+C(V )

]
If C(U) < C(V )

.
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Therefore,
C(A) = 0.6 and C(B) = 0.5,

R(A,B) = [
0.6

1.1
, 1] and R(B,A) = [0,

0.5

1.1
].

We can easily observe that:

R(B,A) ≤lo R(A,B).

Then,
B ≤lo,R A.

4.2.2 Finite interval-valued hesitant fuzzy preference relations generated by
fuzzy preference relations

We have seen how to construct an order between finite interval-valued hesi-
tant fuzzy sets using finite interval-valued hesitant fuzzy preference relations.
However, a fundamental question may arise at this moment, could we generate
a finite interval-valued hesitant fuzzy preference relation by a fuzzy preference
relation? Under which conditions?

Definition 33 The class of bounded finite interval-valued hesitant fuzzy sets
over X is defined as:

FIV HB(X)={A∈TH(X)|∃n∈N s.t. ∀x∈X, ∃m≤n s.t. µA(x)∈FGm(X)}.

Definition 34 A fuzzy preference relation R is said to be parametrically con-
tinuous if ∀A,B ∈ IV FS(X), f : [0, 1] → [0, 1] defined via fA,B(α) =

R
(
PA
α+ , PB

α+

)
is continuous.

These definitions allow us to establish some conditions under which a fuzzy
preference relation generates a finite interval-valued hesitant fuzzy preference
relation.

Theorem 2 Let R be a parametrically continuous fuzzy preference relation
and a finite set of alternatives A ⊂ FIV HB(X), then σ(R) is a finite interval-
valued hesitant fuzzy preference relation on A where

σ(R)(A,B) =
⋃

αsg
R
(
PA
αsg , P

B
αsg

)
,

for any A,B ∈ FIV HB(X).

Proof. Firstly, we need to prove that σ(R)(A,B) is well defined, i.e. σ(R)(A,B) ∈
FG([0, 1]) ∀A,B ∈ FIV HB(X).

Let A,B ∈ FIV HB(X). Then, it exists nmax, the maximum natural number
such that µA(x) ∈ FGnmax([0, 1]) or µB(x) ∈ FGnmax([0, 1]) for some x ∈ X.
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Let G =
nmax⋃

i=1

G(i). Then, for any α+
i−1, α

−
i two consecutive elements of G,

there does not exist a discontinuity between PA
α−i−1

(x) and PA
α+
i

(x) or between

PB
α−i−1

(x) and PB
α+
i

(x) for any x ∈ X.

Note that
⋃

α+
i−1≤αsg≤α

−
i

PA
αsg and

⋃

α+
i−1≤αsg≤α

−
i

PA
αsg are interval-valued fuzzy sets.

Thus, as R is parametrically continuous,
⋃

α+
i−1≤αsg≤α

−
i

R
(
PA
αsg , P

B
αsg

)
, is a closed

interval (applying Weierstrass’s Theorem and Intermediate Value Theorem to
fA,B(α) = R

(
PA
αsg , P

B
αsg

)
).

Finally, as #G is finite, σ(R)(A,B) is a finite union of closed intervals, i.e.
σ(R)(A,B) ∈ FG([0, 1]).

On the other hand, we need to prove that σ(R)(A,B) is symmetric to σ(R)(B,A)
in relation to the point 0.5. This is straightforward because R is a fuzzy pref-
erence relation and then, R

(
PA
αsg , P

B
αsg

)
= 1−R

(
PB
αsg , P

A
αsg

)
∀αsg ∈ [0, 1]{−,+}.

�

5 Conclusions and future research

In this paper several methods to order intervals have been reviewed and all
these methods have been generalized to finitely generated sets, which are a
finite union of disjoint closed intervals. We have particularized in two orders:
“lattice order” and “αsg-point order”.

Furthermore, we have seen that the membership function of a finite interval-
valued hesitant fuzzy set is a finitely generated set, so we have developed
methods to order finite interval-valued hesitant fuzzy sets using orders defined
between finitely generated sets. This work has led us to construct, using pref-
erence relations, two families of orders between finite interval-valued hesitant
fuzzy sets: “local orders” and “global orders”. These two families of orders be-
tween finite interval-valued hesitant fuzzy sets focus on two different problems
and can elect different winners when applied to the same problem. However, in
most ordering problems there is not a universal truth and different orders can
naturally elect different winners. Furthermore, finite interval-valued hesitant
fuzzy preference relations have been introduced. In addition, some conditions
allowing a fuzzy preference relation to generate a finite interval-valued hesitant
fuzzy preference relation were established.

In the future we will intend to model a group decision making problem with fi-
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nite interval-valued hesitant fuzzy sets. In particular, we would like to continue
with the real problem of Human Reliability started in [23].
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