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Abstract

In this work ,a de nition of entropy is studied in an interval-valued hesitant fuzzy
environment ,instead of the classical fuzzy logic or the interval-valued one. As the
properties of this kind of sets are more complex, the entropy is built by three
different functions, where cach onc represents a different measure: fuzziness, lack of
knowledge and hesitance. Using all, an entropy measure for interval-valued hesitant
fuzzy sets is obtained, quantifying various types of uncertainty.

From this definition, several results have been developed for each mapping that
shapes the entropy measure in order to get such functions with ease, and as a
consequence, allowing to obtain this new entropy in a simpler way.

Key words: fuzzy sets, hesitant fuzzy sets, interval-valued hesitant fuzzy sets,
entropy, fuzziness, lack of knowledge, hesitance.

Preprint submitted to Elsevier Science 4 April 2015



1 Introduction

The fuzzy logic was introduced by Zadeh in 1971 (see [32]), becoming a gener-
alization of the classical set theory which has been widely studied since then
up to now. The goal of this approach is to represent certain properties that
are not possible to be dealt with by the classical logic. It has been applied
to a wide range of topics, such as protection of privacy (see [21,22]) or image
processing (see [2,23]).

A fuzzy set is characterized by a membership function that depends on the
expert that shapes it. In order to overcome this problem, generalizations of
the fuzzy sets were carried out. In particular, the interval-valued fuzzy sets
were introduced by Sambuc in 1975 (sce [25]), where the membership function
gives for each point not a single value but an interval. Atanassov’s intuitionistic
fuzzy sets, developed by Atanassov in 1986 (see [1]); are another generaliza-
tion where a set is associated to both a membership and a non-membership
function. A greater extension of the fuzzy sets are the 2-type fuzzy sets, given
by Zadeh in 1975 (see [33]), where for each peint, the membership function is
defined over the referential [0, 1].

However, type-2 fuzzy sets are difficult to work with, so in 2009 hesitant
sets were introduced by Torra (see [27,28]) as an intermediate kind of fuzzy
sets. The membership function of a hesitant set assigns a subset of the closed
interval [0, 1] instead of a fuzzy set to each point. This property makes them
more manageable than type-2 fuzzy sets. In fact, these sets were already in-
troduced by Grattan-Guinness [15] in 1976, with the name of set-valued fuzzy
sets. However, Torra provided functional definitions of union and intersection
for such sets which were not considered by Grattan-Guinness. This type of
sets is currently a rising researching topic, due to the possibilities that they
provide (see [5,14,30]), and specially, in decision making (see [10,16,29]). Dif-
ferent extemsions of this hesitant sets have been developed lately (see [24]).
In our paper, the used and studied generalization is the finite interval-valued
hesitant fuzzy sets, given by Pérez et al. in 2014 (see [20]).

The study of entropy measures in the fuzzy set theory also became an impor-
tant part of the research, firstly defined by De Luca and Termini in 1972 (see
[11]), whose aim is to quantify the uncertainty associated to a fuzzy set. This
concept has been adapted to other types of fuzzy sets, such as Atanassov’s
intuitionistic fuzzy scts (sce [18]), interval-valued fuzzy scts (sce [6]) or cven
interval-valued hesitant fuzzy sets (see [14]).

Nevertheless, the existing definition of entropy for interval-valued hesitant
fuzzy sets in [14] only reflects one type of uncertainty, associated to how dis-
tant a sct is from a union of crisp scts. Our proposal along the work is to



define a new entropy measure for interval-valued hesitant fuzzy sets, where
three types of uncertainty are reflected through three mappings, instead of
the classical concept of just one function for one type of uncertainty associ-
ated. In addition, several results have been developed in order to obtain such
mappings with ease, and as a result, the entropy measure can be obtained
with simpler conditions. Note that this has also been the approach in [18] for
the Atanassov intuitionistic fuzzy setting.

The remainder of the paper is structured as follows: the following section
is split into three subsections with preliminary concepts about fuzzy sets,
hesitant fuzzy sets and entropy and dissimilarity measures respectively. Section
3 details the study related to the new definition of entropy in a interval-
valued hesitant environment. In Section 4 the main conclusions of this work
are highlighted.

2 Preliminaries

Necessary concepts to understand the definition of entropy proposed in this
work are given in this section. It hasbeen split into three subsections. General
basic concepts about the fuzzy logic are explained in the former. The used
generalization of fuzzy sets, the hesitant fuzzy sets, are developed in the sec-
ond one. In the latter, the definitions of entropy and dissimilarity measure in
different environments are given.

2.1 Fuzzy sets and its extensions

The coneepts about the usual types of fuzzy sets can be found in a wide range

of sources, such as [9]. These types of sets are important in order to understand

the utility provided by the hesitant fuzzy sets, starting with the definition of

the classic fuzzy set, which was given for the first time by Zadeh (see [32]).

Definition 1 Let X be a non-empty set. Given the membership function:
pa s X —[0,1],

then, the set A = {(z,pa(z))|x € X} is a fuzzy set in X.

Given z € X, the value pa(x) is called membership degree of .

Remark 2 FS(X) denotes the set of all fuzzy sets in X.



In addition to the definition of fuzzy set, the following concepts are introduced
in order to develop the forthcoming results.

Definition 3 Given A, B € FS(X), with their membership functions 4 and
i respectively:

o The complement of A with respect to the standard negation, which is denoted
by A, is the fuzzy set given by A° = {(z,1 — pa(z))|x € X}.
e The partial ordering relation used for fuzzy sets is given by:

A< B pa(r) < pp(z), Vo € X.

o Theseté € FS(X) is called equilibrium set if it is defined as § = {(z,0.5)|z €
X}

The interval-valued fuzzy sets are a generalization of the fuzzy sets, where an
interval instead of just one value is associated to each point. This kind of sets
were developed by Sambuc (see [25]).

Definition 4 Let X be a non-empty set. Given the membership function:
pa s X — L([0,1]),

where L(]0,1]) denotes the family of all closed subintervals of [0,1], then, the
set A= {(z,pa(z) = [palx)25pua(@)V]))|x € X} is an interval-valued fuzzy set
n X.

Remark 5 IVFS(X) denotes the set of all interval-valued fuzzy sets in X.
Some useful coneepts are introduced in the following definition.

Definition 6. Given A, B € IVFS(X), with their membership functions pia
and pp respectively,

e The complement of A with respect to the standard negation, which is denoted
by A°, is given by A° = {(x, pac(z))|x € X}, where pac(x) = [1—pa(x)¥, 1—
/’LA(x>L]7 Vo e X,

e The partial ordering relation used in our paper for interval-valued fuzzy sets,
is well known and can be found in several sources such as [3,19]. It is given
by:

A< B % pa(z) <r pp(x), vz € X,

where Vr € X

pa(z) <r pp(x) < pa(@)” < pp(@)* and pa(z)? < pp(z)?,

o The set A={(z,[0,1]))|z € X} is called the pure interval-valued fuzzy set.



The concept of pure interval-valued fuzzy set is obtained directly from the
concept of pure Atanassov intuitionistic fuzzy set introduced in [18], taking
into account the mathematical duality between both concepts (see [26]).

In addition, type-2 fuzzy sets were also developed by Zadeh. They represent
a generalization of the classical notion of fuzzy set (see [33]).

Definition 7 Let X be a non-empty set. Given the membership function:
A - X — FS([Oa 1])7
then, A ={(x,ua(z))|x € X} is a type-2 fuzzy set in X.

Remark 8 T2FS(X) denotes the set of all type-2 fuzzy sets X . As we will
work on a subset of T2FS(X), we are not going to comment any operation
on type-2 fuzzy sets, in order to avoid unnecessary explanations.

In the next subsection, basic concepts about hesitant fuzzy sets are studied.
This type of sets represents an intermediate step between the interval-valued
fuzzy sets and the 2-type fuzzy sets, which makes them interesting to study
and work with. The reason lies in the fact that the type-2 fuzzy sets are hard
to handle and use, while the hesitant fuzzy sets have properties that make
them more manageable. Furthermore, all the results obtained in a hesitant
environment can be quickly adapted to other types of sets, such as interval-
valued fuzzy sets and the classical fuzzy sets, since they are a generalization
of them.

2.2 Hesitant fuzzy sets

Hesitant fuzzy logic, recently defined by Torra in [27,28], was first introduced
by Grattan-Guinnes in [15], with the name of set-valued fuzzy set. Another
related developments were carried out in other papers such as [5], where basic
definitions about this topic can be found.

Let P([0, 1]) denote the family of subsets of the closed interval [0, 1]. A typical
hesitant fuzzy set is defined as follows (see [4,5]):

Definition 9 Let X be a non-empty set and H C P([0,1]) the set of all finite
non-empty subsets of the interval [0,1]. Given the membership function:

/’LA:X_>H7

then, the set A = {(x, ua(z))|x € X} is a typical hesitant fuzzy set in X.



Remark 10 THFS(X) denotes the set of all typical hesitant fuzzy sets in
X.

As the previous definition states, the membership function of a typical hesitant
fuzzy set provides for each element of X a finite subset of the interval [0, 1]. In
order to be able to apply this type of sets in practise, it is desirable to replace
finite subsets by subsets which are generated by a union of a finite number
of closed intervals. This reasoning leads to a new definition of hesitant fuzzy
sets, the finite interval-valued hesitant fuzzy sets, given by Pérez et al. (see

[20]).

Before providing the definition of finite interval-valued hesitant fuzzy sets, the
notions of finitely generated set as well as the complement of such sets are
introduced.

Definition 11 Let n € N. The class of n-finitely generated sets in [0,1] s
given by:

FGL([0.1]) ={I [0, 1]|I = O L awith I;N I; = 0,Yi # j},

=1

where I; denotes a closed interval in [0,1], for any ¢ € {1,...,n}. The class
of finitely generated sets in [0, 1-is given by:

FG([0,1]) = G FG,(10,1]).

n=1

Definition 12 Let I =1, U---U I, be an element of FG,([0,1]), where for
every i = 1,.4.,m, I; = [IF, IY]. Then, the complement of I is defined as

2

Ie=I¢U--«UlS with I =1 -1V, 1 I, fori=1,... n.
Remark 13 Note that I € FG,([0,1]) & I° € FG,([0,1]).

After these prior concepts, the definition of an interval-valued hesitant fuzzy
set is given as follows ( see [20]).

Definition 14 Let X be a non-empty set. Given the membership function:
pa s X — FG([0,1]),

then, the set A = {(z, pua(z))|z € X} is an interval-valued hesitant fuzzy set
n X.

Remark 15 [VHFS(X) denotes the set of all interval-valued hesitant fuzzy
sets m X.



The notion of complement is now introduced. This concept is based on the
definition of complement of finitely generated sets (Definition 12).

Definition 16 Let A be an interval-valued hesitant fuzzy set in X with A =
{(z,pa(z))|x € X}, the complement of A is defined as A° = {(x, pac(z))|x €
X}, where pyc(x) is the complement of a finitely generated defined accordingly
to Definition 12.

For every interval-valued hesitant fuzzy set, and for each point € X, the
membership function belongs to FG,_([0,1]) for some n, € N, which rep-
resents the number of disjoint closed subintervals that generate the finitely
generated set. Obviously, in a interval-valued hesitant fuzzy set some of the
closed subintervals can be degenerated, i.e., singletons. If all the intervals are
degenerated, then we recover typical hesitant fuzzy sets.

Regarding how to compare two interval-valued hesitant fuzzy sets by an order-
ing relation, Pérez et al. in [20] developed a methodology based on the notion
of a*9-points. The one that has been used in this paper is closely related to
Xu and Yager (see [31]) total ordering relation for intervals.

Definition 17 Let x = [2¥, 2],y = [y* y"] € L([0,1]). If the score function
is defined by S(x) = 2V — z¥ and the accuracy function by H(x) = 2L + z¥,
then the total ordering relation <xy 18 qiven as follows:

H(x) < H(y),

X <xy Yy<=4{ or

The following definition generalizes the order relation between intervals pre-
sented in the previous definition to interval-valued hesitant fuzzy sets.

Definition 18 Let X be a non-empty set with cardinality N, A,B € IVHFS(X)
such that:

pale) = J AT = JIAY, A7) and pp(x) = | B = J (B, BY |
=1 =1 =1 =1

for every x € X, where for simplicity and without loss of generality it is
supposed that the sets are ordered increasingly, i.e.., A7 <xy A7, B <xy
BYy, and Af N AT =0 and Bf N B} =0 fori # 5.

Given I € FG,,([0,1]), and S and H the following functions (score and ac-



curacy, respectively):

nr L U
ZS Z[U_[L) H([):lz[[Z +Ii]7
i=1 nr;3 2

then, A < B if only if

(a) H(pa(z)) < H(pp(z)) Ve € X and 32’ s. t. H(ua(z')) < H(pp(z')) or
(b) H(pa(z)) = H(up(x)) Yz € X and
(b1) S(pa(z)) < S(pp(z)) Vo € X and 32" s. t. S(pa(z")) < S(up(z')) or
(b2) S(pa(z)) = S(up(z)) Vo € X and

(b2.1) nt <nB Vrx e X and 32" s. t. n2 <nB or

(b2.2) n* = nB A" < B and A*" < B, Ve e X and¥i=1,....n".

Proposition 19 Let < be the relation given in Definition 18. Then, < is an
ordering relation for interval-valued hesitant fuzzy sets.

Proof. 1In order to prove that this relation is an ordering relation, it must
be proven that it is reflexive, antisymmetric and transitive.

(i) Reflexivity: it is obvious, as all-the conditions in the definition of the
relation are fulfilled with equalities (Condition (52.2)).

(ii) Antisymmetry: given A, B-€ IVHFS(X) such that A < B and B <
A. Let us see that the only possible situation in A = B, distinguishing
situations depending on the condition satisfied for each inequality.

- If A < B satisfies (a) and B < A satisfies (a):

H(pa(z)) < H(up(x)) < H(palz)), Vo e X

but it exists ' € X such that H(ua(z')) < H(up(2')) < H(pa(x')),
which is a contradiction.

- If A < Bsatisfics (a) and B < A satisfics (b),
H(pa(r)) < H(pp(r)) = H(pa(r)), Vo € X,

but it exists 2’ € X such that H(ua(x’)) < H(ug(x')) = H(pua(z')), which
is a contradiction.

- Analogously, it is proven that it is a contradiction for every combination
unless A < B satisfies (b2.2) and B < A satisfies (2.2), where

AT < BT < AP and AT < BYY < AT

Vi € X and Vi = 1,...,n,. Therefore, A*" = B*" and A*" = B*" and
then A = B.
(iii) Transitivity: given A, B,C € IVHFS(X) such that A < B and B < C,
let us sce that A < C.



- If A < B satisfies (a) and B < (' satisfies (a):
H{pa(w)) < H(up(x)) < H(pc(a)), Vo € X,

but it exists 2’ € X such that H(ua(z")) < H(up(z')) < H(pc(z')), so A
and C satisfies (a) and hence, A < C.
- If A < B satisfies (a) and B < C satisfies (b1) or (b2.1) or (b2.2), then

H(pa(z)) < H(pp(z)) = H(pc(r)), Vo € X,

but it exists &' € X such that H(pua(2")) < H(upg(z")) = H(uc(z!))s so A
and C satisfies (a) and hence, A < C'.

- If A < B satisfies (b1) and B < C satisfies (02.1) or (02.2): Both A < B
and B < C satisty (b), then

H(pa(z)) = H(ps(r)) = H(po(2)), Yo cX,

As A < B satisfies (bl) and B < C satisfies (b2.1), then
S(pa(e)) < S(pp(2)) = Suc(®)) Vo € X.

In addition, 3z’ s. t. S(ua(z')) < S(up(z’)). As S(up(x)) = S(pc(x)) Vo €
X, in particular S(pg(2')) = S(ge(x’)). Thercfore,

3z’ s. b S(pa(z))) < S(up (') = S(uc(z')).

Thus A < C by (bl).
- If A < B satisfies (2.1)'and B < C satisfies (b2.2): Both A < B and
B < C satisfy (b), then

H(pa(r)) = H(up(r)) = H(pc(z)), Ve e X,

As A< B satisfies (b2.1) and B < C satisfies (b2.2), then

S(pa(z)) = S(pp(r)) = S(po(r)) Ve € X.

In addition,
n? <nPVre X and 32’ s. t. nf < nf

x>

and

n? =nl B <C* and BY < C¥'Vee X andVi=1,...,n2.

z =
Thus,
nt <nP =nlveeX

In addition, as 32 s. t. n2 < nf, and n? = niVz € X, then

x>

A B
'nx/ < nl./ - TLC

$/.



A

mI

That means 32’ s. t. n
(b2.1).

- If A < B satisfies (b2.2) and B < (' satisfies (b2.2): Both A < B and
B < C satisfy (b), then

H(pa(w)) = H(pp(r)) = H(pe(r)), Ve € X.
As both A < B and B < C satisfy (b2.2) then

S(pa(@)) = S(un(x)) = S(uc()) Ve € X.

< ng, and therefore A < C because it satisfies

In addition,
A B ¥ zV ol xl : A
n'=n,, A7 <Bf and A7 < B! Vre XandVi=1,....n

n? =nl B < and BY < C¥'Vo e X and Vi =1,...,n2.
Thus,

nd =nC A" < and AT <CF'VeeXandVi=1,... n’
and therefore A < C, since (b2.2) is fulfilled. B

One of the main interests of the interval-valued hesitant fuzzy sets lies on the
fact that they generalize fuzzy sets and interval-valued fuzzy sets.

Remark 20 The different types of sets previously given are related as follows:

FS(X) C IVFS(X) C IVHFS(X) C T2FS5(X),
FS(X) € THFS(X)C IVHFS(X) C T2FS(X).

Furthermore, interval-valued hesitant fuzzy sets are more manageable than
2-type fuzzy sets, due to the type of membership functions that define each
one, which is a reason to work with the former instead of the latter.

In the next subsection, basic concepts about entropy with respect to different
families of sets are treated, as well as the definition of dissimilarity measure,
which is also analyzed in different situations.

2.8 FEntropy and dissimilarity measure

The aim of an entropy is to quantify the uncertainty associated with either a
fuzzy set or a generalization of it. In the next result, the definition of entropy
for fuzzy sets is given. The definitions of entropy and dissimilarity measure in
the classical fuzzy sets are well known and can be found in several sources,
such as [13], given by Dubois and Prade.

10



Definition 21 A mapping E : FS(X) — [0,1] is an entropy measure if it
satisfies the following properties, where A, B € F.S(X):

(1) E(A) =0« A is crisp,

(2) E(A) =1<%< A is the equilibrium set,

(3) E(A) = E(A°),

(4) E(A) < E(B) if [pa(r) = pe(e)] = |pp(r) = pe(2)], Ve € X.

Dissimilarity measures are widely used in different fields. The usual definition
in a fuzzy environment is given as follows.

Definition 22 A mapping D : FS(X) x FS(X) — [0,1] is a dissimilarity
measure if it satisfies the following properties, where A, B,C € FS(X):

(1) D(A,B) = D(B,A),

(2) D(A A) =0,
(3) if A< B <C, then D(A,B) < D(A,C) and D(B,C) < D(A,C).

Some authors replace condition (2) by
(2) D(A,B)=0< A= B.

Some others consider a particular case of these dissimilarity measures, the
ones obtained by considering the idea of restricted dissimilarity function given
by Bustince et al. ([7,8]), that s, fulfilling the condition:

(4) D(A, A°) =1 iff A is acrisp set.
Thus, from now onywe will work only with restricted dissimilarities.

It must be noted that from a dissimilarity measure, a similarity measure is
easily obtainable by S(A, B) = h(D(A, B)), with h monotone decreasing such
that h(1)'=0 and h(0) = 1 (that is, for any negation). For this reason, it is
enough to study just one of the two measures.

In [18], the authors adapt the entropy to Atanassov’s intuitionistic fuzzy sets.
This entropy is split into two functions, Fr and £, where each one represents
a different meaning of entropy. The former describes the fuzziness of the set,
i.e., it measures how similar it is to a crisp set. The latter function outlines
the lack of knowledge, which shows the similarity with a fuzzy set.

Next definition provides the same concepts for interval-valued fuzzy sets based
on tha fact that Atanassov’s intuitionistic fuzzy sets and interval-valued fuzzy
sets are mathematically equivalent (see [12]), so results given for one of them
can be translated to the other.

Definition 23 Let Er, Erp : IVFS(X) — [0,1] be two mappings. The pair

11



(EF, EL) is said to be a two-tuple entropy measure if Ep satisfies the following
properties, where A, B € IVEFS(X):

(1) Ep(A) =0« A is crisp or it is the pure interval-valued fuzzy set,
(2) Er(A) =1< A is the equilibrium set,

(3) Ep(A) = Ep(A),

(4) Er(A) < Ep(B) if Vo € X

pa(x) < pp(x) <r pe(z) for pg(x) + pp(w)

<1
pe(@) <1 pp(z) <1 pa(z) for pp(r) + piz) > 1

and Ey, satisfies the following properties, where A, B € IVFS(X):

(1) E(A)=0& Aec FS(X),

(2) EL(A) =1« A is the pure interval-valued fuzzy set,

(3) Er(A) = EL(A),

(4) EL(A) < Ep(B) if S(pa(x)) < S(up(x)), Ve € X, where S denotes the

score function gwen in Definition 17.

This generalization to interval-valued fuzzy sets ean be also carried out for
the dissimilarity measure. This concept can be found in [17] for intuitionistic
fuzzy sets, which is adapted to interval-valued fuzzy sets as follows.

Definition 24 A mapping D : IVFS(X) x IVFS(X) — [0,1] is a (re-
stricted) dissimilarity measure if it satisfies the following properties, where

A, B,C € IVFS(X):

(1) D(A, B) = D(B;A),

(2) D(A, A°) = 14& A is crisp,

(3) D(A, B):O(@A B,

(4) if A< B<C, then D(A B) < D(A,C) and D(B,C) < D(A,C).

It has been recently developed the definition of dissimilarity measure and
entropy for interval-valued hesitant fuzzy sets, which can be found in [14].

Definition 25 A mapping D : IVHFS(X) x IVHFS(X) — [0,1] is a (re-
stricted) hesitant dissimilarity measure if it satisfies the following properties,
where A, B,C € IVHFS(X):

(1) D(A,B) = D(B, A),
(2) D(A, A°) =1 < A is crisp,
(3) D(A,B) =0« A= B,

(1) IFA < B:§ C' then D(A, B) < D(A,C) and D(B,C) < D(A,C).

Example 26 Some examples of hesitant dissimilarity measures were given by
Xu and Xia ([30]). One of them was based on the Hamming dissimilarity and

12



defined, for a finite set X with cardinality N, as follows:

S X A B 1 B

xGX 1’1, 1

for any A,B € IVHFS(X) where pua(x UA’“" = UAI A with

AV <xy A7 (with respect to the total ordermg relatzon §Xy associated. to
the score and accuracy functions given in Definition 17) for every x € X and
ie{l,...,n, — 1}, and analogously for the set B.

Definition 27 Let £ : IVHFS(X) — [0,1] be a mapping, and D a hesitant
disstmilarity measure. E is said to be a hesitant entropy measure assoctated
to D if it satisfies:

(1) E(A) =0 pa(z) C{0,1}, Vo € X,
(2) E(A) =1 A is the equilibrium set,
(3) E(A) = E(A%),

(4) E(A) < E(B), if D(A.§) = D(B,¢).

In the next section, the proposal of this paper is developed, where a new
definition of an entropy measure is given in an interval-valued hesitant fuzzy
environment.

3 A new definition of entropy for interval-valued hesitant fuzzy
sets

In the previous section, a definition of entropy for interval-valued hesitant
fuzzy sets by Farhadinia (see [14]) was given. However, this definition only
takes into account the distance to the equilibrium set, which may not be
enough to quantify the uncertainty associated to an interval-valued hesitant
fuzzy set.

In order to overcome this, a different definition of entropy is given. It is char-
acterized by three mappings instead of just one, as Pal et. al (see [18]) did for
Atanassov’s intuitionistic fuzzy sets with two different mappings.

Hence, the developed entropy for interval-valued hesitant fuzzy sets is split into
three functions: Fr, E7, and Ey. They are studied separately in the next three
subsections, representing each one a different type of uncertainty associated
to an interval-valued hesitant fuzzy set. This allows to provide a more detailed
cntropy measurec.
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3.1 Fuzziness entropy measure

The first function of the interval-valued hesitant fuzzy entropy represents the
fuzziness of the set. The goal of this function is to measure how distant the
set is from the union of a finite number of crisp sets. This mapping is similar
to the one given by Definition 27, but with a modification in the first and last
axioms, which are more efficient in order to build this part of the entropy.

Definition 28 Let Er : IVHFES(X) — [0,1] be a mapping. Er is said to be
a fuzziness entropy measure associated to a hesitant disstmilarity measure D
if it satisfies the following properties, where A, B € IVHFS(X):

(1) Er(A) =0 < pa(x) € {0,1,{0,1},]0,1]}, Vo € X,

(2) Er(A) =1< A is the equzhbmum set,

(3) Erp(A) = Ep(A°),

(4) Er(A) < Er(B), if D(A,,€) > D(B,,€) Yo € X, where A, = {(y, pa(x))|y €

X} and By = {(y, pp(2))ly € X}

The first axiom states that the fuzziness is null if the membership function
is the union of crisp sets or the pure interval-valued fuzzy set. In the second
axiom, the maximum fuzziness happens when the set is the equilibrium. The
third one, requires that a set and its complement takes the same entropy. In
the fourth axiom, two interval-valued hesitant fuzzy sets are compared with
respect to Ep using the associated hesitant dissimilarity measure. In fact,
the definition of fuzziness entropy is related to the dissimilarity, but it is not
detailed in all the cases, since there is not ambiguity.

Furthermore, the local property can be given for this entropy measure in the
case of finite referential sets. Firstly, some notation is necessary.

Definition 29 Let X be a finite set with cardinality N. Given M C {1,... , N}
and A = {(xi, pa(zy) |z, € X} € IVHFS(X), the interval valued hesitant
fuzzy sets AM) is defined as follows:

A(JW) {($Z,,UA(M)(.TZ))|CCZ S X}
where
pales) ifi ¢ M.
fraon(x:) =9 {0} ifie M and A,, <€,
{1} ifie M and A,, > &,

where < is the ordering relation given in Definition 18.

Remark 30 It should be noted that as both sets A,, and & have constant
membership functions (in pa(z;) and {0.5} respectively), A,, < & or Ay, > &
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must hold.

To prove it, the only conflictive situation arises if H(pa(z;)) = H({0.5}) =
0.5, S(pa(z;)) = S({0.5}) = 0 and n, , 2,y = o5y = 1. From these conditions,
the next equations must be satisfied:

U

pa(z)? = pa(z)* =0, pa(e)? + pa(e)* =1,

and the only possibility is that pa(z;) = {0.5}, and as a consequence, A,, =&.

It is clear that A®D) is only different to A in any z; € X with i € M. In the
particular case M = {j}, the notation is simplified to A

Definition 31 Let X be a finite set with cardinality N and Eg: IVHFS(X) —
[0,1] a fuzziness entropy measure. Ep is said to be a local fuzziness entropy
measure if it exists a function f : FG([0,1]) — [0,1] such that for every
xr; € X, given Ae IVHFS(X):

Er(A) — EF(A(j)) = f(ualz;)),
or equivalently, it only depends on the term pa(x;).

Remark 32 [t must be noted that Ep(A) — Ep(AY) € [0,1] for all j =
1,...,n. To prove it, it is enough to see that D(A,,,§) < D(A() £), as for
the other x € X, the equality s tmmediate.

o IfA, <&, then A%_) ={(x,0)]zr € X} = 0. Hence, } = AY) < A, <&. By
the last property in Definition 25, D(A,,,&) < D(0,€) = D( ;_), ), and by
the last condition of a fuzziness entropy, Ep(AW) < Ep(A).

o If A, >, thenA(J = {(z,1)]z € X} = X. Hence, { < A,, <Ag2:X.
By the last property in Definition 25, D(A,;,§) < D(X,§) = D( 0 ¢),
and by the last condition of a fuzziness entropy, Ep(AW) < Ep(A).

Henceforth, two results have been developed in order to ease the obtaining
of local fuzziness entropy measures with functions whose properties are more
manageable than the original ones in the definition of such entropy. Initially,
we are going to characterize the local fuzziness entropies by means of the
following result.

Theorem 33 Let X be a finite set with cardinality N, Er be the mapping
Erp: IVHFS(X) — [0,1] and D a hesitant dissimilarity measure. Then, Ep
15 a local fuzziness entropy measure associated to D if and only if it exists a
mapping h : FG([0,1]) — [0, 1] such that

ZWA

xeX
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which also satisfies the following four azioms, given I,J € FG([0,1]):

(1) h(I) =0« 1 €{0,1,{0,1},]0, 1]},

(2) (1) =1 1 = pie(a),

(3) W(I) = h(I°),

(4) h(I) < h(J) if D(X[,&) > D(X,§), where X; = {(z,I)|x € X} and
Xy =A(z,J)|r € X}.

Proof. First, let us suppose that Er is a local fuzziness entropy, and by the

definition of local for fuzziness entropy, it is known that it exists a function
f: FG([0,1]) — [0, 1] such that:

Ep(A) = Ep(AY) = f(ua(y)), Vi€ {1,...,N}.

Given A € IVHFS(X), applying the definition of local recursevely:

Ep(A)=Ep(A") + f(ua(zy)) =

Ep((AM)YND) 4 f(pao (xn—1) + f(pa(zn)) =
Ep(ANN) 4 fua(ay—) + flpalry)) = - =
Er(

F

0. Hence,

- Z f(pa(x))

zeX

In addition, it is’ known that Er(A) € [0,1] for every A € IVHFS(X). Then,
for all z; € X, applying the mapping Er to the set X,

1

Er (Xuy@) = 2 flpa(wi)) = Nf(pa(w) € 0,1] = f(pa(w) €0, 5

reX

Consequently, taking h : FG(|0, 1]) — [0,1] such that h(I) = Nf(I), it is
immediate that:
Z h(palx

:I:EX
Now, let us see that h satisfies the four conditions of the theorem.

(1) Given I € FG([0,1]) and X; € IVHFS(X), then:

Ep(Xp) = Z h(I

xeX
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so by the first axiom of Definition 28, it is known that:
En(X) =h(I)=0 & pale)=1€{0,1,{0,1},[0,1]}

(2) Given I € FG([0,1]) and X; € IVHFS(X) such that Ep(X;) = h({).
From the second axiom of Er, it is obvious that:

Ee(X) =h(I)=1 & pala) =1 ={0.5} = pela)

(3) Given I € FG([0,1]),and X; € IVHFS(X), it is obtained that Er(X7) =
h(I) and Ep(X) = h(I¢), and as Er satisfies the third axiom of Defini-
tion 28, Ep(X7) = Ep(X/e) and hence,

h(I) = h(I°).

(4) Given I,J € FG([0,1]), and X[, X, € IVHFS(X), it is supposed
that D(X,&) > D(X,€), where by construction, Ep(X) = h(I) and
Er(X,;) = h(J). Due to Ep being a fuzziness entropy. the fourth axiom
is satisfied and:

Now, in order to proceed with the second part of the proof, it is supposed
that h satisfies the four conditions of the theorem, so it is necessary to prove
that Er is a local fuzziness entropy. First, let us see that it satisfies the four
axioms of Definition 28:

(1) Given A € IVHFS(X):

0= Er(4)E & X hua(z)) & hlpa(x)) = 0,2 € X,

zeX

and as h'satisfies the first property of the theorem, this only happens
when:
pa(z) € {0,1,{0,1},[0,1]}, Vo € X.
(2) Given A € IVHFS(X):

1
1= Be(d) = ¢ 3 h(pa(@) & hua(z) =1,z € X,
zeX
which is the same as pa(x) = 0.5,V € X, as h fulfils the second axiom

of the theorem.

(3) Given A € IVHFS(X) and A¢ its complement, as h satisfies the third
item of the theorem, it is known that h(J) = h(J¢) for every finitely
generated set, therefore:

Be(4) = 1 3 hpa(e)) = 1 3 hlaa)) = 1 3 huac(x) = Be(A°)

xeX reX rxeX
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(4) Let A, B € IVHFS(X) such that D(A,,§) > D(B,,&) Vxr € X. By the
fourth axiom of the theorem for I = pa(z) and J = pp(z), h(pa(z)) <
h(pp(x)) Vo € X, hence by construction of the mapping Er:

Er(A) < Ep(B).

In order to close the proof, let us see that it is also a local fuzziness entropy
measure (Definition 31):

(L) Given A € IVHFS(X), for cvery z; € X:

veX\{x;}
1

= —(h(palz;)) = hpao (z5)) = Nh(MA(l‘j)) = f(pa(z;)),

-~ h(m(x))—}v( > h(uA(:c>>+hmAm<xj>>)=
1

=

i.e., it only depends on the term wa(x;) for every j as p i (z;) € {0,1}
and by hypothesis, h(p0)(z;)) = 0. Therefore, it is local. W

After the simplification provided by the previous theorem, the next result
allows to go another step forward and ease even more the obtaining of a local
fuzziness entropy.

Corollary 34 Let X be a finite set with cardinality N, Er be the mapping
Er : IVHFS(X) — [0,1] and D a hesitant dissimilarity measure where
D(A,€) is defined in function of the terms |A* — 0.5| and |[A*" — 0.5], and
where D(A,€) = 05 if and only if A*", A*" € {0,1} for every x € X and
ied{l,...,ng}.

Then, Er is a local fuzziness entropy associated to D if and only if it exists a
mapping g : [0;1] — [0, 1] such that
1

zeX

which also satisfies the following properties:

(1) g(a) =0 a=1,
(2) g(a) =1 & a=0,

(3) g is monotone decreasing.

Proof. It is enough to see that the function h(I) = g(2D(X7,§)) satisfies
the four axioms in Theorem 33, and the result will be proven.

(1) Let I € FG(]0,1]) such that A(1) = g(2D(X,,€)) = 0, and by the sccond
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axiom that ¢ satisfies:
h(I) = g(2D(X},§)) = 0 < 2D(X,§) = 1 & D(X[,§) = 0.5.

Given I = [ U---UI,, € FG,,([0,1]) with I, = [IF, IY] Vi, by the

hypothesis about D, this only happens when X, IV € {0,1} Vi, or what
is the same, [; € {0,1,[0,1]} Vi. Equivalently, I € {0,1,{0,1},[0,1}}.

(2) Given I € FG([0,1]) such that h(I) = ¢(2D(X,&)) = 1. This only
holds when D(X7,&) = 0 for the first axiom that g satisfies; and by
the definition of hesitant dissimilarity (third axiom of Definition 25)

I={0,5} = /~L§($)'

(3) Given I € FG([0,1]), as 0.5 is the center of the interval [0, 1], by sym-
metry and the hypothesis about how D is defined, D(X7, &) = D(X[e,§),
and it is immediate that ¢(2D (X}, §)) = g(2D(Xe, §)).

(4) Given I, J € FG([0,1]) such that D(X,&) = D(X,£), as g is monotone
decreasing by the third axiom:

hI) = g(2D(X7,§)) < g(2D(X;,€)) = h(J). W

These two last results allow to-obtain fuzziness entropies given by Definition
28 in an simpler way, where it is only needed a hesitant dissimilarity and a
function A satisfying the three conditions from Corollary 34, which are much
more manageable than the original ones.

In order to illustrate this first part of the entropy, an example is given next,
where a particular dissimilarity and function g are selected as in Corollary 34.

Example 35 Let X be a finite set with cardinality N, and Er : IVHFS(X) —
[0, 1] given by:

Ep(A) = & ,Z [1 —2Dp(pa(z),{0.5})],

and where Dy is the hesitant normalized Hamming dissimilarity, which was
first developed by [30] for hesitant fuzzy sets, and adapted to interval-valued
hesitant fuzzy sets by [14]. The dissimilarity for finite interval-valued hesitant
fuzzy sets has the expression given in Example 26.

Then, Er is a local fuzziness entropy measure, as it is a particular situation of

the Corollary 34, where g(a) = 1—a and D = Dy, both satisfying the required
properties.
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3.2 Lack of knowledge entropy measure

The second part of the entropy definition is given by a function which repre-
sents the lack of knowledge. The distance of the set to the union of a finite
number of classical fuzzy sets is measured by this function. Thus, a different
kind of uncertainty is considered in this casc.

Using the same notation as in the previous subsection, this function is defined
as follows:

Definition 36 Let E;, : IVHFS(X) — [0,1] be a mapping. Ey, is said to be a
lack of knowledge entropy measure zf it satisfies the following properties, where

A B € IVHFS(X) with pa(x U AT = | J[A", 42" € BG,,([0,1)) Yz €
=1
X, and respectively for B:

(1) E(A)=0< S(A¥)=0,Vi=1,...,n,, Ve X,
(2) EL(A) =1« A is the pure mtemal—valued Juzzy set,
(3) Er(A) = EL(A°),

(4) EL(A) < EL(B) if Vo € X S(ua(x)) < S(us(x)), where S denotes the

score function giwen in Definition 18.

The first axiom states what has been already mentioned in the first part of
this subsection, a null entropy is given when all the sets AY are singletons,
i.e., the set A is a classical fuzzy set. The maximum entropy is found when A
is the purce interval-valued fuzzy sct. In the third point, the entropy of a sct
and its complement must match. In the last axiom, it is given how to compare
two interval-valued hesitant fuzzy sets with respect to the lack of knowledge
entropy measure, where it is taken into account the upper (AfU) and lower
(A2") bounds of each A? for every i =1,...,n, and z € X.

As it has been done for the fuzziness entropy in the previous subsection, the
concept of local lack of knowledge is also studied.

Definition 37 Let X be a finite set with cardinality N and Ep, : IVHFS(X) —
[0,1] a lack of knowledge entropy measure. E is said to be a local lack of

knowledge entropy measure if it exists a function f : FG(|0,1]) — [0, 1] such

that for every x; € X, given A € IVHFS(X):

Er(A) = EL(AY) = f(pa(zy)),
or equivalently, it only depends on the term pia(x;).

Remark 38 [t must be noted that Ep(A) — EL(AY) € [0,1] for all j =
1,...,n. By construction, S(pa(z)) = S(paw (), Vo # z;. Furthermore,
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S(paw(x;)) =0, so it is obvious that S(pa(x;)) > S(paw(x;)), and by the
last aziom of a lack of knowledge entropy, Er(A) > Ep(AY)).

From here on out, two results are given in order to obtain local lack of knowl-
edge entropy measures with lighter conditions, with functions whose properties
are more manageable than the ones of the original definition.

Theorem 39 Let X be a finite set with cardinality N and Er, be the mapping
E; : IVHFS(X) — [0,1]. Then, Ey is a local lack of knowledge entropy
measure if and only if it exists a mapping h : FG([0,1]) — [0, 1] such that

BL(A) = % 3 hlpalo)).

xeX

which also satisfies the following four axioms, given 1,.J € FG(]0,1]) such
that I = L, U---Ul,, € FG,,([0,1]) and J = J; U---UJ,, € FG,,([0,1])
with I; = [IF, IY] Vi and respectively for J:

1771

(1) W(I)=0< S(I)=0, Vi=1,...,nr,
(2) W(I)=1s1=0,1],

(3) h(I) = h(I°),

(1) W(I) < h(J) if S(I) < S(J).

Proof. First, let us suppose that E} is a local lack of knowledge entropy,
and by the definition of local for lack of knowledge entropy, it is known that
it exists a function f: FG([0,1])— [0, 1] such that:

Eu(A)< Ef(AY) = f(ua(ey)), Vj € {1,..., N}.

Given A € IVHFS(X), applying the definition of local recursevely:

EL(A) = = EL(A"M) £ 37 fpala).

Er(A) =) flpal(e)).

zeX

In addition, it is known that E7(A) € [0, 1] for every A € IVHFS(X). Then,
for all z; € X, applying the mapping E;, to the set X, ,(,,):

Er(Xuu@n) = Y [(palz;)) = N f(pa(z;)) € [0,1] = f(pa(z;)) € [0, ;]-

zeX
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Consequently, taking h : FG([0,1]) — [0,1] such that h(I) = Nf(I), it is
immediate that:
Z avne

N zeX

Now, let us see that h satisfies the four conditions of the theorem.

(1) Given I € FG([0,1]) such that I = I, U---U I, let us take X; €
IVHFS(X) such that px,(z) = I for all z € X. Then:

1 N
EX) = 3 32 bl (0) = 3 32 -

xGX
and therefore h(I) = 0 < EL(X;) = 0. Ff satisfies the first axiom of lack

of knowledge entropy, so h(I) =0« S(I;) =0, forall i=1,... ,n; and
the first axiom is proved.

(2) Given I € FG([0,1]), and X; € IVHFS(X), it is direct that
h(]) =1 EL(X[) = 1,
and as B, satisfies the second axiom of Definition 36, I = [0, 1].

(3) Given I € FG([0,1]),and X; € IVHFS(X), it is obtained that E(X;) =
h(I) and Ep(Xc) = h(I€), and as E, satisties the third axiom of a lack
of knowledge entropy, Er(X;) = Er(X§) = Er(X/<) and hence,

h(I) = h(I°).

(4) Let I,J € FG(]0,1]) such that I =, U---U1,, and J = J,U---UJ,,,
and S(I) < S(J).
Given X;, X; € IVHFS(X), as S(I) < S(J) and E[, satisfies the
fourth axiom of the lack of knowledge entropy, Fr(X;) < Er(X ;). How-
ever, 1 (X;) = h(I) and Er(X,) = h(J), so

h(I) < h(J).
Now, in order to proceed with the second part of the proof, it is supposed that
h satisfies the four conditions of the theorem, so it is needed to prove that £,
is a local lack of knowledge entropy. First, let us proof the four conditions of
Definition 36:

(1) Given A € IVHFS(X),
_ 1
N

0=Fr(A Z (ua(x)) © h(pa(z)) =0, Vo € X,
cx
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and as h satisfies (1), then S(ua(z)) = 0, Vo € X, and hence, it is a
finite union of singletons.

(2) Given A € IVHFS(X),

L= Bu(A) = 3 hlpa@) & 3 hlua()) = N,

zeX reX

and it is known by definition that A(/) € [0, 1] for every finitely generated
set, so the only possible situation is that

h(pa(z)) =1 < pa(x) =1[0,1], Vo € X.

(3) Given A € IVHFS(X) and A€ its complement, as h satisfies the third
property of the theorem, it is known that A(.J) = h(J¢) for every finitely
generated set, therefore:

Bu(A) = 2 3 hlpa(n) = o 3 Buale)fhm e 3 hljuac(x) = Fr(4°).

zeX zeX zeX

(4) Given A, B € IVHFS(X) such that Vx € X:

S(pa(@)) < 5(us(x)).

From the last inequality, as h satisfies the fourth axiom of the theorem,
h(pa(x)) < h(pp(z)). Therefore:

B (A) = 3 hua()) < - 3 () = Bn(B).

xeX xeX

Finally, it must be proven that F, is also local:
(L) Given A € IVHFS(X), for cvery x; € X:
EL(A) — EL(AVY) =

Z{h(/m(x)) _]1; ( > h(pal@)) +h(MA<J>($j))) =

v€X\{x;}

—~

= () = A (5)) = A (a(;)) = Fla(a),

i.e., it only depends on the term p4(z;) for every j as p ) (z;) € {0,1}
and by hypothesis, A(u4¢)(z;)) = 0. Therefore, it is local. W

With the support of the previous result, the next corollary allows to get local
lack of knowledge entropics by a mapping with simpler achicvable conditions.
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Corollary 40 Let X be a finite set with cardinality N and Ep, be the mapping
E;, : IVHFS(X) — [0,1]. Then, Ey, is a local lack of knowledge entropy if
and only if it exists a mapping g : |0,1] — [0, 1] such that

B (A) = ¢ 3 6(S(ua(e)),

rzeX

which also satisfies the following properties:

(1) gla) =0 a=0,
(2) 9(a) =1 a=1,
(3) g is monotone increasing.

Proof. It is enough to see that the function h(I) = g(S(I)) fulfils the four
conditions of Theorem 39, and the result would be proven.

(1) Given I € FG([0,1]) such that [ =T, U---U I,
h(I) =0 = g(S));

but for the first property that g satisfies, g(a) = 0 < a = 0, and then
S(I) = 0.

I

(2) Given I € F'G(]0,1])
h(l) =1=g(5(1)),
and for the second property of g, S(I) = 1, which only happens when
I=1[0,1].

(3) Given I € FG([0,1]) such that I = I; U--- U I, and the complement
I° =IfU--«U [ Given any ¢:

SO

(4) Given I,J € FG([0,1]) such that [ = L U---UI, and J = J; U---U
Jn,, with S(I) < S(J). The third property states that g is monotone
increasing, hence:

9(5(1)) < g(5(J)) = M) <h(J). A

With this two last results, it has been found a way to obtain local lack of
knowledge entropy measures just with a mapping g satisfying the properties
of Theorem 40, which are less complicated to obtain than the ones in the
original dcfinition of this entropy mcasurc.
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As it has been done with the first mapping, an example is given next, starting
from the last corollary.

Example 41 Let X be a finite set with cardinality N, and Er, : IVHFS(X) —
[0,1] given by:
1 e .
BL(4) = 5 X 3 S(40),
TCX 1=

where pa(v) = AJU---UAT € FG,,([0,1]), Vo € X, with A] = (A% A7) g,

This is obviously a local lack of knowledge entropy, as it is the particular case
of Corollary 40 with g(a) = a.

3.8 Hesitance entropy measure

The last part of the definition of entropy in an interval-valued hesitant en-
vironment is given by a function which measures the distance of a set to a
single interval-valued fuzzy set. It has been called hesitance, and it is defined
as follows:

Definition 42 Let Ey : IVHFS(X) — [0,1] be a mapping. Ey is said to
be a hesitance entropy measure if it satisfies the following properties, where

A, B € IVHFS(X):

(1) Eg(A) =0 Ac IVES(X),
(2) lim Ey(A)=1Vz € X,

n{—o00

(3) En(A) = Ex(A°),
(4) Ex(A) < By(B) ifVa € X:

ny <np,
where
ng ng
pa(z)=JA? and pp(z)=|]J B} Vz € X,
i=1 i=1

i.e., n2 and nZ represent the number of disjoint intervals that shapes the
set pa(x) and pp(x) respectively.

As it has been already said, a null entropy happens when the set is an interval-
valued fuzzy onc. The sccond axiom remarks that the entropy tends to its
maximum when the number of sets defining p4(z) for each point tends to
infinite. In this axiom there is an abuse of notation: since A is fixed, also n
is; but with this expression we would like to say that, for any z, if we consider
the infimum of the values of the entropies of the sets with n disjoint intervalar
componcnts, the limit when n tends to infinity is cqual to 1. The third onc,
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states that a set and its complement must have the same entropy value. In
the latter property, a set is greater than another with respect to this entropy
when for every point, the number of intervals defining the set is also greater.

Next, an extension of this definition is given, adding the property of local to
hesitance entropy measures.

Definition 43 Let X be a finite set with cardinality N and Ey - [IVHFS(X) —
[0,1] a hesitance entropy measure. Ey is said to be a local hesitance entropy
measure if it exists a function f : FG([0,1]) — [0,1] such that for every
r; € X, given Ae IVHFS(X):

En(A) = Eq(AY) = [(pa(z))),
or equivalently, it only depends on the term pia(x;).

Remark 44 [t must be noted that Ey(A) — Ex(AW). € [0,1] for all j =
1,...,n. By construction, ni = nf(]), Vo # zj.Furthermore, nfj(J)

> nfj@, and by the last axiom of a hesitance entropy,

=1, so
1t is obvious that n

En(A) > Ex(AY).

A
Ty

The next two results that are about to be developed, provide a way to obtain
local hesitance entropies with simpler conditions, avoiding the more complex
oncs in the original dcfinition previously given.

Theorem 45 Let X be a finite set with cardinality N and Ey be the mapping
Ey : IVHFS(X) —0,1]. Then, Ey is a local hesitance entropy measure if
and only if it exists a mapping h : FG(]0,1]) — [0,1] such that

Eu(A) = - 3 hlpale)).

reX

which also satisfies the following four axioms, given I,J € FG([0,1]) such
that T € FG,,([0,1]) and J € FG,,([0,1]):

(1) h(I) =0 n; =1,
(2) Jim h(D)=1,

(3) h(I) = M),

Proof. First, let us suppose that Ey is a local hesitance entropy, and by the
definition of local for hesitance entropy, it is known that it exists a function
f: FG([0,1]) — [0,1] such that:

Eu(A) = En(AD) = f(ua(ay)), Vj € {1,..., N}.
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Given A € IVHFS(X), applying the definition of local recursevely:

Ey(A) == Eg(A"") 4+ 3 f(ua(x)).

n = 1 Vo € X, and by the first axiom of hesitance entropy, By (AN = 0.
Hence,

En(A) = f(pa(x)).

zeX
In addition, it is known that Ey(A) € [0, 1] for every A € IVHFS(X). Then,
for all z; € X, applying the mapping Ey to the set X,,, (s,

Eu(Xurwn) = X Fna(e) = Nf(ua(a) € 0,1 = fluafe))€ 0, 1.

reX N
Consequently, taking h : FG([0,1]) — [0,1] such that h(I) = Nf(I), it is
immediate that: )
En(A) = 2 Mpa(@).

zeX

Now, let us see that h satisfies the four conditions of the theorem.

(1) Given I € FG,,([0,1]) € FG(|0,1]) and X; € IVHFS(X) such that
px;(x) =1 for all z € X. Then:

1 1
En(X1) =57 25 h(nx, (2) = 5 3 h(I) = h(I),
' zeX z€X
and therefore h(l) =0 < Ey(X;) = 0. Ey satisfies the first axiom of a
hesitance entropy, so A(I) =0 < n; = 1, and the first axiom is proved.

(2) Given d € FG,,([0,1]) C FG([0,1]), and X; € IVHFS(X), it is direct
that
and as Fy satisfies the second axiom of a hesitance entropy measure,
lim Ey(X;) =1, x € X, and by definition, n; = n,, so n%gnooh([) = 1.
(3) GivenI € FG([0,1]),and X; € IVHF S(X), it is obtained that Ey(X;) =
h(I) and Eg(Xie) = h(I¢), and as Eg satistics the third axiom of a hes-
itance entropy, Ey(X;) = Ey(X7) = Eg(X;-) and hence,

h(I) = h(I°).

(4) Let I,J € FG([0,1]) such that I € FG,,([0,1]) and J € FG,,(]0,1])
and ny < ny, and X7, X; € IVHFS(X). By the last axiom of a hesi-
tance entropy and the hypothesis n; < n;, Ey(X;) < Ey(X;), and by
dcfinition of both interval-valued hesitant fuzzy scts, h(I) < h(J).
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Now, in order to proceed with the second part of the proof, it is supposed that
h satisfies the four conditions of the theorem, so it is needed to prove that Ey
is a local hesitance entropy. On one hand, the properties of Definition 42 must
be proven:

(1) Given A € IVHFS(X),

1
0= En(4) = 5 > hpa(@)) & hlpa(z)) =0, Vo € X,
rcX
and as h satisfies (1), then n, = 1, Vo € X where pa(z U AT,

equivalently, A € IVFS(X).

(2) Given A € IVHFS(X), and by the second condition of the theorem,
lim A(I) =1, for every finitely generated set. Therefore:

nj—o0

Np—00 nzaao Ngp—00
zeX zeX

Ve € X lim FEx(A)= lim —Zh;m NZ lim h(pa(z)) = 1.

(3) Given A € IVHFS(X) and A“ its complement. As h satisfies the third
property of the theorem, it is known that A(.J) = h(J¢) for every finitely
generated set, therefore:

1
~ Z h(pa(z)) = Z hpa(2)®) = > hlpac(x)) = En(A°).
xEX zeX zeX
nA
(4) Given A;B € IVHFS(X) where pa(z) = | J A7 and pp(x U BY,

=1
Va € X. Let us suppose that n < nf Vo € X, and by the fourth axiom

that h satisfies:
h(pa(z)) < h(pp(z)), Vo € X,

and by construction of the mapping Fy:

& X M) £ 5 3 hes(w) = (),

- zeX
On the other hand, let us prove that Ey is also local:

(L) Given A € IVHFS(X), for cvery z; € X:
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Ep(A) — Eg(AY) =
= ]1[ z;h(/iA(fU)) —]1[ ( 2\% ‘}h(MA(w)) + h(MA<.f>($j))) =
= (hlpa(3)) = oo () = o hua(e) = Fua(ey)),

i.e., it only depends on the term p4(z;) for every j as p o (z;) € {0, 1}
and by hypothesis, A(p4¢)(z;)) = 0. Therefore, it is local. W

The next result provides another step forward to simplify the conditions re-
quired to obtain a local hesitance entropy measure, where a new mapping is
used to get it. Before the corollary, some notation is needed.

Remark 46 The mapping NInt . FG([0,1]) — N provides the number of
closed disjoint subintervals that shape the finitely generated set. Given I =

U L € FG([0,1]), NInt(I) = n;.
i=1

Corollary 47 Let X be a finite set with cardinality N and Ey be the mapping
Ey : IVHFS(X) — [0,1]. Then, Ey is a local hesitance entropy if and only
if it exists a mapping g : N — [0,1] such that

Ex(A) = ; > 9(NInt(pa(z))),

xeX

which also satisfies the following properties:

(1) gla) =0 a =1,
(2) lim g(a) =1,
(8) g is monotone increasing.

Proof. To prove the result, it is enough to see that the function A(I) =
g(NInt(l)) satisfies the four axioms in Theorem 45.

(1) Given I € IF'G,,([0,1]) C FG([0,1]):
h(1) = g(NTni(1)) = 0.

but for the first property that g satisfies, g(a) = 0 < a = 1, and then
Nint(I) =nr = 1.

(2) Given I € FGy,([0,1]) € FG(]0,1]):

lim A(I) = lim g(NInt(I)) = lim g¢(ng),

ny—0C ny—00 ny—oo

but for the second property of g, allrglo g(a) =1, and then lim h(I)=1.

nj—oc
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(3) Given I,I¢ € FG,,([0,1]) C FG([0,1]) a finitely generated set I and
its complement ¢, as both are generated by the same number of closed
disjoint intervals:

h(I) = g(NInt(I)) = g(NInt(I°)) = h(I°).

(4) Given I € FG,,([0,1]) C FG(]0,1]) and J € FG,,([0,1]) C FG(]0,1])

such that ny < ny, it is known by the increasing monotony of g that:
h(l) = g(NInt(I)) = g(ns) < g(ns) = g(NInt(J)) = h(J). W

As it has been done with the previous two mappings of this new definition
of hesitant entropy, these last two results allow to get rid of the difficulties
associated to the third part of the entropy with functions which are easier to
obtain than the one in the original definition.

Again, a brief example is shown next to illustrate an obtainable particular
case of local hesitance entropy by these last two results.

Example 48 Let X be a finite set with cardinality N. Let By : IVHES(X) —
0, 1] be given by:

where py(x) = U A, Ve e X
i=1

Then, Ey is a local hesitance entropy, as it is the particular case of Corollary

1
47 with g(a) =1 — =.
a

Once that the three mappings have been defined and studied separately in the
last three subsections, the joint definition of entropy is given and analized in
the next one.

3.4 Joint hesitant entropy measure

The definition of the hesitant entropy proposed in this work is given next,
where the three mappings Er, Er and Ey arc put together in order to measurc
different types of uncertainties associated to a hesitant fuzzy set.

Definition 49 Let Ep, E, Ey : IVHEFS(X) — [0, 1] be three mappings. The
triplet (Er, EL, Fy) is said to be a joint entropy measure in an interval-
valued hesitant fuzzy environment if Er, E; and Ey satisfy the axioms
of Definitions 28, 36 and 42 and the local properties of Definitions 31, 37 and
43, respectively.
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The usual situation where interval-valued hesitant fuzzy sets can be applied
arises when the evaluation of certain alternatives (A1, ..., A, ) with respect to
some parameters (21, ..., Ty) are given by several experts, whose opinions are
summed up in a single interval-valued hesitant fuzzy set for each alternative
and parameter.

In order to illustrate this and the way that entropy works and varies depending
on the type of interval-valued hesitant fuzzy sets used, the next example has
been carried out.

Example 50 Let us supose that a business needs to hire a building com-
pany to carry out a construction. The business receives four different pro-
posals (Aq, Ag, As, Ay). Fach one is evaluated by four different parameters
(1,29, x3,24) by three experts, whose opinion are summed up in interval-
valued hesitant fuzzy sets. Then, the set that we are working with has four
elements, i.e., X = {xy,x9, T3, T4}.

Let us obtain a joint entropy measure (Er, B Eg) through the different re-
sults developed in the previous sections, specificly, Corollaries 34, 40 and 47
for Ep, Er, and Ey respectively. Given A € IVHFS(X) defined by pa(x;) =

TLVU,L. . ‘n""i ‘LL ‘LU
j=1 j=1

o For Ep, the dissimilarity measure selected is the hesitant normalized Ham-
mang dissimilarity, defined previously in Example 26, as well as the function
g(a) = 1—a?, which satisfies the properties of Corollary 34. The local fuzzi-
ness entropy oblained s given as:

i=1 T j=1

2
1 1 1 < 2V oL
4 n

e For Ey; the function g(a) = a® is selected, which satisfies the properties of
Corollary 40. The local lack of knowledge entropy obtained is given as:

Er(A4) = iz (Z S(Afi)) |

i=1 \j=1

1
e For By, the function g(a) = 1— — is selected, which satisfies the properties

of Corollary 47. The local hesitance entropy obtained is given as:
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Furthermore, let us select as a decision making criteria Dy (A;, {1}) for each
alternative, where Dy is the Hamming dissimilarity given in Ezample 26 and
{1} represents the ideal alternative:

Dy (A TIT) = iz; iz—m—/jf).

Once that the three mappings and the criteria are defined, the value of each
onc has been obtaincd for the four interval-valued hesitant fuzzy sctsy as it 18
shown in the Table 1.

Table 1
Different entropy values for four interval-valued hesitant fuzzy sets.
THFS(X) | A, Ay As Ay
21 (1} | {[0.0.4],[0.41,0.8),/0.81.1]} {0.5) {0}
L2 {0} | {]0.0.4],[0.41,0.7),[0.71.1]} {]0.45,0.5]} {]0,0.004], [0.005,1]}
o3 {0} | {]0.0.5],0.51,0.7),[0.71.1]} | {[0.5,0.55], [0:56, 0.6]} | {[0.99.0.994], [0.995,1]}
24 m 1[0,0.5],0.51,1]} {[0.4,0.6]} 1
Er 0 0.9032 0.9995 0.0197
Er 0 0.9653 0.0126 0
Ex 0 0.8542 0.1875 0.375
Dy (A, {1}) | 0.5 0.4552 0.4931 0.4383

The decision making criteria -leads to the preference Ay > Ay > A3z > Aj.
However, their values are really close, so another features can be taken into
account. Depending on the aim of the business, each mapping of the entropy
represents certain characteristic of interest. Let us analyze each situation sep-
arately:

o Ai: which is a crisp set, as the only values that it takes are 0 and 1. As a
result, all the entropies are null, i.e., (Er, Ep, Ey) = (0,0,0), because the
only walues are 0 and 1 (Ep(A;) = 0), they are singletons (Er(A;) = 0)
and there is a single interval (point) for each x; (Eg(Ay) =0). This shows
that it is possible to obtain a low value in all of them with the same set.

o Ay: whose values are all close to or include the point 0.5 (high value of
Er(Ay)), the membership functions are close to the interval [0,1] (high
value of Er(As)) and for cach point there arc scveral intervals defining the
membership function (high value of Ex(As)). Hence, the values of all the
entropies are high, showing that this is possible in the same set.

o Aj: the memberships include and are all close to the point 0.5 (high value
of Er(As)), the total lengths of the memberships are small (low value of
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Er(A3)), and the number of intervals are one in three out of the four ele-
ments (low value of Ey(A3)).

o A,: the memberships are all close to the extremes 0 and 1 (low value of
Er(Ay)), the total lengths of the memberships are very small (low value of
Er(A4)), and the number of intervals are one in two out of the four elements
and two in two out of the four elements (low-midium value of Er(A4)).

For instance, if it is important that the experts have a similar opinion, the
most influential mapping of the joint entropy is Ey, as the lower the value,
the smaller the number of different opinions with respect to each parameter x;.
Then the alternatives Ay and As would be preferred over Ay or Ay.

It is also remarkable that the last two sets show that the three mappings do
not usually take similar values as it happened in the sets Ay (low values) and
Ay (high values). In Az, Er(As) is much higher than the other two, whiie in

Ay, it is Ey(Ay) which takes a greater value.

The utility of the entropy measure depends on the aim of each particular
situation. Given several alternatives with a similar value with respect to the
selected criteria (such as the distance between the alternative and the ideal al-
ternative), a specific feature can be more important than others when choosing
the best alternative.

However, this study of different situations can not be done with other entropy
definitions, as they do not allow to analyze as many characteristics as the joint
definition given in this'paper. Obviously, the uncertainty associated to the def-
inition of entropy given by Farhadinia in [14], is included in our new proposal,
as the first mapping of our definition (Er) represents a similar concept.

In summary, this new approach allows to obtain the classical concept of en-
tropy for other types of sets, which is the distance to a crisp set, as well as
another two uncertainties, related to the distance to a fuzzy set and to an
interval-valued fuzzy set, being up to the researcher the importance given to
each-one in the studied situation.

4 Conclusion

In this paper, a new definition of entropy measure in a interval-valued hesitant
fuzzy environment has been designed. This definition is given by three map-
pings, where each one represents a different type of entropy, which is a reliable
alternative to the usual definitions of entropy defined just by onc mapping.
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The first mapping represents the distance to a union of crisp sets (fuzziness,
Er), which is close to the classical interpretation of entropy in other kind of
sets. The second and third ones stand for the distance to a union of fuzzy sets
(lack of knowledge, E'L) and the distance to only one interval-valued fuzzy set
(hesitance, Fy), concepts which has not been applied in the past to this type
of sets, the interval-valued hesitant fuzzy sets.

From this definition, different results have been developed in order to obtain
that mappings in a more simplified way than the original definitions, with
functions which satisfy more manageable properties, while being able to obtain
several options of entropy varying a single parameter. A final example has
been carried out to show that these three mappings complement each other,
detecting different situations of uncertainty by the combination of them.
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